English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1076-1083 DOI: 10.7536/PC160139 前一篇   后一篇

• 综述与评论 •

细乳液聚合法制备有机/无机纳米复合材料

高党鸽*, 梁志扬, 吕斌, 马建中   

  1. 陕西科技大学资源与环境学院 西安 710021
  • 收稿日期:2016-01-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 高党鸽 E-mail:dangge2000@126.com
  • 基金资助:
    国家自然科学基金青年基金项目(No.21406135)、陕西省自然科学基础研究计划面上项目(No.2015JM2061)、陕西省青年科技新星计划-青年科技新星项目1项(No.2016KJXX-02)和陕西科技大学科研团队项目(No.TD12-03)资助

Organic/Inorganic Nanocomposites Prepared by Miniemulsion Polymerization

Gao Dangge*, Liang Zhiyang, Lyu Bin, Ma Jianzhong   

  1. College of Resources and Environment, Shaanxi University of Science & Technology, Xi'an 710021, China
  • Received:2016-01-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation for Young Scholars of China (No.21406135),the Natural Science Foundation of Shaanxi Province,China (No.2015JM2061),the Youth Science and Technology New Star Project of Shaanxi Province (No.2016KJXX-02),and the Scientific Research Innovation Team of Shaanxi University of Science and Technology (No.TD12-03).
无机纳米粒子的引入可以使聚合物材料获得抗菌、导电和防紫外等诸多特性,但无机纳米粒子在聚合物基质中易团聚、引入量少,难以充分发挥其优点。细乳液聚合法基于其独特的成核方式——液滴成核,能够提高无机纳米粒子在聚合物基中的分散性和引入量,且复合材料的形貌易于控制,是目前制备特殊形貌有机/无机纳米复合材料的一种有效手段。本文介绍了有机/无机复合纳米材料的细乳液制备过程,综述了近年来不同无机纳米粒子与有机基质复合的研究进展,例如:纳米SiO2、纳米ZnO、金属纳米粒子、纳米氧化石墨烯等。最后就其发展现状提出了几点建议。
The introduction of inorganic nanoparticles can make the polymer materials many characteristics, such as antibacterial, conductive, anti-ultraviolet. However, the inorganic nanoparticles are easy to agglomerate and less content of nanoparticles is introduced in polymer, so it is difficult to demonstrate advantage of nano material. Based on its unique droplet nucleation mechanism, miniemulsion polymerization can improve the inorganic nanoparticles’ dispersity and amount of introduction in polymer matrix, and control the morphology of the composites easily. It is an effective method to obtain the special morphology of organic/inorganic nanocomposites. This paper introduces the preparation process of organic/inorganic nanocomposite miniemulsion, and reviews the recent progress of different inorganic nanoparticles with organic matrix composites, such as nano-SiO2, nano-ZnO, metal nanoparticles, nano-graphene oxide, etc. At last, some suggestions on the present development situation are given.

Contents
1 Introduction
2 Preparation and polymerization of organic/inorganic composite miniemulsion
3 The composite of different inorganic nanoparticles and organic matrix
3.1 The composite of nano-SiO2 with organic matrix
3.2 The composite of nano-ZnO with organic matrix
3.3 The composite of metal nanoparticles with organic matrix
3.4 The composite of GO with organic matrix
3.5 The composite of other inorganic nanoparticles with organic matrix
4 Conclusion

中图分类号: 

()
[1] Ray S S, Okamoto M. Prog. Polym. Sci., 2003, 28:1539.
[2] Paul D R, Robeson L M. Polymer, 2008, 49:3187.
[3] Schmid A, Armes S P, Leite C A P, Galembeck F. Langmuir, 2009, 25:2486.
[4] Schmid A, Fujii S, Armes S. P. Langmuir, 2006, 22:4923.
[5] Yi D, Lee S, Ying J. Chem. Mater., 2006, 18:2459.
[6] Tancharernrat T, Rempel G L, Prasassarakich P. Polymer Degradation and Stability, 2015, 118:69.
[7] Tancharernrat T, Rempel G L, Prasassarakich P. Chemical Engineering Journal, 2014, 258:290.
[8] Christian G, Alain G. Macromolecules, 2003, 36(17):6371.
[9] Ludmila I R, Roque J M, Mario C G, Gregorio R M, Luis M G. Chemical Engineering Journal, 2015, 263:231.
[10] Katharina L. Angew. Chem. Int. Ed., 2009, 48:4488.
[11] Hu J, Chen M, Wu L M. Polymer Chemistry, 2011, 2:760.
[12] Ugelstad J, El-Aasser M S, Vanderhoff, J W. J. Polym. Sci. Polym. Lett. Ed., 1973, 11(8):503.
[13] Chou Y J, EI-Aasser M S, Vanderhoff J W. Dispersion Sci. Technol., 1980, 1:12.
[14] Qi D M, Cao Z H, Ulrich Z. Advances in Colloid and Interface Science, 2014, 211:47.
[15] Costoyas A, Ramos J, Forcada J. J. Polym. Sci., Part A:Polym. Chem., 2009, 47:935.
[16] Ma J Y, Lu M G, Cao C L, Zhang H X. Polymer Composites, 2013, 34(5):626.
[17] Yu Y, Chen C, Chen W. Polymer, 2003, 44:593.
[18] Chau J, Hsieh C, Lin Y, Li A K. Prog. Org. Coat., 2008, 62(4):436.
[19] Schoth A, Wagner C, Hecht L L, Winzen S, Munoz-Espi R, Heike P. Colloid Polym. Sci., 2014, 292(10):2427.
[20] Zhang S W, Zhou S X, Weng Y M, Wu L M. Langmuir, 2005, 21:2124.
[21] Hecht L L, Wagner C, Özcan Ö, Eisenbart F, Köhler K, Landfester K. Macromol. Chem. Phys., 2012, 213:2165.
[22] 倪士宝(Ni S B),王政(Wang Z),聂王焰(Nie W Y),周艺峰(Zhou Y F),宋林勇(Song L Y).材料工程(Journal of Materials Engineering), 2012, 9:66.
[23] Bourgeat-Lami E, Farzi G. A., David L, Putaux J L, McKenna T F L. Langmuir, 2012, 28(14):6021.
[24] Pickering S U. J. Am. Chem. Soc., 1907, 91:2001.
[25] Karim G M, G. P L, Christopher T, Jose M. A. Polymer, 2013, 54(23):6314.
[26] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Do?n S, Avrutin V, Cho S J, MorkoçH. J. Appl. Phys., 2005, 98:041301.
[27] Zhang J J, Gao G, Zhang M, Zhang D, Wang C L, Zhao D C, Liu F Q. Journal of Colloid and Interface Science, 2006, 301(1):78.
[28] Tang E J, Dong S Y. Colloid Polym. Sci., 2009, 287:1025.
[29] Aguirre M., Barrado M, Paulis M, Leiza J R. Macromolecules, 2014, 47(23):8404.
[30] Pishvaei M, Tabrizi F F. Iran. Polym. J., 2010, 19:707.
[31] Aguirre M, Barrado M, Iturrondobeitia M, Okarizd A, Gurayac T, Paulisa M, Jose R L. Chemical Engineering Journal, 2015, 270:300.
[32] Serra C L, Tulliani J M, Sangermano M. Macromol. Mater. Eng., 2014, 299(11):1352.
[33] Barkade S S, Pinjari D V, Singh A K, Gogate P R, Naik J B, Sonawane S H. Ind. Eng. Chem. Res., 2013, 52(23):7704.
[34] Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105:1025.
[35] Daniel M C, Astruc D. Chem. Rev., 2004, 104:293.
[36] Koh H D, Changez M, Lee J P, Lee J S. Macromolecular Rapid Communications, 2009, 30(18):1583.
[37] Mamaghani M Y, Pishvaei M, Kaffashil B. Macromolecular Research, 2011, 19(3):243.
[38] Barkade S S, Naik J B, Sonawane S H. Colloids Surf. A, 2011, 378:94.
[39] Staudt T, Machado T O, Vogel N, Weiss C K, Arauj P H H, Sayer C, Landfester K. Macromolecular Chemistry and Physics, 2013, 214(19):2213.
[40] Romio A P, Rodrigues H H, Peres A, Viegas A D, Kobitskaya E, Ziener U, Landfester K, Sayer C, Araujo P H H. J. Applied Polymer, 2013, 129(3):1426.
[41] Fuchs A V, Will G D. Polymer, 2010, 51(10):2119.
[42] Siegwart D J, Srinivasan A, Bencherif S A, Karunanidhi A, Oh J K, Vaidya S, Jin R, Hollinger J O, Matyjaszewski K. Biomacromolecules, 2009, 10(8):2300.
[43] Van Berkel K Y, Hawker C J. J. Polym. Sci. Part A:Polym. Chem., 2010, 48(7):1594.
[44] Borthakur L J, Konwer S, Das R, Dolui S K. J. Polym. Res., 2011, 18(5):1207.
[45] Etmimi H M, Tonge M P, Sanderson R D. J. Polym. Sci. Part A:Polym. Chem., 2011, 49(7):1621.
[46] Etmimi H M, Sanderson R D. Macromolecules, 2011, 44(21):8504.
[47] Park N, Lee J, Min H, Park Y D, Lee H S. Polymer, 2014, 55(20):5088.
[48] Tan Y Q, Fang L J, Xiao J L, Song Y H, Zheng Q. Polym. Chem., 2013, 4:2939.
[49] Man S H C, Thickett S C, Whittaker M R, Zetterlund P B. J. Polym. Sci. Part A:Polym. Chem., 2013, 51(1):47.
[50] Che Man S H, Ly D, Whittaker M R., Thickett S C, Zetterlund P B. Polymer, 2014, 55(16):3490.
[51] Zgheib N, Putaux JL, Thill A, D'Agosto F, Lansalot M, Bourgeat-Lami E. Langmuir, 2012, 28:6163.
[52] Zengeni E, Hartmann P C, Pasch H. ACS Appl. Mater. Interfaces, 2012, 4(12):6957.
[53] Zengeni E, Hartmann P C, Pasch H. Macromol. Chem. Phys., 2013, 214(1):62.
[54] Bonnefond A, Paulis M, Bon SAF, Leiza J R. Langmuir, 2013, 29:2397.
[55] Wu Y F, Zhang Y, Xu J X, Chen M, Wu L M. J. Colloid Interface Sci., 2010, 343:18.
[56] 白福顺(Bai F S),杜长森(Du C S),田安丽(Tian A L),梅国成(Mei G C),付少海(Fu S H).精细化工(Fine Chemicals), 2014, 31(1):103.
[57] Aguirre M, Paulis M, Leiza J R. Polymer, 2014, 55(3):752.
[58] Yan F, Zheng X W, Sun Z M, Zhao A H. Polym. Bull., 2012, 68:1305.
[59] Capek I. Des. Monomers Polym., 2012, 15(4):345.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[8] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[9] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[10] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[11] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[12] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[13] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[14] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[15] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.