English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1060-1075 DOI: 10.7536/PC200429 前一篇   后一篇

• 综述 •

无机纳米与多孔材料合成中的凝聚态化学

施剑林1,**(), 华子乐1   

  1. 1. 中国科学院上海硅酸盐研究所 上海 200050
  • 收稿日期:2020-01-16 修回日期:2020-02-20 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 施剑林
  • 基金资助:
    国家自然科学基金项目(21835007); 国家自然科学基金项目(21776297)

Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials

Jianlin Shi1,**(), Zile Hua1   

  1. 1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2020-01-16 Revised:2020-02-20 Online:2020-08-24 Published:2020-04-23
  • Contact: Jianlin Shi
  • About author:
  • Supported by:
    the National Natural Science Foundation of China(21835007); the National Natural Science Foundation of China(21776297)

所谓凝聚态,一般意义上是指液态和固态,而凝聚态化学,即是在固相和液相中的各种化学过程。在无机材料,特别是无机纳米与多孔材料的合成制备中,凝聚态化学过程贯穿其中,几乎无处不在。在固相材料合成过程中,通过液相中的各种化学反应以获得目标固体材料的所需组分和物相,也许就是无机材料合成中一个最基本的凝聚态化学问题;而多孔如微孔或介孔材料合成中,更涉及伴随组分和物相形成过程中的孔结构形成与调控;进一步,在制备面向实际应用如催化剂和药物载体时,则在以上的各项要求之外,还必须考虑材料的表面活性位、缺陷等关键因素,以及颗粒尺寸、分散性和形貌等几何和物理特性。本文以无机氧化物为对象,讨论了无机材料在凝聚态化学合成过程中的几个侧面,包括纳米颗粒和粉体的化学合成方法,多孔材料的合成和多孔复相结构的合成调控,以及多级孔结构沸石的合成制备与催化性能,以期能加深对材料合成中凝聚态化学过程的认识,并期待以凝聚态化学为指导,进一步推动无机材料特别是纳米多孔材料合成的发展。

Condensed state chemistry, as we know, means diverse chemical processes taking place in liquids and solids. Actually, condensed state chemistry is present throughout the synthesis and preparation of inorganic materials, especially the nano- and porous solid materials. In the material synthesis, obtaining target solids with desired chemical compositions and phase structures, is probably one of the most fundamental issues of condensed state chemistry. While in the synthesis of porous solid materials such as microporous zeolites or mesoporous oxides, the regulations of pore structures along with the chemical compositions and phase structures become important. Moreover, aiming at the applications in, e.g., catalysis and drug delivery, key factors such as the active sites and defects, and the geometric/physical features such as the dimensions, dispersity and morphologies, should be taken into considerations in addition to the issues mentioned above. In this feature article, by focusing on the inorganic oxides, we discuss several aspects of condensed state chemistry in the chemical syntheses of nanoparticles and superfine powders, pore structural regulations of mesoporous materials and composites, and the synthesis and catalytic properties of hierarchically porous structured zeolite, so as to acquire further in-depth understanding of condensed state chemistry in the materials synthesis and promote the development of nano-/porous inorganic solids under the guidance of condensed state chemistry.

Contents

===1 Introduction

===2 Condensed state chemistry for the preparation of nanoparticles and ultrafine powders

===2.1 Brief description about inorganic nanoparticles and ultrafine powders

===2.2 Characteristics of condensed state chemistry of inorganic nanoparticles and ultrafine powders

===2.3 General chemical methods for preparation of inorganic nanoparticles and ultrafine powders

===3 Condensed state chemistry for the preparation of nanomaterials and mesostructured nanocomposites

===3.1 Descriptions of condensed state chemistry routes for the preparation of nanocomposites

===3.2 Soft-templating preparation of mesoporous and mesostructured nanocomposites

===3.3 Inverse-replication preparation of crystallized mesoporous oxides and bicomponent mesoporous composites

===3.4 Template-free preparation of mesoporous metal oxides and composites

===3.5 Post-incorporation strategy for the preparation of mesoporous host-guest nanocomposites

===4 Condensed state chemistry in the preparation of hierarchically structured zeolites

===4.1 Etching preparation of hierarchically structured zeolites

===4.2 Templating preparation of hierarchically structured zeolites

===4.3 Template-free and self-templating preparation of hierarchically structured zeolites

===4.4 Perspectives on condensed state chemistry synthesis and applications of hierarchically structured zeolites

===5 Conclusion and remarks

()
表1 常见氧化物粉体制备所用化学试剂和合成方法
Table 1 Chemical agents and synthetic procedures for the preparation of oxide nanoparticles
图1 制备纳米复合材料的通用物理/化学合成示意图:(a) “后沉积”法;(b) “一锅法”或“一步法”[20]
Fig.1 Schematics of the general physical/chemical synthetic strategies for nanocomposites by(a) “post-deposition” approach and(b) “one-pot” or “one-step” approach[20]. Copyright 2013, American Chemical Society
图2 反相复制法制备的介孔结构复合材料骨架结构示意图:(a)非晶骨架;(b)纳米尺度多晶颗粒组成的晶化骨架;(c)客体组分均匀掺杂和/或分散于晶化主体骨架(小圆点代表离子或超小晶粒);以及(d)客体组分(晶粒/团簇/纳米颗粒)负载分散于介孔孔道并贴附于孔道内表面[20]
Fig.2 Schematics of mesostructured materials/composites with(a) amorphous framework,(b) crystallized framework composed of numerous nanosized polycrystallites,(c) guest species homogeneously doped or dispersed in the crystallized host framework(small and round dots present the guest ions and/or ultrasmall crystallites), and (d) guests(crystallites/clusters/nanoparticles) loaded/dispersed in the pore channels attaching on the pore surface[20]. Copyright 2013, American Chemical Society
图3 (a)二水草酸镍前驱物和(b)300 ℃可控热分解后介孔氧化镍的SEM像;(c)300 ℃和(d)340 ℃热分解得到的介孔氧化镍的TEM像[50]
Fig.3 SEM images of(a) nickel oxalate dihydrate and(b) NiO calcined at 300 ℃; TEM images of(c) nanoporous NiO calcined at 300 ℃ and(d) 340℃[50]. Copyright 2008, Wiley
图4 介孔孔道作为化学反应微反应器,在孔道内原位负载客体组分示意图:(A)表面改性法孔道内先引入A,再通过络合/螯合等反应等引入B,得到产物C固定于孔道;(B)孔道内同时引入A和B,通过反应物之间的原位反应形成C [20]
Fig.4 Schematics of loading guest species in the mesopore channels of mesoporous hosts by employing the mesopores as the microreactors:(a) Reactant A is first introduced by pore surface modification, followed by the introduction of reactant B via a certain kind of interaction(e.g., complexing);(b) A and B are co-introduced simultaneously into the pore channels, and subsequent in situ reaction between the reactants A and B results in the formation of product C within the pore channels[20]. Copyright 2013, American Chemical Society
图5 共灌注方法制备金属氧化物负载介孔材料示意图[20]
Fig.5 Schematics of a co-nanocasting strategy for preparation of metal oxides-incorporated mesoporous nanocomposites[20]. Copyright 2013, American Chemical Society
图6 氨基酸辅助晶化法制备单晶型多级结构纳米晶沸石示意图[104]
Fig.6 Proposed evolution process of single-crystalline and defect-free hierarchical nanozeolites by amino acid-assisted crystallization[104]. Copyright 2019, American Chemical Society
图7 全结晶型多级结构沸石单体制备工艺[108]
Fig.7 Preparation procedure of hierarchical full-zeolitic monolith[108]. Copyright 2016, Elsevier
图8 “准固相转变策略”制备多级结构沸石示意图[109]
Fig.8 Schematics of the crystallization process of hierarchical porous ZSM-5 single crystals in a quasi-solid-state system[109]. Copyright 2016, Wiley
[1]
Shi J L . Adv. Mater., 1999,11(13):1103.
[2]
Shi J L . Mater. Res., 1999,14(4):1398. https://www.cambridge.org/core/product/identifier/S0884291400048925/type/journal_article

doi: 10.1557/JMR.1999.0190     URL    
[3]
Shi J L . Mater. Res., 1999,14(4):1378.
[4]
Shi J L . Mater. Res., 1999,14(4):1389. https://www.cambridge.org/core/product/identifier/S0884291400048913/type/journal_article

doi: 10.1557/JMR.1999.0189     URL    
[5]
Shi J L . Mater. Sci., 1999,34(15):3801. http://link.springer.com/10.1023/A:1004600816317

doi: 10.1023/A:1004600816317     URL    
[6]
Shi J L , Gao J H , Lin Z X , Yen T . Am. Ceram. Soc., 1991,74(5):994. http://www.blackwell-synergy.com/toc/jace/74/5

doi: 10.1111/jace.1991.74.issue-5     URL    
[7]
Shi J L , Gao J H , Lin Z X , Yan D S . Mater. Sci., 1993,28(2):342.
[8]
Shi J L , Lin Z X , Qian W J , Yen T S . Eur. Ceram. Soc., 1994,13(3):265. https://linkinghub.elsevier.com/retrieve/pii/0955221994900353

doi: 10.1016/0955-2219(94)90035-3     URL    
[9]
Shi J L , Li B S , Ruan M L , Yen T S . Eur. Ceram. Soc., 1995,15(10):959. https://linkinghub.elsevier.com/retrieve/pii/0955221995000653

doi: 10.1016/0955-2219(95)00065-3     URL    
[10]
Shi J L , Gao J H , Li B S , Yen T S . Eur. Ceram. Soc., 1995,15(10):967.
[11]
Shi J L , Gao J H . Mater. Sci., 1995,30(3):793.
[12]
Ji Y M , Jiang D Y , Wu Z H , Feng T , Shi J L . Mater. Res. Bull., 2005,40(9):1521.
[13]
Livage J , Henry M , Sanchez C . Prog. Solid State Chem., 1988,18(4):259.
[14]
Hench L L , West J K . Chem. Rev., 1990,90(1):33.
[15]
Sanchez C , Belleville P , Popall M , Nicole L . Chem. Soc. Rev., 2011,40(2):696.
[16]
Ciriminna R , Sciortino M , Alonzo G , Schrijver A D , Pagliaro M . Chem. Rev., 2011,111(2):765.
[17]
Mutin P H , Vioux A . Chem. Mater., 2009,21(4):582.
[18]
Leskelä M , Ritala M . Angew. Chem. Int. Ed., 2003,42(45):5548.
[19]
Debecker D P , Mutin P H . Chem. Soc. Rev., 2012,41(9):3624.
[20]
Shi J L . Chem. Rev., 2013,113(3):2139.
[21]
Beck J S , Vartuli J C , Roth W J , Leonowicz M E , Kresge C T , Schmitt K D , Chu C W , Olson D H , Sheppard E W , McCullen S B , Higgins J B , Schlenker J L. . J. Am. Chem. Soc., 1992,114(27):10834.
[22]
Chen H R , Shi J L , Li Y S , Yan J N , Hua Z L , Chen H G , Yan D S . Adv. Mater., 2003,15(13):1078.
[23]
Soler-lllia G J A A , Sanchez C , Lebeau B , Patarin J . Chem. Rev., 2002,102(11):4093.
[24]
Hua Z L , Shi J L , Wang L , Zhang W H . J. Non-Cryst. Solids, 2001,292(1/3):177.
[25]
Lee Y J , Lee J S , Park Y S , Yoon K B . Adv. Mater., 2001,13(16):1259.
[26]
Mehdi A , Reye C , Corriu R . Chem. Soc. Rev., 2011,40(2):563.
[27]
Shi Y F , Wan Y , Zhao D Y . Chem. Soc. Rev., 2011,40(7):3854.
[28]
Zhao D Y , Yang P D , Chmelka B F , Stucky G D . Chem. Mater., 1999,11(5):1174.
[29]
Smarsly B , Grosso D , Brezesinski T , Pinna N , Boissière C , Antonietti M , Sanchez C . Chem. Mater., 2004,16(15):2948.
[31]
Mamak M , Métraux G S , Petrov S , Coombs N , Ozin G A , Green M A . Am. Chem. Soc., 2003,125(17):5161. https://pubs.acs.org/doi/10.1021/ja027881p

doi: 10.1021/ja027881p     URL    
[32]
Chen H R , Gu J L , Shi J L , Liu Z C , Gao J H , Ruan M L , Yan D S . Adv. Mater., 2005,17(16):2010.
[33]
Robert J P , Mehdi A , Reyé C , Thieuleux C . Chem. Commun., 2002,(13):1382.
[34]
Zhang L X , Zhang W H , Shi J L , Hua Z L , Li Y S , Yan J N . Chem. Commun., 2003,2:210.
[35]
Zhang W H , Lu X B , Xiu J H , Hua Z L , Zhang L X , Robertson M , Shi J L , Yan D S , Holmes J D . Adv. Funct. Mater., 2004,14(6):544.
[36]
张一平(Zhang Y P), 周春晖(Zhou C H), 王学杰(Wang X J), 杨彤(Yang T), 徐羽展(Xu Y Z) . 化学进展(Prog. Chem.), 2008,20(1):33.
[37]
Gu J L , Huang Y , Elangovan S P , Li Y S , Zhao W R , Toshio I , Yamazaki Y , Shi J L . J. Phy. Chem. C, 2011,115(43):21211.
[38]
Lee K , Kim Y H , Han S B , Kang H K , Park S , Seo W S , Park J T , Kim B , Chang S . Am. Chem. Soc., 2003,125(23):6844. https://pubs.acs.org/doi/10.1021/ja034137b

doi: 10.1021/ja034137b     URL    
[39]
Yang H F , Shi Q H , Tian B Z , Lu Q Y , Gao F , Xie S H , Fan J , Yu C Z , Tu B , Zhao D Y . Am. Chem. Soc., 2003,125(16):4724.
[40]
Tian B Z , Liu X Y , Solovyov L A , Liu Z , Yang H F , Zhang Z D , Xie S H , Zhang F Q , Tu B , Yu C Z , Terasaki O , Zhao D Y . Am. Chem. Soc., 2004,126(3):865.
[41]
Tian Z R , Tong W , Wang J Y , Duan N G , Krishnan V V , Suib S L . Science, 1997,276(5314):926.
[42]
Rumplecker A , Kleitz F , Salabas E L , Schüth F . Chem. Mater., 2007,19(3):485.
[43]
Zhu K , He H , Xie S , Zhang X , Zhou W , Jin S , Yue B . Chem. Phys. Lett., 2003,377(3/4):317.
[44]
Shen W H , Dong X P , Zhu Y F , Chen H R , Shi J L . Micro. Meso. Mater., 2005,85(1/2):157.
[45]
Cui X Z , Zhang H , Dong X P , Chen H R , Zhang L X , Guo L M , Shi J L . Mater. Chem., 2008,18(30):3575.
[46]
Shen W H , Shi J L , Chen H R , Gu J L , Zhu Y F , Dong X P . Chem. Lett., 2005,34(3):390.
[47]
Cui X Z , Li H , Guo L , He D N , Chen H R , Shi J L . Dalton Trans., 2008, (45):6435.
[48]
Wan L M , Cui X Z , Chen H R , Shi J L . Mater. Lett., 2010,64(12):1379.
[49]
Cui X Z , Zhou J , Ye Z Q , Chen H R , Li L , Ruan M L , Shi J L . Catal., 2010,270(2):310. https://linkinghub.elsevier.com/retrieve/pii/S0021951710000060

doi: 10.1016/j.jcat.2010.01.005     URL    
[50]
Yu C C , Zhang L X , Shi J L , Zhao J J , Gao J H , Yan D S . Adv. Funct. Mater., 2008,18(10):1544.
[51]
Yu C C , Dong X P , Guo L M , Li J T , Qin F , Zhang L X , Shi J L , Yan D S . J. Phy. Chem. C, 2008,112(35):13378.
[52]
Gao Z , Cui F M , Zeng S Z , Guo L M , Shi J L . Micro. Meso. Mater., 2010,132(1/2):188.
[53]
Gao Z , Zhou J , Cui F M , Zhu Y , Hua Z L , Shi J L . Dalton Trans., 2010,39(46):11132.
[54]
Bian S W , Baltrusaitis J , Galhotra P , Grassian V H . Mater. Chem., 2010,20(39):8705.
[55]
Feng Y J , Li L , Niu S F , Qu Y , Zhang Q , Li Y S , Zhao W R , Li H , Shi J L . Appl. Catal. B-Environ., 2012,111:461.
[56]
Lee J W , Ahn T , Kim J H , Ko J M , Kim J D . Electrochim. Acta, 2011,56(13):4849.
[57]
Moller K , Bein T . Chem. Mater., 1998,10(10):2950.
[58]
Han Y J , Kim J M , Stucky G D . Chem. Mater., 2000,12(8):2068.
[59]
Shin H J , Ryoo R , Liu Z , Terasaki O . Am. Chem. Soc., 2001,123(6):1246.
[60]
Zhang L X , Shi J L , Yu J , Hua Z L , Zhao X G , Ruan M L . Adv. Mater., 2002,14(20):1510.
[61]
Gu J L , Shi J L , You G J , Xiong L M , Qian S X , Hua Z L , Chen H R . Adv. Mater., 2005,17(5):557.
[62]
Li L , Shi J L , Zhang L X , Xiong L M , Yan J N . Adv. Mater., 2004,16(13):1079.
[63]
Besson S , Gacoin T , Ricolleau C , Jacquiod C , Boilot J P . Nano Lett., 2002,2(4):409.
[64]
Hua Z L , Shi J L , Zhang L X , Ruan M L , Yan J N . Adv. Mater., 2002,14(11):830.
[65]
Zhang W H , Shi J L , Wang L Z , Yan D S . Chem. Mater., 2000,12(5):1408.
[66]
Garcia C , Zhang Y M , Disalvo F , Wiesner U. Angew. Chem. Int. Ed., 2003,42(13):1526.
[67]
Zhang W H , Shi J L , Chen H R , Hua Z L , Yan D S . Chem. Mater., 2001,13(2):648.
[68]
Wight A P , Davis M E . Chem. Rev., 2002,102(10):3589.
[69]
Liu N , Chen Z , Dunphy D R , Jiang Y B , Assink R A , Brinker C J . Angew. Chem. Int. Ed., 2003,42(15):1731.
[70]
Wu C G , Bein T . Science, 1994,264(5166):1757.
[71]
Li L , Shi J L . Adv. Syn. Catal., 2005,347(14):1745.
[72]
Li L , Shi J L , Yan J N , Zhao X G , Chen H G . Appl. Catal. A: Gen., 2004,263(2):213.
[73]
Shi J L , Hua Z L , Zhang L X . Mater. Chem., 2004,14(15):795.
[74]
Cui X Z , Guo L M , Cui F M , He Q J , Shi J L . J. Phy. Chem. C, 2009,113(10):4134.
[75]
Cui X Z , Shi J L , Chen H R , Zhang L X , Guo L M , Gao J H , Li J B . J. Phys. Chem. B, 2008,112(38):12024.
[76]
Li Y S , Chen Y , Liang L , Gu J L , Zhao W R , Lei L , Shi J L . Appl. Catal. A: Gen., 2009,366(1):57.
[77]
Chen Y , Li Y S , Li L , Gu J L , Zhao W R , Li L , Shi J L . Chin. J. Catal., 2009,30(3):230.
[78]
Guo L M , Li J T , Zhang L X , Li J B , Li Y S , Yu C C , Shi J L , Ruan M L , Feng J W . Mater. Chem., 2008,18(23):2733.
[79]
Guo L M , Cui X Z , Li Y S , He Q J , Zhang L X , Bu W B , Shi J L . Chem. Asian J., 2009,4(9):1480.
[80]
Soler-Illia G J A A , Azzaroni O . Chem. Soc. Rev., 2011,40(2):1107.
[81]
Yang P P , Gai S , Lin J . Chem. Soc. Rev., 2012,41(9):3679.
[82]
Pcech J , Pizarro P , Serrano D P , Cejka J . Chem. Soc. Rev., 2018,47(22):8263.
[83]
Li S Y , Li J F , Mei D , Fan S B , Zhao T S , Wang J G , Fan W B . Chem. Soc. Rev., 2019,48(3):885.
[84]
Zhang X Y , Liu D X , Xu D D , Asahina S , Cychosz K A , Agrawal K V , Yasser A W , Bhan A , Saleh A H , Terasaki O , Thommes M , Tsapatsis M . Science, 2012,336(6089):1684.
[85]
Xu D D , Swindlehurst G R , Wu H H , David H O , Zhang X Y , Tsapatsis M . Adv. Funct. Mater., 2014,24(2):201.
[86]
Qin Z X , Pinard L , Benghalem M A , Daou T J , Melinte G , Ersen O , Asahina S , Gilson J P , Valtchev V . Chem. Mater., 2019,31(13):4639.
[87]
Ge T G , Hua Z L , He X Y , Yan Z , Ren W C , Chen L S , Zhang L X , Chen H R , Lin C C , Yao H L , Shi J L . Chin. J. Catal., 2015,36(6):866.
[88]
Ding K L , Corma A , Maciá-Agulló J A , Hu J G , Krämer S , Stair P C , Stucky G D . J. Am. Chem. Soc., 2015,137(35):11238. https://www.ncbi.nlm.nih.gov/pubmed/26322625

doi: 10.1021/jacs.5b06791     URL     pmid: 26322625
[89]
Wang Y , Lin M , Tuel A . Micro. Meso. Mater., 2007,102(1/3):80.
[90]
Du C L , Cui N , Li L H , Hua Z L , Shi J L . RSC Adv., 2019,9:9694.
[91]
Zhang B , Zhang Y H , Hu Y Y , Shi Z P , Azhati A , Xie S H , He H Y , Tang Y . Chem. Mater., 2016,28(8):2757.
[92]
Xu D D , Ma Y H , Jing Z F , Lu H , Singh B , Ji F , Shen X F , Cao F L , Oleynikov P , Huai S , Terasaki O , Che S A . Nat. Comm., 2014,5:4262.
[93]
Singh B K , Xu D D , Han L , Ding J , Wang Y M , Che S A . Chem. Mater., 2014,26(24):7183.
[94]
Zhu J , Zhu Y H , Zhu L K , Marcello R , Alexander van der Made , Yang C G , Pan S X , Liang W , Zhu L F , Jin Y , Qi S , Wu Q M , Meng X J , Zhang D L , Yu H , Li J X , Chu Y Y , Zheng A M , Qiu S L , Zheng X M , Xiao F S . J. Am. Chem. Soc., 2014,136(6):2503. https://www.ncbi.nlm.nih.gov/pubmed/24450997

doi: 10.1021/ja411117y     URL     pmid: 24450997
[95]
Tian Q W , Liu Z H , Zhu Y H , Dong X L , Youssef S , Basset J , Miao S , Wei X , Zhu L K , Zhang D L , Huang J F , Meng X J , Xiao F S , Yu H . Adv. Funct. Mater., 2016,26(12):1881.
[96]
Dong X L , Shaikh S , Vittenet J R , Wang J , Liu Z H , Kushal D B , Ola A , Wei X , Osorio I , Youssef S , Jean-marie B , Shaikh A A , Yu H . ACS Sus. Chem. Eng., 2018,6(11):15832.
[97]
Zhu X C , Hofmann J P , Brahim M , Kosinov N , Wu L L , Qian Q Y , Weckhuysen B M , Asahina S , Ruiz-martínez J , Hensen E M . ACS Catal., 2016,6(4):2163.
[98]
Shahami M , Dooley K M , Shantz D F . Catal., 2018,368:354.
[99]
Chen Z W , Dong L , Chen C , Wang Y D , Wang Y , Zhang J , Qian W , Hong M . Nanoscale, 2019,11(35):16667.
[100]
Sun Q M , Wang N , Bai R S , Chen X X , Yu J H . J. Mater. Chem. A, 2016,4(39):14978.
[101]
Sun Q M , Wang N , Bai R S , Chen G R , Shi Z Q , Zou Y C , Yu J H . ChemSusChem, 2018,11(21):3812.
[102]
Chen C , Zhai D , Dong L , Wang Y D , Zhang J , Liu Y , Chen Z W , Wang Y , Qian W , Hong M . Chem. Mater., 2019,31(5):1528.
[103]
Zhang Q , Chen G R , Wang Y Y , Chen M Y , Guo G Q , Shi J , Luo J , Yu J H . Chem. Mater., 2018,30(8):2750.
[104]
Zhang Q , Mayoral A , Terasaki O , Zhang Q , Ma B , Zhao C , Yang G J , Yu J H . Am. Chem. Soc., 2019,141(9):3772.
[105]
Li B , Hu Z J , Kong B , Wang J X , Li W , Sun Z K , Qian X F , Yang Y S , Wei S , Xu H L , Zhao D Y . Chem. Sci., 2014,5(4):1565.
[106]
Li G N , Huang H B , Yu B W , Wang Y , Tao J W , Wei Y X , Li S G , Liu Z M , Xu Y , Xu R R . Chem. Sci, 2016,7:1582.
[107]
Shang C , Wu Z X , Wu W D , Chen X D . ACS Appl. Mater. Interfaces, 2019,11(18):16693.
[108]
Zhou J , Teng J W , Ren L P , Wang Y D , Liu Z C , Liu W , Yang W M , Xie Z K . Catal., 2016,340:166.
[109]
Ge T G , Hua Z L , He X Y , Lv J , Chen H R , Zhang L X , Yao H L , Liu Z W , Lin C C , Shi J L . Chem. Eur. J., 2016,22(23):7895.
[110]
He X Y , Ge T G , Hua Z L , Zhou J , Lv J , Zhou J L , Liu Z C , Shi J L . ACS Appl. Mater. Interfaces, 2016,8(11):7118.
[111]
Machoke A G , Beltrán A M , Inayat A , Winter B , Tobias W , Kruse N , Güttel R , Spiecker E , Schwieger W . Adv. Mater., 2015,27(6):1066.
[112]
Weissenberger T , Reiprich B , Machoke A G F , Klühspies K , Bauer J Dotzel R , Cascic J L , Schwieger W . Catal. Sci. Tech., 2019,9:3259.
[113]
Weissenberger T , Leonhardt R , Zubiri B A , Martina P , Sheppard T L , Reiprich B , Bauer J , Dotzel R , Kahnt M , Schropp A , Christian G S , Grunwaldt J , Casci J L , Cejka J , Spiecker E , Schwieger W . Chem. Eur. J., 2019,25(63):14430.
[114]
Li A , Wang X , Wang T , Liu H L , Gao T A , Fan M H , Huo Q S , Qiao Z A . Chem. Eur. J., 2018,24(48):12600.
[115]
Rani P , Srivastava R . ACS Sus. Chem. Eng., 2019,7(11):9822.
[116]
Pan M , Zheng J J , Liu Y J , Ning W W , Tian H P , Li R F . Catal., 2019,369:72.
[117]
Wei L , Song K C , Wu W , Holdren S , Zhu G H , Shulman E , Shang W J , Chen H Y , Zachariah M R , Liu D X . Am. Chem. Soc., 2019,141(22):8712.
[118]
Wu D , Yu X , Chen X Q , Yu G , Zhang K , Qiu M H , Xue W J , Yang C G , Liu Z Y , Sun Y H . ChemSusChem, 2019,12(16):3871.
[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[5] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[6] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[7] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[8] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[9] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[10] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.
[11] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[12] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[13] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[14] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[15] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.