English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 360-374 DOI: 10.7536/PC220922 前一篇   后一篇

• 综述 •

用于电热转化、存储与利用的导电相变材料

蒋昊洋2†, 熊丰1†, 覃木林1, 高嵩1, 何刘如懿2, 邹如强1,*()   

  1. 1.北京大学材料科学与工程学院 北京 100871
    2.中国人民解放军陆军勤务学院 重庆 401331
  • 收稿日期:2022-09-21 修回日期:2022-11-05 出版日期:2023-03-24 发布日期:2023-02-20
  • 作者简介:

    邹如强 北京大学博雅特聘教授,先后入选北京市科技新星、新世纪优秀人才、长江学者青年学者、科睿唯安全球高被引科学家、全球前2%顶尖科学家等荣誉与奖项,主持国家基金委优秀青年科学基金、杰出青年科学基金、国际重大合作和科技部重点研发计划等项目。主要研究方向为功能多孔能源材料,近年来开展多尺度孔结构材料的复合设计与应用研究,在储热、热管理材料与技术、电化学能源存储与转化研究方面开展了系统性创新工作。

  • 基金资助:
    陆军勤务学院青年科研资助项目(LQ-QN-202117); 国家重点研发计划(2020YFA0210701)

Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization

Jiang Haoyang2†, Xiong Feng1†, Qin Mulin1, Gao Song1, He Liuruyi2, Zou Ruqiang1()   

  1. 1. School of Materials Science and Engineering, Peking University, Beijing 100871, China
    2. Army Logistics Academy of PLA, Chongqing 401331, China
  • Received:2022-09-21 Revised:2022-11-05 Online:2023-03-24 Published:2023-02-20
  • Contact: *e-mail: rzou@pku.edu.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    Youth Scientific Research Fund of Army Logistics Academy of PLA China(LQ-QN-202117); National Key Research and Development Program of China(2020YFA0210701)

电能和热能作为生活生产中最大的供应端和消耗端,二者间的转换、存储与利用在能源体系里占据了重要的一环。因此,研发高效率的电热转换-存储功能材料,在能源、环境和气候危机频现的今天,具有重要的意义。相变材料的储热密度高、相变时吸放热而温度不变,在热能存储中具备独特的优势。然而大多数相变材料的本征低电导率与当下储能系统的功率要求不匹配,通过与导电材料结合得到电热转化的相变复合材料可以有效地改变这种情况。本文对电热转换相变材料最新研究进展进行了综述,从电热转换相变材料的功能机制、影响因素和应用三个方面,对添加导电填料、负载导电骨架或导电高分子聚合的复合相变材料进行了综述与比较。最终对此领域未来的研究方向和重点进行了展望。

As the largest supply end and demand end in daily production respectively, the conversion, storage and utilization of electric energy and thermal energy play an important role in energy systems. Therefore, it is of great significance to develop high-efficiency materials for electro-thermal conversion and storage, especially facing today’s energy crises, environmental pollution and extreme climates. Among heat storage materials, phase change materials (PCMs) own unique advantages because of their high latent heat storage density and constant temperature during heat absorption and release. However, the low intrinsic conductivity of most PCMs does not match the large power requirements of current energy storage systems. This issue can be effectively improved by combining PCMs with conductive materials to obtain electrically heatable PCM composites. In this article, the latest research progress of electro-thermal conversion PCMs from three aspects of the functional mechanism, affecting factors and applications are systematically reviewed. Moreover, PCMs composited with conductive fillers, conductive framework and serving as conductive polymers are summarized and compared critically. Finally, this article points out the potential direction of future research and emphasizes the key points of this field.

Contents

1 Introduction

2 Electrothermal conversion mechanism of phase change composites

3 Functional phase change composites for electrical energy conversion, storage and utilization

3.1 Phase change composites doped with conductive fillers

3.2 Phase change composites supported by conductive framework

3.3 Phase change composites composed of conductive polymer

4 Application of electrothermal phase change composites

5 Conclusion and outlook

()
图1 (a)相变材料分类; (b)相变材料热能存储与释放机理
Fig. 1 (a) Classification of phase change materials; (b) mechanism of thermal energy storage and release of PCMs
图2 电热复合相变材料电热转换机理
Fig. 2 Electrothermal conversion mechanism of electrothermal phase change composites including conductive additives, conductive framework and conductive polymer, respectively
图3 (a)电热相变材料分类; (b)电热相变材料对比
Fig. 3 (a) Classification of electrothermal phase change composites via different enhancing mechanisms. (b) Comparison of electrothermal phase change composites via different enhancing mechanisms
表1 导电填料复合电热相变材料性能
Table 1 Properties of conductive filler electrothermal phase change composite
Conductive filler PCMs Filler content
(wt%)
T m a
( ℃)
Latent heat
(J/g)
λW/(m·k) σb
(S/m)
The trigger voltagec (V) ηd
(%)
The working voltage e (V) ref
acetylene black PEG2000·
CaCl2
20 51.48 78.5 1.2 3.3 1.5 29.7 1.5 15
acetylene black PEG2000·
CaCl2
20 51.48 78.5 1.2 3.3 1.5 64.7 2.5 15
carbon
nanofiber
paraffin wax 2 70 - - 0.2 - - - 16
single-wall CNT hexadecyl acrylate - 36.7 52 0.4675 718 - - - 17
multi-wall CNT hexadecyl acrylate - 38 40 0.877 389 - - - 17
CNTs PEG2000-
CaCl2
20 49.72 89.81 0.91 0.01 - 58.3 1.5 18
CNTs PEG2000-
CaCl2
20 49.72 89.81 0.91 0.01 - 70.2 2 18
expanded graphite PEG2000-
CaCl2
6 49.3 107.5 3.73 0.2 2 48.2 2 19
expanded graphite PEG2000-
CaCl2
6 49.3 107.5 3.73 0.2 2 86.9 5 19
expanded graphite Methyl stearate 15 33.4 147 3.6 - 1.4 47 1.4 20
expanded graphite Methyl stearate 15 33.4 147 3.6 - 1.4 72 1.7 20
expanded graphite N-eicosane 15 36.41 199.4 3.56 - 1.9 65.7 2.1 21
expanded graphite N-eicosane 30 36.31 163.5 4.21 - 1.9 42.9 2.1 21
expanded graphite paraffin 20 56.2 120 1.38 5 - - - 22
expanded graphite paraffin 70 43.05 47.76 19.27 4545 - - 4.4 23
graphene Hexadecyl acrylate - 32.7 57 3.957 219 - - 30 24
graphene oxide/CNT PEG1000 22 37.24 110.7 0.45 - 5.8 70 6.6 25
graphene oxide/CNT docosane 3.3 38.1 240.8 - 52.63 - - - 26
graphene/
PANI
PEG20000 - 57.93 115.97 - - - - - 27
CNT/PU/
PDA/
PEDOT:PSS
paraffin wax - 20 106.86 - - - 42.92 3 28
CNT/PU/
PDA/
PEDOT:PSS
paraffin wax - 20 106.86 - - - 91.03 4.2 28
CNT/PU/Ag nanoflower Lauric acid - 46 124.5 0.479 190 - 70.1 20 29
cotton/
stainless steel wire
PEG - 53.53 33.46 0.281 - - - - 30
Ti3C2 MXene
nanosheets
PEG4000 22.5 60 131.2 2.052 10.41 - - 7.2 31
表2 导电骨架复合相变材料性能
Table 2 Properties of conductive framework phase change composites
Conductive framework PCMS Filler content
(wt%)
Tm
( ℃)
Latent heat
(J/g)
λ
W/(m·k)
σ
(S/m)
The trigger voltage (V) η
(%)
The working voltage(V) ref
carbon foam PEG6000 - 62.82 163.9 - - - 85 3.6 36
carbon foam paraffin wax - 57.05 120.2 - - - 74 3.6 36
carbon foam PU(PEG6000) 33.3 43.2 61.9 0.48 - 0.8 75 1.1 37
carbon fiber scaffold paraffin wax 15 39.22 182.22 0.424 19.6 2 81.1 3 38
carbon aerogel paraffin wax 5 53.5 115.2 - 3.4 - 71.4 15 39
cotton cloth/TPU paraffin wax 50.75 34.13 93.5 - 296.68 3 67.39 4 40
CNT sponge paraffin wax 13 24 131.7 1.2 - 1.5 52.5 1.75 41
CNT sponge PU 10 59.41 132.02 2.4 - 1.3 94 2 42
CNT array n-eicosane 10 34 217.3 - - 1 74.7 1.3 43
single-wall CNT scaffold eicosane 27.1 36.7 204.8 - 620.3 3 80.1 4 44
single-wall CNT scaffold eicosane 27.1 36.7 204.8 - 620.3 3 91.3 5 44
graphite foam Paraffin wax 20 50.2 174.2 1.38 - - 74.6 5 45
graphite foam PU(PEG4000) 18 41 64.5 3.5 - - 69 1.4 46
graphite foam PU(PEG6000) 18 42.5 76.1 3.6 - - 85 1.4 46
graphite foam PU(PEG8000) 18 46.1 80.3 3.4 - - 45 1.4 46
graphite foam PU(PEG6000) 27 43.8 60.3 10.86 - 1.5 85 1.8 47
graphite foam/MPU octadecanol 52.5 56.1 130 5.55 - - 61.4 - 48
graphite nanoplatelets Pentaerythritol 20 186 225.3 27 32 300 0.22 92.73 0.34 50
3D reduced graphene/
carbon scaffold
paraffin wax 20 39.53 157 33.5 294.9 - 88 - 51
3D reduced graphene/
BN scaffold
PEG10000 15.2 59.5 164.1 0.59 - - 87.9 7 52
graphene aerogel paraffin wax 3 57 202.2 1.06 - - - - 53
graphene aerogel Paraffin 6 46.05 193.7 0.248 258.7 1 85.4 3 54
graphene
aerogel/ZnO
PU
(PEG4000)
2.29 57.1 108.1 2.99 - - 84.4 15 55
graphene aerogel/halloysite
nanotubes
PU 1.17 57.4 103.3 - - 66.3 10 56
reduced graphene oxide
aerogel/SEBS
paraffin wax 6.47 40.19 226.3 - - - - 8 57
graphene nanoplatelets/
cellulose aerogel
PEG 6000 1.51 67.6 182.6 0.43 - - - - 58
graphene nanoplatelet/
cellulose nanofiber hybrid-
coated melamine foam
PEG 6000 4.8 61.7 178.9 1.03 6.19 - 66.13 20 59
MOF-derived carbon/
graphene oxide aerogel
lauric acid - 51 140 0.26 - 2.2 90 2.2 60
ZIF@MOF-C/CNT octadecane 30 31.9 135.9 1.35 526.32 - 94.5 1.1 61
copper nanowire aerogels paraffin 1.95 53 173.2 - 14 - - - 62
CNTs nanoarray/nickel foam 1-hexadecanamine - 50.38 132.2 0.277 - - - 30 63
PEDOT:PSS/MXene
framework
PEG20000 1.22 61.6 237.6 0.215 0.86 - - 30 64
图4 (a)随机分布碳纳米管泡沫复合相变材料与电热转换[41];(b)定向排列碳纳米管阵列复合相变材料与电热转换[43]
Fig. 4 (a) randomly distributed CNT sponge PCCs and its electrothermal conversion[41]. Copyright © 2012, American Chemical Society; (b) aligned CNT array PCCs and its electrothermal conversion[43]. Copyright © 2013, American Chemical Society
表3 导电高分子复合电热相变材料性能
Table 3 Properties of conductive polymer electrothermal phase change composites
图5 (a)电热相变材料的应用;(b)电热相变材料应用示意图;电热相变材料用于(c)电池温度管理和(d)人体保温[28]
Fig. 5 (a) Application of electrothermal PCCs, (b) Application mode of electrothermal PCCs, (c) Temperature change of battery with or without electrothermal PCCs, (d) PCCs for human thermal insulation[28]. Copyright ©#x00A9; 2022, American Chemical Society
图6 电热相变材料的选择
Fig. 6 Selection of electrothermal phase change materials
[1]
Sundararajan S, Samui A B, Kulkarni P S. J. Mater. Chem. A, 2017, 5(35): 18379.

doi: 10.1039/C7TA04968D     URL    
[2]
Zhang Y A, Umair M M, Zhang S F, Tang B T. J. Mater. Chem. A, 2019, 7(39): 22218.

doi: 10.1039/C9TA06678K     URL    
[3]
Henry A, Prasher R, Majumdar A. Nat. Energy, 2020, 5(9): 635.

doi: 10.1038/s41560-020-0675-9    
[4]
Su W G, Darkwa J, Kokogiannakis G. Renew. Sustain. Energy Rev., 2015, 48: 373.

doi: 10.1016/j.rser.2015.04.044     URL    
[5]
Aftab W, Usman A, Shi J M, Yuan K J, Qin M L, Zou R Q. Energy Environ. Sci., 2021, 14(8): 4268.

doi: 10.1039/D1EE00527H     URL    
[6]
Aydin D, Casey S P, Riffat S. Renew. Sustain. Energy Rev., 2015, 41: 356.

doi: 10.1016/j.rser.2014.08.054     URL    
[7]
Hyun D C, Levinson N S, Jeong U, Xia Y N. Angew. Chem. Int. Ed., 2014, 53(15): 3780.

doi: 10.1002/anie.201305201     URL    
[8]
Liu W, Zhang X L, Ji J, Wu Y F, Liu L. Energy Technol., 2021, 9(7): 2100169.
[9]
Tahan Latibari S, Sadrameli S M. Sol. Energy, 2018, 170: 1130.

doi: 10.1016/j.solener.2018.05.007     URL    
[10]
Kalidasan B, Pandey A K, Shahabuddin S, Samykano M, Thirugnanasambandam M, Saidur R. J. Energy Storage, 2020, 27: 101118.
[11]
Wang W T, Tang B T, Ju B Z, Gao Z M, Xiu J H, Zhang S F. J. Mater. Chem. A, 2017, 5(3): 958.

doi: 10.1039/C6TA07144A     URL    
[12]
Wang W T, Fan X Q, Qiu J J, Umair M M, Ju B Z, Zhang S F, Tang B T. Chem. Eng. J., 2018, 358.
[13]
Fan X Q, Xiao J Q, Wang W T, Zhang Y A, Zhang S F, Tang B T. Polymers, 2018, 10(6): 585.

doi: 10.3390/polym10060585     URL    
[14]
Horsfield A P, Bowler D R, Fisher A J, Todorov T N, Montgomery M J. J. Phys.: Condens. Matter, 2004, 16(21): 3609.
[15]
Zhang H Q, Sun Q R, Yuan Y P, Zhang Z J, Cao X L. Chem. Eng. J., 2018, 336: 342.

doi: 10.1016/j.cej.2017.12.046     URL    
[16]
Zhang K, Han B G, Yu X. Energy Convers. Manag., 2012, 64: 62.

doi: 10.1016/j.enconman.2012.06.021     URL    
[17]
Cao R R, Chen S, Wang Y Z, Han N, Liu H H, Zhang X X. Carbon, 2019, 149: 263.

doi: 10.1016/j.carbon.2019.04.005     URL    
[18]
Sun Q R, Zhang N, Zhang H Q, Yu X P, Ding Y L, Yuan Y P. Renew. Energy, 2020, 145: 2629.

doi: 10.1016/j.renene.2019.08.007     URL    
[19]
Sun Q R, Zhang N, Yu X P, Ju F L, Szilágyi I M, Yuan Y P. Int. J. Energy Res., 2021, 45(5): 7675.

doi: 10.1002/er.v45.5     URL    
[20]
Tabassum H, Huang X Y, Chen R J, Zou R Q. J. Materiomics, 2015, 1(3): 229.

doi: 10.1016/j.jmat.2015.07.002     URL    
[21]
Li C C, Zhang B, Liu Q X. J. Energy Storage, 2020, 29: 101339.
[22]
Frᶏc M, PichÓr W, Szołdra P, Szudek W. Constr. Build. Mater., 2021, 275: 122126.
[23]
Luo M Y, Song J Q, Ling Z Y, Zhang Z G, Fang X M. Mater. Today Energy, 2021, 20: 100652.
[24]
Cao R R, Wang Y Z, Chen S, Han N, Liu H H, Zhang X X. ACS Appl. Mater. Interfaces, 2019, 11(9): 8982.

doi: 10.1021/acsami.8b18282     URL    
[25]
Guo X F, Liu C, Li N, Zhang S D, Wang Z Y. Ind. Eng. Chem. Res., 2018, 57(46): 15697.

doi: 10.1021/acs.iecr.8b03093     URL    
[26]
Zheng Z L, Jin J D, Xu G K, Zou J L, Wais U, Beckett A, Heil T, Higgins S, Guan L H, Wang Y, Shchukin D. ACS Nano, 2016, 10(4): 4695.

doi: 10.1021/acsnano.6b01104     URL    
[27]
Yu C B, Youn J R, Song Y S. Fibers Polym., 2019, 20(3): 545.

doi: 10.1007/s12221-019-1067-2    
[28]
Wu J J, Wang M X, Dong L, Shi J, Ohyama M, Kohsaka Y, Zhu C H, Morikawa H. ACS Nano, 2022, 16(8): 12801.

doi: 10.1021/acsnano.2c04971     URL    
[29]
Niu Z X, Qi S Y, Shuaib S S A, Yuan W Z. Compos. B Eng., 2022, 228: 109431.
[30]
Yu L X, Qin X H, Ke G Z, Tang J N, Wang Y. Compos. Commun., 2022, 32: 101152.

doi: 10.1016/j.coco.2022.101152     URL    
[31]
Lu X, Huang H W, Zhang X Y, Lin P C, Huang J T, Sheng X X, Zhang L, Qu J P. Compos. B Eng., 2019, 177: 107372.

doi: 10.1016/j.compositesb.2019.107372     URL    
[32]
Janas D, Koziol K K. Nanoscale, 2014, 6(6): 3037.

doi: 10.1039/c3nr05636h     pmid: 24519536
[33]
Wu Y P, Wang T. Energy Convers. Manag., 2015, 101: 164.

doi: 10.1016/j.enconman.2015.05.006     URL    
[34]
Nat. Nanotechnol. 2010, 5: 755.
[35]
Wang J F, Shen M M, Liu Z X, Wang W J. Nano Energy, 2022, 97: 107177.

doi: 10.1016/j.nanoen.2022.107177     URL    
[36]
Maleki M, Karimian H, Shokouhimehr M, Ahmadi R, Valanezhad A, Beitollahi A. Chem. Eng. J., 2019, 362: 469.

doi: 10.1016/j.cej.2019.01.032    
[37]
Wu W H, Huang X Y, Yao R M, Chen R J, Li K, Zou R Q. Acta Phys. Chim. Sin. 2017, 33(1): 255.

doi: 10.3866/PKU.WHXB201610181     URL    
[38]
Umair M M, Zhang Y A, Tehrim A, Zhang S F, Tang B T. Ind. Eng. Chem. Res., 2020, 59(4): 1393.

doi: 10.1021/acs.iecr.9b06288     URL    
[39]
Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K. J. Mater. Chem. A, 2014, 2(21): 7759.

doi: 10.1039/C4TA00839A     URL    
[40]
Umair M M, Zhang Y A, Zhang S F, Jin X, Tang B T. J. Mater. Chem. A, 2019, 7(46): 26385.

doi: 10.1039/C9TA09088F     URL    
[41]
Chen L J, Zou R Q, Xia W, Liu Z P, Shang Y Y, Zhu J L, Wang Y X, Lin J H, Xia D G, Cao A Y. ACS Nano, 2012, 6(12): 10884.

doi: 10.1021/nn304310n     URL    
[42]
Aftab W, Mahmood A, Guo W H, Yousaf M, Tabassum H, Huang X Y, Liang Z B, Cao A Y, Zou R Q. Energy Storage Mater., 2019, 20: 401.
[43]
Liu Z P, Zou R Q, Lin Z Q, Gui X C, Chen R J, Lin J H, Shang Y Y, Cao A Y. Nano Lett., 2013, 13(9): 4028.

doi: 10.1021/nl401097d     URL    
[44]
Chen R J, Huang X Y, Deng W B, Zheng R Z, Aftab W, Shi J M, Xie D L, Zou R Q, Mei Y. Appl. Energy, 2020, 260: 114320.

doi: 10.1016/j.apenergy.2019.114320     URL    
[45]
Liu M Y, Zhang X G, Liu X J, Wu X W, Ye X J, Qiao J X, Sun Z H, Zhu X, Huang Z H. ACS Sustainable Chem. Eng., 2022, 10(24): 8051.

doi: 10.1021/acssuschemeng.2c02125     URL    
[46]
Chen R J, Yao R M, Xia W, Zou R Q. Appl. Energy, 2015, 152: 183.

doi: 10.1016/j.apenergy.2015.01.022     URL    
[47]
Wu W H, Huang X Y, Li K, Yao R M, Chen R J, Zou R Q. Appl. Energy, 2017, 190: 474.

doi: 10.1016/j.apenergy.2016.12.159     URL    
[48]
Wu W H, Yao R M, Huang X Y, Chen R J, Li K, Gao S, Zou R Q. Mater. Chem. Front., 2017, 1(7): 1430.

doi: 10.1039/C6QM00381H     URL    
[49]
Wu M Q, Li T X, Wang P F, Wu S, Wang R Z, Lin J. Small, 2022, 18(9): 2105647.
[50]
Li T X, Wu M Q, Wu S, Xiang S Z, Xu J X, Chao J W, Yan T S, Deng T, Wang R Z. Nano Energy, 2021, 89: 106338.
[51]
Umair M M, Zhang Y A, Zhang S F, Jin X, Tang B T. Sustain. Energy Fuels, 2020, 4(8): 4285.
[52]
Yang G Q, Zhao L Y, Shen C F, Mao Z P, Xu H, Feng X L, Wang B J, Sui X F. Sol. Energy Mater. Sol. Cells, 2020, 209: 110441.
[53]
Ye S B, Zhang Q L, Hu D D, Feng J C. J. Mater. Chem. A, 2015, 3(7): 4018.

doi: 10.1039/C4TA05448B     URL    
[54]
Li G Y, Zhang X T, Wang J, Fang J H. J. Mater. Chem. A, 2016, 4(43): 17042.

doi: 10.1039/C6TA07587H     URL    
[55]
Zhou Y, Wang X J, Liu X D, Sheng D K, Ji F C, Dong L, Xu S B, Wu H H, Yang Y M. Sol. Energy Mater. Sol. Cells, 2019, 193: 13.

doi: 10.1016/j.solmat.2018.12.041     URL    
[56]
Zhou Y, Wang X J, Liu X D, Sheng D K, Ji F C, Dong L, Xu S B, Wu H H, Yang Y M. Carbon, 2019, 142: 558.

doi: 10.1016/j.carbon.2018.10.083    
[57]
Cai Y X, Zhang N, Yuan Y P, Zhong W, Yu N Y. Sol. Energy Mater. Sol. Cells, 2021, 233: 111390.

doi: 10.1016/j.solmat.2021.111390     URL    
[58]
Wei X, Xue F, Qi X D, Yang J H, Zhou Z W, Yuan Y P, Wang Y. Appl. Energy, 2019, 236: 70.

doi: 10.1016/j.apenergy.2018.11.091     URL    
[59]
Wu H Y, Deng S, Shao Y W, Yang J H, Qi X D, Wang Y. ACS Appl. Mater. Interfaces, 2019, 11(50): 46851.

doi: 10.1021/acsami.9b16612     URL    
[60]
Wang M, Zhang C, Wang J Z, Wang Y, Yu F Q. J. Energy Storage, 2022, 52: 104905.
[61]
Li A, Dong C, Dong W J, Yuan F G, Gao H Y, Chen X, Chen X B, Wang G. Adv. Electron. Mater., 2020, 6(6): 1901428.
[62]
Zhang L, An L, Wang Y H, Lee A, Schuman Y, Ural A, Fleischer A S, Feng G. Chem. Eng. J., 2019, 373: 857.

doi: 10.1016/j.cej.2019.05.104    
[63]
Cao X Y, Yang L J, Cui J, Feng Q B, Wang C J, Zhu Z Q, Sun H X, Li J Y, Liang W D, Li A. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 651: 129516.

doi: 10.1016/j.colsurfa.2022.129516     URL    
[64]
Jin X Z, Yang Z Y, Huang C H, Yang J H, Wang Y. Chem. Eng. J., 2022, 448: 137599.

doi: 10.1016/j.cej.2022.137599     URL    
[65]
Paul J, Pandey A K, Mishra Y N, Said Z, Mishra Y K, Ma Z J, Jacob J, Kadirgama K, Samykano M, Tyagi V V. Renew. Sustain. Energy Rev., 2022, 161: 112321.

doi: 10.1016/j.rser.2022.112321     URL    
[66]
Inagaki M, Qiu J S, Guo Q G. Carbon, 2015, 87: 128.

doi: 10.1016/j.carbon.2015.02.021     URL    
[67]
Kim J H, Jeong E, Lee Y S. J. Ind. Eng. Chem. 2015, 32: 21.

doi: 10.1016/j.jiec.2015.09.003     URL    
[68]
Wu S, Li T X, Tong Z, Chao J W, Zhai T Y, Xu J X, Yan T S, Wu M Q, Xu Z Y, Bao H, Deng T, Wang R Z. Adv. Mater., 2019, 31(49): 1905099.
[69]
Kashyap S, Kabra S, Kandasubramanian B. J. Mater. Sci., 2020, 55(10): 4127.

doi: 10.1007/s10853-019-04325-7    
[70]
Aftab W, Huang X Y, Wu W H, Liang Z B, Mahmood A, Zou R Q. Energy Environ. Sci., 2018, 11(6): 1392.

doi: 10.1039/C7EE03587J     URL    
[71]
Chen X, Gao H Y, Yang M, Xing L W, Dong W J, Li A, Zheng H Y, Wang G. Energy Storage Mater., 2019, 18: 349.
[72]
Chen X, Gao H Y, Tang Z D, Wang G. Cell Rep. Phys. Sci., 2020, 1(10): 100218.
[73]
Cheng L Q, Kong L B, Zhang X, Kong X F. Sol. Energy Mater. Sol. Cells, 2022, 235: 111461.

doi: 10.1016/j.solmat.2021.111461     URL    
[74]
Kong L B, Wang Z Y, Kong X F, Wang L, Ji Z Y, Wang X M, Zhang X. ACS Appl. Mater. Interfaces, 2021, 13(25): 29965.

doi: 10.1021/acsami.1c07160     URL    
[75]
Chen L Y, Lv J C, Ding L, Yang G Q, Mao Z P, Wang B J, Feng X L, Zapotoczny S, Sui X F. Chem. Eng. J., 2020, 400: 125950.

doi: 10.1016/j.cej.2020.125950     URL    
[76]
Yun H R, Li C L, Zhang X X. e-Polymers, 2019, 19(1): 519.

doi: 10.1515/epoly-2019-0055     URL    
[77]
Gao M H, Feng W, Qi X D, Wang Y. Chin. J. Polym. Sci., 2022, 40(11): 1380.

doi: 10.1007/s10118-022-2773-6    
[78]
Huang Y, Li H F, Wang Z F, Zhu M S, Pei Z X, Xue Q, Huang Y, Zhi C Y. Nano Energy, 2016, 22: 422.

doi: 10.1016/j.nanoen.2016.02.047     URL    
[79]
Yan Q S, Du X X, Liu Y, Zhou X, Xin B J. ACS Appl. Mater. Interfaces, 2022, 14(21): 24820.

doi: 10.1021/acsami.2c05155     URL    
[80]
Lv J C, Zhou P W, Zhang L P, Zhong Y, Sui X F, Wang B J, Chen Z Z, Xu H, Mao Z P. Chem. Eng. J., 2019, 361: 897.

doi: 10.1016/j.cej.2018.12.083     URL    
[1] 范路洁, 陈莉, 何崟, 刘皓. 基于3D导电材料的柔性应力/应变传感器[J]. 化学进展, 2021, 33(5): 767-778.
[2] 韩毅, 董海青, 李胜, 李维达, 李永勇. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668.
[3] 周建伟, 余冬梅, 赵蕴慧, 苏峻峰, 袁晓燕. 有机烷烃相变材料及其微胶囊化[J]. 化学进展, 2011, 23(4): 695-703.
[4] 刘锡洹. 发展中的电子化工材料[J]. 化学进展, 1995, 7(03): 173-.