English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2112-2118 前一篇   后一篇

• 综述与评论 •

二乙炔类时间温度指示剂

成欢, 朱光明*, 宋蕊   

  1. 西北工业大学应用化学系 西安 710129
  • 收稿日期:2013-01-01 修回日期:2013-08-01 出版日期:2013-12-15 发布日期:2013-12-10
  • 通讯作者: 朱光明 E-mail:gmzhu@nwpu.edu.cn
  • 基金资助:

    西北工业大学研究生创业种子基金项目(No.Z2013165)资助

Diacetylenic Time-Temperature Indicators

Cheng Huan, Zhu Guangming*, Song Rui   

  1. Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an 710129, China
  • Received:2013-01-01 Revised:2013-08-01 Online:2013-12-15 Published:2013-12-10

二乙炔类时间温度指示剂自身具有特殊的炔键结构,在受到外界温度、光线辐射等能量刺激后会发生分子间炔键聚合反应,引起指示剂颜色变化。这种颜色变化具有时间温度累积效应,因此将该指示剂用于产品外包装时,可通过观察其颜色来判断产品经历的热历程以及产品质量是否合格。本文简单介绍了二乙炔类时间温度指示剂的指示原理,并详细分析了二乙炔的分子结构,探讨了不同取代基对其性质的影响,对该类指示剂的变色影响因素进行了讨论,最后对其应用作了简单回顾。

Diacetylenic time-temperature indicator (TTI), which possesses at least a pair of accumulative triple bond, may polymerize into double bond in its solid state when exposed to high temperature, light irradiation or any other energy stimulations, meanwhile, it shows a series of color or color density change during this process.Therefore, TTI can be used for product package to indicate the accumulated time-temperature history of the product. The latest advances in diacetylenic time-temperature indicators are reviewed in this paper. Their structures, physicochemical properties, photochromic mechanism, impact factors of color change and applications are further expounded.

Contents
1 Introduction
2 Structures and character of diacetylenic indicators
2.1 Molecular structures of diacetylenic indicators
2.2 Characters of diacetylenes with different sub-stituents
2.3 Impact factors of color change of diacetylene
3 Application and outlook

中图分类号: 

()

[1] 常大伟(Chang D W), 谢晶(Xie J), 徐世琼(Xu S Q), 陈邓曼(Chen D M). 农产品加工学刊(Nong Chan Pin Jia Gong Xue Kan), 2005, l(1): 7—12
[2] Kuriyama K, Kikuchi H, Kajiyama T. Langmuir, 1998, 14: 1130—1138
[3] Carpick R W, Mayer T M, Sasaki D Y, Burns A R. Langmuir, 2000, 16: 4639—4647
[4] Preziosi A F, Prusik T. US 4788151, 1988
[5] Chu B, Xu R L. Acc. Chem. Res., 1991, 24: 384—389
[6] Menzel H, Horstmann S, Mowery M D, Cai M, Evans C E. Polymer, 2000, 41: 8113—8119
[7] Schott M, Spagnoli S, Weiser G. Chem. Phys., 2007, 333: 246—253
[8] Van den Heuvel M, Löwik D W P M, van Hest J C M. Biomacromolecules, 2010, 11: 1676—1683
[9] Song J, Cisar J S, Bertozzi C R. J. Am. Chem. Soc., 2004, 126: 8459—8465
[10] Kim J M, Lee Y B, Yang D H, Lee J S, Lee G S, Ahn D J. J. Am. Chem. Soc., 2005, 127, 17580—17581
[11] Wu S, Niu L, Shen J, Zhang Q, Bubeck C. Macromolecules, 2009, 42: 362—367
[12] Xu Y, Smith M D, Geer M F, Pellechia P J, Brown J C, Wibowo A C, Shimizu L S. J. Am. Chem. Soc., 2010, 132: 5334—5335
[13] Cantow H J. Adv. Polym. Sci., 1984: 63
[14] Baughman R H, Chance R R. J. Polym. Sci. Pol. Phys., 1976, 14: 2037—2045
[15] Reppy M A, Pindzola B A. Chem. Commun., 2007, 4317—4338
[16] Schott M. J. Phys. Chem. B, 2006, 110: 15864—15868
[17] Dautel O J, Robitzer M, Lere-Porte J P, Serein-Spirau F, Moreau J J E. J. Am. Chem. Soc., 2006, 128: 16213—16223
[18] Filhol J S, Deschamps J, Dutremez S G, Boury B, Barisien T, Legrand L, Schott M. J. Am. Chem. Soc., 2009, 131: 6976—6988
[19] Lee J, Kim H J, Kim J. J. Am. Chem. Soc., 2008, 130: 5010—5011
[20] O'Brien D F, Armitage B, Benedicto A, Bennett D E, Lamparski H G, Lee Y S, Srisiri W, Sisson T M. Acc. Chem. Res., 1998, 31: 861—868
[21] Potisatityuenyong A, Tumcharern G, Dubas S T, Sukwattanasinitt M. J. Colloid Interface Sci., 2006, 304: 45—51
[22] Cheng Q, Stevens R C. Langmuir, 1998, 14: 1974—1976
[23] Zhong L, Zhu X, Duan P, Liu M. J. Phys. Chem. B, 2010, 114: 8871—8878
[24] Menger F M, Keiper J S. Angew. Chem. Int. Ed., 2000, 39: 1907—1920
[25] Zana R. Adv. Colloid Interface Sci., 2002, 97: 205—253
[26] Wacharasindhu S, Montha S, Boonyiseng J, Potisatityuenyong A, Phollookin C, Tumcharern G, Sukwattanasinitt M. Marcromolecules, 2010, 43: 716—724
[27] Yuan Z, Lee C W, Lee S H. Angew. Chem., 2004, 116: 4293—4296
[28] Gou M L, Guo G, Zhang J, Men K, Song J, Luo F, Zhao X, Qian Z Y, Wei Y Q. Sens. Actuators, B: Chem., 2010, 150: 406—411
[29] Ahn D J, Chae E H, Lee G S, Shim H Y, Chang T E, Ahn K D, Kim J M. J. Am. Chem. Soc., 2003, 125: 8976—8977
[30] Phollookin C, Wacharasindhu S, Ajavakom A, Tumcharern G, Ampornpun S, Eaidkong T, Sukwattanasinitt M. Macromolecules, 2010, 43: 7540—7548
[31] Ma Z, Li J, Liu M, Cao J, Zou Z, Tu J, Jiang L. J. Am. Chem. Soc., 1998, 120: 12678—12679
[32] Jose D A, Stadlbauer S, Konig B. Chem. Eur. J., 2009, 15: 7404—7412
[33] Jelinek R, Kolusheva S. Biotechnol. Adv., 2001, 19: 109—118
[34] Orcutt K M, Wells M L. J. Membrane Sci., 2007, 288: 247—254
[35] Su Y, Li J, Jiang L. Colloid Surface B, 2004, 38: 29—33
[36] Cheng Q, Stevens R C. Adv. Mater., 1997, 9: 481—483
[37] Zadmard R, Arendt M, Schrader T. J. Am. Chem. Soc., 2004, 126: 7752—7753
[38] Kolusheva S, Zadmard R, Schrader T, Jelinek R. J. Am. Chem. Soc., 2006, 128: 13592—13598
[39] Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh M, Nagy J O, Spevak W, Stevens R C. Chem. Biol., 1996, 3: 113—120
[40] Kolusheva S, Kafri R, Katz M, Jelinek R. J. Am. Chem. Soc., 2001, 123: 417—422
[41] Lapersonne-Meyer C. Int. J. Mor. Phys. B, 2001, 15: 3593—3596
[42] Lee J, Jun H, Kim J. Adv. Mater., 2009, 21: 3674—3677

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[14] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[15] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
阅读次数
全文


摘要

二乙炔类时间温度指示剂