English
新闻公告
More
化学进展 2017, Vol. 29 Issue (10): 1228-1251 DOI: 10.7536/PC170616 前一篇   后一篇

• 综述 •

纳米纤维素基吸附材料

茹静1,2, 耿璧垚1,2, 童聪聪1,2, 王海英3, 吴胜春3, 刘宏治1,2*   

  1. 1. 浙江农林大学工程学院 杭州 311300;
    2. 浙江省竹资源与高效利用协同创新中心 杭州 311300;
    3. 浙江农林大学环境与资源学院 杭州 311300
  • 收稿日期:2017-06-13 修回日期:2017-08-12 出版日期:2017-10-15 发布日期:2017-08-29
  • 通讯作者: 刘宏治,e-mail:hzliu@iccas.ac.cn,hongzhil@zafu.edu.cn E-mail:hzliu@iccas.ac.cn,hongzhil@zafu.edu.cn
  • 基金资助:
    浙江省级公益技术应用研究项目(No.2016C33029,2017C33113)和浙江农林大学科研发展基金项目(No.2013FR088)资助

Nanocellulose-Based Adsorption Materials

Jing Ru1,2, Biyao Geng1,2, Congcong Tong1,2, Haiying Wang3, Shengchun Wu3, Hongzhi Liu1,2*   

  1. 1. School of Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
    2. Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Hangzhou 311300, China;
    3. School of Environment & Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
  • Received:2017-06-13 Revised:2017-08-12 Online:2017-10-15 Published:2017-08-29
  • Supported by:
    The work was supported by the Public Welfare Projects of Zhejiang Province (No. 2016C33029, 2017C33113) and the Scientific Research Foundation of Zhejiang Agriculture and Forestry University (No. 2013FR088).
纳米纤维素是一大类微纤单元直径在纳米级(2~100 nm)的新型纤维素材料,因其长径比高、比表面积大、力学性能优异及表面易于化学修饰,成为现今生物质吸附材料领域的研究热点。本文总结了近年来纳米纤维素基吸附材料方面的研究成果,介绍了以纳晶纤维素(NCC)、纳纤化纤维素(NFC)以及细菌纤维素(BC)为基材的吸附材料,及其在移除染料、重金属、CO2气体和其他污染物(如抗生素、芳香族有机物、放射性元素、易挥发的有毒有机物)的研究进展。最后,本文对纳米纤维素基吸附材料存在的问题进行探讨,并对其未来发展前景进行了展望。
Nanocellulose refers to a family of novel cellulose materials with the nanosized (2~100 nm) cellulose microfibrils in diameter. Because of the high aspect ratio, large specific surface area, exceptional mechanical properties as well as ease for surface modification, nanocelluose has become a research focus of biosorbent materials areas. In this article, the achievements in the nanocellulose-absorbent materials in recent years are summarized, and the research progress of absorbent materials based on nanocrystalline cellulose (NCC), nanofibrillated cellulose (NFC), and bacterial cellulose (BC) in the aspects of removing dyes, heavy metal ions, CO2 gas, and other pollutants (e.g. antibiotics, aromatic organic compounds, radioactive elements, and volatile organic compounds), are reviewed, respectively. Besides, the existing problems of nanocellulose-based adsorbent materials are discussed, and their future development prospects are presented.
Contents
1 Introduction
2 Dye adsorbents
2.1 NCC-based adsorbents
2.2 NFC-based adsorbents
2.3 BC-based adsorbents
3 Heavy metal ions adsorbents
3.1 NCC-based adsorbents
3.2 NFC-based adsorbents
3.3 BC-based adsorbents
4 CO2 adsorbents
5 Nanocellulose-based adsorbents for other pollutants
5.1 Antibiotics adsorbents
5.2 Aromatic organic compound adsorbents
5.3 Radioactive element adsorbents
5.4 Volatile organic compound adsorbents
6 Conclusion

中图分类号: 

()
[1] Zhang S, Zeng M, Li J, Li J, Xu J, Wang X. Journal of Materials Chemistry A, 2014, 2(12):4391.
[2] Monier M, Ayad D, Abedl-Latif D. Colloids and Surfaces B:Biointerfaces, 2012, 94:250.
[3] Klemm D, Kramer F, Morita S, Lindström T, Ankerfors M, Gray D, Dorris A. Angewandte Chemie International Edition, 2011, 50(24):5438.
[4] Siró I, Plackett D. Cellulose, 2010, 17(3):459.
[5] 吴伟兵(Wu W B), 张磊(Zhang L). 化学进展(Progress in Chemistry), 2013, 26(02/03):403.
[6] 李伟(Li W), 王锐(Wang R), 刘守新(Liu S X). 化学进展(Progress in Chemistry), 2010, 22(10):2060.
[7] 周素坤(Zhou S K), 毛健贞(Mao J Z), 许凤(Xu F). 化学进展(Progress in Chemistry), 2014, 26(10):1752.
[8] Khalil H A, Davoudpour Y, Islam M N, Mustapha A, Sudesh K, Dungani R, Jawaid M. Carbohydrate Polymers, 2014, 99:649.
[9] Hu W L, Chen S Y, Yang J X, Li Z, Wang H P. Carbohydrate Polymers, 2014, 101(1):1043.
[10] 汪丽粉(Wang L F), 李政(Li Z), 贾士儒(Jia S R), 张健飞(Zhang J F). 微生物学通报(Microbiology China), 2014, 41(8):1675.
[11] Brodin F W, Gregersen O W, Syverud K. Nord. Pulp. Pap. Res. J., 2014, 29(1):156.
[12] Shankar S, Rhim J W. Carbohydrate Polymers, 2016, 135:18.
[13] 臧传锋(Zang C F). 苏州大学博士论文(Doctoral Dissertation of Soochow University), 2016.
[14] Mariano M, El Kissi N, Dufresne A. Journal of Polymer Science Part B:Polymer Physics, 2014, 52(12):791.
[15] Wei H, Rodriguez K, Renneckar S, Vikesland P J. Environmental Science:Nano, 2014, 1(4):302.
[16] Voisin H, Bergström L, Liu P, Mathew A P. Nanomaterials, 2017, 7(3):57.
[17] Carpenter A W, de Lannoy C F, Wiesner M R. Environmental Science & Technology, 2015, 49(9):5277.
[18] 刘宏治(Liu H Z), 陈宇飞(Chen Y F), 耿璧垚(Geng B Y), 茹静(Ru J), 杜春贵(Du C G), 金春德(Jin C D), 韩景泉(Han J Q). 高分子学报(Acta Polymerica Sinica), 2016, 5:545.
[19] Liu H Z, Geng B Y, Chen Y F, Wang H Y. ACS Sustainable Chemistry & Engineering, 2016, 5(1):49.
[20] Yu H Y, Zhang D Z, Lu F F, Yao J. ACS Sustainable Chemistry & Engineering, 2016, 4(5):2632.
[21] He X, Male K B, Nesterenko P N, Brabazon D, Paull Brett, Luong H T. ACS Applied Materials & Interfaces, 2013, 5(17):8796.
[22] Samiey B, Tehrani A D. Journal of the Chinese Chemical Society, 2015, 62(2):149.
[23] Suman, Kardam A, Gera M, Jain V K. Environmental Technology, 2015, 36(6):706.
[24] Mohamed M A, Salleh W N W, Jaafar J, Ismail A F, Mutalib M A, Mohamad A B, Zain M, Awang N A, Hir Z A M. Carbohydrate Polymers, 2017, 157:1892.
[25] Karim Z, Mathew A P, Grahn M, Mouzon J, Oksman K. Carbohydrate Polymers, 2014, 112:668.
[26] Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules,2007, 8(8):2485.
[27] Ma H Y, Burger C, Hsiao B S, Chu B. Biomacromolecules, 2011, 13(1):180.
[28] Kim U J, Wada M, Kuga S. Carbohydrate Polymers, 2004, 56(1):7.
[29] Yang H, Sheikhi A, van de Ven T G M. Langmuir, 2016, 32(45):11771.
[30] Jin L Q, Li W G, Xu Q H, Sun Q C. Cellulose, 2015, 22(4):2443.
[31] Jin L Q, Sun Q C, Xu Q H, Xu Y J. Bioresource Technology, 2015, 197:348.
[32] Anirudhan T, Rejeena S. Journal of Materials, 2015, (10):1.
[33] Song K L, Xu H L, Xu L, Xie K L, Yang Y Q. Bioresource Technology, 2017, 232:254.
[34] Chen W S, Li Q, Wang Y C, Yi X, Zeng J, Yu H P, Liu Y X, Li J. ChemSusChem, 2014, 7(1):154.
[35] Gopakumar D A, Pasquini D, Henrique M A, de Morais L C, Grohens Y, Thomas S. ACS Sustainable Chemistry & Engineering, 2017, 5(2):2026.
[36] Wang Y R, Zhang X F, He X, Zhang W, Zhang X X, Lu C H. Carbohydrate Polymers, 2014, 110:302.
[37] Sajab M S, Chia C H, Chan C H, Zakaria S, Kaco H, Chook S W, Chin S X, Noor A A M. RSC Advances, 2016, 6(24):19819.
[38] Pei A H, Butchosa N, Berglund L A, Zhou Q. Soft Matter, 2013, 9(6):2047.
[39] Chen Y F, Ru J, Geng B Y, Wang H Y, Tong C C, Du C G, Wu S C, Liu H Z.Carbohydrate Polymers, 2017, 174(15):841.
[40] Chen Y F, Liu H Z, Geng B Y, Ru J, Chen C, Zhao Y, Wang L K. RSC Advances, 2017, 7(28):17279.
[41] Liu H Z, Chen Y F, Geng B Y, Ru J. A Self-Cleaned and N-Doped Nanocellulose/TiO2 Hybrid Aerogel toward Integrated Adsorption-Photodegradation of Methyl Orange Dye(Eds. Shim K, Eom C D).Seoul:Joint Seminar of China-Korea-Japan on Wood Quality and Utilizationg of Domestic Species, 2016.11.
[42] Niide T, Shiraki H, Oshima T, Baba Y, Kamiya N, Goto M. Solvent Extraction Research and Development, Japan, 2010, 17:73.
[43] Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew A P. Cellulose, 2014, 21(1):449.
[44] Anirudhan T, Deepa J, Christa J. Journal of Colloid and Interface Science, 2016, 467:307.
[45] Anirudhan T, Deepa J. Chemical Engineering Journal, 2015, 273:390.
[46] Yu X L, Tong S R, Ge M F, Wu L Y, Zuo J C, Cao C Y, Song W G. Journal of Environmental Sciences, 2013, 25(5):933.
[47] Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew A P. Journal of Membrane Science, 2016, 514:418.
[48] Karim Z, Hakalahti M, Tammelin T, Mathew A P. RSC Advances, 2017, 7(9):5232.
[49] Anirudhan T, Shainy F. Journal of Industrial and Engineering Chemistry, 2015, 32:157.
[50] Lu J, Jin R N, Liu C,Wang Y F, Ouyang X K. International Journal of Biological Macromolecules, 2016, 93:547.
[51] Sirviö J A, Hasa T, Leiviskä T, Liimatainen H, Hormi O. Cellulose, 2016, 23(1):689.
[52] Liu P, Borrell P F, Bo?i?M, Kokol V, Oksman K, Mathew A P. Journal of Hazardous Materials, 2015, 294:177.
[53] Bo?i?M, Liu P, Mathew A P, Kokol V. Cellulose, 2014, 21(4):2713.
[54] Volesky B. Water Research, 2007, 41(18):4017.
[55] Karim Z, Mathew A P, Kokol V, Wei J, Grahn M. RSC Advances, 2016, 6(25):20644.
[56] Liu C, Jin R N, Ouyang X K Wang Y G. Applied Surface Science, 2017, 408:77.
[57] Rajput S, Pittman C U, Mohan D. Journal of Colloid and Interface Science, 2016, 468:334.
[58] Taleb K, Markovski J, Veli?kovi? Z, Rusmirovi? J, Ran?i? M, Pavlovi? V, Marinkovi? A. Arabian Journal of Chemistry, 2016,DOI:10.1016/j.arabjc.2016.08.006.
[59] Taleb K A, Rusmirovi? J D, Ran?i? M P, Nikoli? J B, Drmani? S ?, Veli?kovi? Z S, Marinkovi? A D. Journal of the Serbian Chemical Society, 2016, 81(10):1199.
[60] Nath B, Chaliha C, Kalita E, Kalita M. Carbohydrate Polymers, 2016, 148:397.
[61] Singh K, Arora J K, Sinha T J M, Srivastava S. Clean Technologies and Environmental Policy, 2014, 16(6):1179.
[62] Missoum K, Belgacem M N, Bras J. Materials, 2013, 6(5):1745.
[63] Ma H Y, Hsiao B S, Chu B. ACS Macro Letters, 2011, 1(1):213.
[64] Sehaqui H, de Larraya U P, Liu P, Pfenninger N, Mathew A P, Zimmermann T, Tingaut P. Cellulose, 2014, 21(4):2831.
[65] Zheng Q F, Cai Z Y, Gong S Q. Journal of Materials Chemistry A, 2014, 2(9):3110.
[66] Liu P, Garrido B, Oksman K, Mathew A P. RSC Advances, 2016, 6(109):107759.
[67] Zhou Y M, Fu S Y, Zhang L L, Zhan H Y, Levit M V. Carbohydrate Polymers, 2014, 101:75.
[68] Madivoli E S, Kareru P G, Gachanja A N,Mugo S, Murigi M K, Kairigo P K, Kipyegon C, Mutembei J K, Kjonge F K. International Research Journal of Pure and Applied Chemistry, 2016, 12(3):1.
[69] Hokkanen S, Repo E, Sillanpää M. Chemical Engineering Journal, 2013, 223:40.
[70] Gurgel L V A, Júnior O K, de Freitas Gil R P, Gil L F. Bioresource Technology, 2008, 99(8):3077.
[71] Zhang X F, Zhao J Q, Cheng L, Lu C H, Wang Y R, He X, Zhang W. RSC Advances, 2014, 4(98):55195.
[72] Maatar W, Boufi S. Carbohydrate Polymers, 2015, 126:199.
[73] Srivastava S, Kardam A, Raj K R. International Journal of Green Nanotechnology, 2012, 4(1):46.
[74] Kardam A, Rohit Raj K, Srivastava S. International Journal of Nano Dimension, 2012, 3(2):155.
[75] Suopajärvi T, Liimatainen H, Karjalainen M, Upola H, Niinimäki, J. Journal of Water Process Engineering, 2014, 5:136.
[76] Mautner A, Maples H A, Kobkeatthawin T, Kokol V, Karim Z, Li K, Bismarck A. International Journal of Environmental Science and Technology, 2016, 13(8):1861.
[77] Yao C H, Wang F, Cai Z Y, Wang X D. RSC Advances, 2016, 6(95):92648.
[78] Wang J Q, Wang X X, Zhang P, An J H, Cao B, Geng Y T, Luo T, Wang L F, Pan K. Chemical Engineering Research and Design, 2016, 113:1.
[79] Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Biomacromolecules, 2009, 10(1):162.
[80] Wu B, Geng B, Chen Y, Liu H, Wu Q. Frontiers of Chemical Science and Engineering, 2017, DOI:10.1007/s11705-017-1673-8.
[81] Chen Y, Geng B, Ru J, Tong C, Liu H, Chen J. Cellulose,2017, 24:4831.
[82] Yang R, Aubrecht K B, Ma H Y, Wang R, Grubbs R B, Hsiao B S, Chu B. Polymer, 2014, 55(5):1167.
[83] Gurgel L V A, de Melo J C P, de Lena J C, Gil L F. Bioresource Technology, 2009, 100(13):3214.
[84] He X, Cheng L, Wang Y R, Zhao J Q, Zhang W, Lu C H. Carbohydrate Polymers, 2014, 111:683.
[85] Zhao J Q, Zhang X F, He X, Xiao M J, Zhang W, Lu C H. Journal of Materials Chemistry A, 2015, 3(28):14703.
[86] Dwivedi A D, Sanandiya N D, Singh J P, Husnain S M, Chae K H, Hwang D S, Chang Y S. ACS Sustainable Chemistry & Engineering, 2016, 5(1):518.
[87] Zhu H X, Jia S R, Wan T, Jia Y Y, Yang H J, Li J, Yan L, Zhong C. Carbohydrate Polymers, 2011, 86(4):1558.
[88] Chen S Y, Zou Y, Yan Z Y, Shen W, Shi S K, Zhang X, Wang H P. Journal of Hazardous Materials, 2009, 161(2):1355.
[89] Oshima T, Kondo K, Ohto K, Inoue K, Baba Y. Reactive and Functional Polymers, 2008, 68(1):376.
[90] Chen S Y, Shen W, Yu F, Hu W L, Wang H P. Journal of Applied Polymer Science, 2010, 117(1):8.
[91] Wang J, Lu X, Ng P F, Lee K I, Fei B, Xin J H, Wu J Y. Journal of Colloid and Interface Science, 2015, 440:32.
[92] Kampalanonwat P, Supaphol P. Industrial & Engineering Chemistry Research, 2011, 50(21):11912.
[93] Gebald C, Wurzbacher J A, Tingaut P, Steinfeld A. Environmental Science & Technology, 2013, 47(17):10063.
[94] Choi S, Drese J H, Eisenberger P M, Jones C W. Environmental Science & Technology, 2011, 45(6):2420.
[95] Zhuo H, Hu Y J, Tong X, Zhong L X, Peng X W, Sun R C. Industrial Crops and Products, 2016, 87:229.
[96] Roth E A, Agarwal S, Gupta R K. Energy & Fuels, 2013, 27(8):4129.
[97] Vieira R B, Pastore H O. Environmental Science & Technology, 2014, 48(4):2472.
[98] Kenarsari S D, Yang D L, Jiang G D, Zhang S J, Wang J J, Russell A G, Wei Q, Fan M H. RSC Advances, 2013, 3(45):22739.
[99] Didas S A, Kulkarni A R, Sholl D S, Jones C W. ChemSusChem, 2012, 5(10):2058.
[100] Bacsik Z, Ahlsten N, Ziadi A, Zhao G, Garcia-Bennett A E, Martin-Matute B, Hedin N. Langmuir, 2011, 27(17):11118.
[101] Gebald C, Wurzbacher J A, Tingaut P, Zimmermann T, Steinfeld A. Environmental Science & Technology, 2011, 45(20):9101.
[102] Gebald C, Wurzbacher J A, Borgschulte A, Zimmermann T, Steinfeld A. Environmental Science & Technology, 2014, 48(4):2497.
[103] Sehaqui H, Gálvez M E, Becatinni V, Cheng N Y, Steinfeld A, Zimmermann T, Tingaut P. Environmental Science & Technology, 2015, 49(5):3167.
[104] Rathod M, Haldar S, Basha S. Ecological Engineering, 2015, 84:240.
[105] Yao Q F, Fan B T, Xiong Y, Jin C D, Sun Q F, Sheng C M. Scientific Reports, 2017, 7:45914.
[106] Anirudhan T S, Deepa J R. Journal of Colloid and Interface Science, 2017, 490:343.
[107] Zhang F, Wu W B, Sharma S, Tong G L, Deng Y L. BioResources, 2015, 10(4):7555.
[108] Lu Y, Liu H W, Gao R N, Xiao S L, Zhang M, Yin Y F, Wang S Q, Li J, Yang D J. ACS Applied Materials & Interfaces, 2016, 8(42):29179.
[109] Alila S, Aloulou F, Thielemans W, Boufi S. Industrial Crops and Products, 2011, 33(2):350.
[110] Espino-Pérez E, Bras J, Almeida G, Relkin P, Belgacem N, Plessis C, Domenek S. Cellulose, 2016, 23(5):2955.
[111] Gioffre A J, Marcus B K. US 4795482.1989.
[112] Keshavarzi N, Mashayekhy R F, Mace A, Ansari F, Akhtar F, Nilsson U, Berglund L, Bergstroöm L. ACS Applied Materials & Interfaces, 2015, 7(26):14254.
[113] 胡婷婷(Hu T T).华南理工大学硕士论文(Master Dissertation of South China University of Technology), 2013.
[114] Peng S, Zheng Y D, Wu J, Wu Y X, Ma Y X, Song W H, Xi T F. Polymer Bulletin, 2012, 68(2):415.
[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[3] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[4] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[5] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[6] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[7] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[8] 张文, 牟英炘, 赵颂, 解利昕, 王宇新, 陈靖. 液态锂资源提锂的吸附材料及性能[J]. 化学进展, 2017, 29(2/3): 231-240.
[9] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[10] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[11] 张茜, 任其龙, 杨亦文, 邢华斌, 苏宝根, 鲍宗必. 硼吸附材料及其性能[J]. 化学进展, 2015, 27(1): 125-134.
[12] 周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展, 2014, 26(10): 1752-1762.
[13] 仇实, 郑景伟, 杨贵堂, 郑经堂, 吴明铂, 吴文婷. 三维有序大孔炭的设计构筑、性能及应用研究[J]. 化学进展, 2014, 26(05): 772-783.
[14] 张力, 吴俊涛, 江雷. 石墨烯及其聚合物纳米复合材料[J]. 化学进展, 2014, 26(04): 560-571.
[15] 漆志刚, 宫琛亮*, 梁宇, 李辉, 张树江, 李彦锋. 中温质子交换膜燃料电池高质子传导率磺化芳香族聚合物膜[J]. 化学进展, 2013, 25(12): 2103-2111.
阅读次数
全文


摘要

纳米纤维素基吸附材料