English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 247-262 DOI: 10.7536/PC220806 前一篇   后一篇

• 综述 •

胆甾相液晶螺旋方向的光调控

刘晓珺1, 秦朗1,*(), 俞燕蕾1,2   

  1. 1 复旦大学材料科学系 聚合物分子工程国家重点实验室 上海 200433
    2 华南师范大学华南先进光电子研究院 响应型材料与器件集成国际联合实验室 广州 510006
  • 收稿日期:2022-08-15 修回日期:2022-10-23 出版日期:2023-02-24 发布日期:2023-02-15
  • 作者简介:
    秦朗 复旦大学材料科学系青年副研究员。2018年获复旦大学博士学位,主要从事液晶光子晶体图案化的研究工作。主持国家自然科学基金面上项目、青年科学基金项目等国家和省部级科研项目5项,荣获上海市“青年科技启明星计划”(2022年)和上海市 “超级博士后” 激励计划(2018年)。共发表论文20余篇,近5年作为(共同)第一/通讯作者在Adv.Mater.,Nat. Commun.等期刊上发表论文11篇,申请中国发明专利5项,已获授权3件。
  • 基金资助:
    国家自然科学基金项目(52173110); 国家自然科学基金项目(51903053)

Light-Driven Handedness Inversion of Cholesteric Liquid Crystals

Xiaojun Liu1, Lang Qin1(), Yanlei Yu1,2   

  1. 1 Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University,Shanghai 200433, China
    2 South China Academy of Advanced Optoelectronics, SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), South China Normal University,Guangzhou 510006, China
  • Received:2022-08-15 Revised:2022-10-23 Online:2023-02-24 Published:2023-02-15
  • Contact: *e-mail: qinlang@fudan.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52173110); National Natural Science Foundation of China(51903053)

光响应胆甾相液晶是一类在光刺激下通过改变液晶分子排列调控光学特性的智能“软”光子晶体材料,其分子自组装形成周期性螺旋结构,选择性地反射与自身螺旋方向相同的圆偏振光。近年来,利用光刺激诱导胆甾相液晶在左手螺旋和右手螺旋之间发生螺旋翻转的研究引起了广泛关注。胆甾相液晶的螺旋翻转能够改变反射光的圆偏振特性,有望拓展光子晶体材料在可调节滤光器、防伪与加密技术、圆偏振激光器、三维显示等领域的潜在应用。本综述重点关注光响应胆甾相液晶螺旋翻转的研究进展;总结了调控胆甾相液晶螺旋方向的两种主要策略:(1)直接引入螺旋性可逆转变的光响应手性分子开关,(2)利用光响应手性分子开关和与之螺旋性相反的手性掺杂剂之间的手性竞争;分析了分子空间构型转变对调控螺旋翻转程度的影响;并讨论了不同材料体系面临的挑战以及未来的发展方向。

Light-driven cholesteric liquid crystals are soft intelligent photonic crystal materials, which change their optical properties upon irradiation of light. The molecules are organized into helical superstructures to selectively reflect the circularly polarized light with the same handedness as the light-driven cholesteric liquid crystals. By modulating the helical superstructures with light stimuli, the wavelength or polarization of the selective reflection is tuned. Light-driven handedness inversion of helical superstructures in cholesteric liquid crystals is currently in the limelight. The inversion of handedness alters the chirality of the circularly polarized light, which has wide potential for applications in tunable filters, anti-counterfeiting technologies, circularly polarized lasers, and 3D displays. However, inducing the handedness inversion of cholesteric liquid crystal still remains a challenge because the energy barrier between the opposite twist sense is difficult to overcome. It is necessary to figure out the universal strategies for designing light-driven cholesteric liquid crystal systems with reversible handedness inversion. This review mainly focuses on the development of the light-driven cholesteric liquid crystals with handedness inversion. The reported strategies for controlling the handedness are summarized, including the handedness inversion induced by reverse molecular chirality upon photoirradiation and introduction of chiral conflict. The reverse molecular chirality in different chiral molecular switches with tetrahedral, planar, or axial chirality induced by azobenzene, dithienylethene, overcrowded alkene, or cyano-functionalized diarylethene is concluded. During the photoisomerization process, the changes of conjugation, geometry, and dipole moment are analyzed. The strategies to introduce chiral conflict in cholesteric liquid crystals are demonstrated, and the mechanism of chiral conflict to facilitate handedness inversion is explained. Most importantly, the existing challenges and opportunities toward the systems are discussed.

Contents

1 Introduction

2 Handedness inversion in light-driven cholesteric liquid crystals

3 Handedness inversion induced by helicity change of light-driven chiral switches

4 Handedness inversion controlled by chiral conflict of light-driven chiral switches and chiral dopants

5 Conclusion and outlook

()
图1 手性分子开关调控光驱动胆甾相液晶螺旋方向的转变过程(a)及调控原理示意图(b),其中P和M分别代表手性分子的P螺旋性和M螺旋性
Fig.1 Schematic illustration showing (a) the process and (b) the mechanism of handedness inversion in cholesteric liquid crystals (CLCs) induced by light-driven chiral switches. P or M represents the P-helicity or M-helicity of the chiral molecules
图2 偶氮苯、二芳基乙烯和分子马达类手性分子开关的化学结构及其光致异构化过程
Fig.2 Typical chemical structures and photoisomerization of chiral switches, including azobenzene, dithienylthene, and overcrowded alkene
图3 (a) 手性分子开关1的化学结构。(b) 手性分子开关2a~2c的化学结构。(c) 掺杂10 wt% 手性分子开关2a于5CB中制得的胆甾相液晶,及其在310 nm紫外光照30 s和670 nm可见光照射60 s后的偏光照片[53]
Fig.3 (a) Chemical structure of chiral switches 1. (b) Chemical structures of chiral switches 2a~2c. (c) POM images of 10 wt% 2a in 5CB (left), after 310 nm UV irradiation for 30 s (middle), and followed by 670 nm irradiation for 60 s (right)[53]. Copyright 2011, American Chemical Society
图4 (a) 手性分子开关3的化学结构。(b) 偏光照片呈现了胆甾相液晶从右手螺旋到补偿向列相再到左手螺旋的转变行为,其中胆甾相液晶是在向列相液晶MLC-2039中掺杂6 wt%手性分子开关3制得,从左到右分别为利用紫外光照射0、4、5 min和照射至光稳态的偏光照片[54]
Fig.4 (a) Chemical structure of the chiral switch 3. (b) POM images showing the switching behavior of the cholesteric phase, which is right-handed at initial state, changes to compensated nematic phase and finally becomes left-handed. The CLC is induced by dissolving 6 wt% of 3 in nematic MLC-2039 upon irradiation with UV light for different time. From left to right, 0, 4, 5 min, and the photostationary state[54]. Copyright 2002, The Royal Society of Chemistry
图5 轴手性联萘分子不同构型的示意图[56]
Fig.5 Illustration to show different conformations of binaphthyl[56]. Copyright 2012, American Chemical Society
图6 (a) 手性分子开关4a~4e的化学结构。(b) 光驱动胆甾相液晶在光照后的偏光照片及其对应螺旋结构变化的示意图,左边和右边分别为开环和闭环状态[56]
Fig.6 (a) Chemical structures of chiral switches 4a~4e. (b) POM images of light-driven CLCs between the open form (left) and closed form (right) by light irradiation. Along the corresponding POM images are described schematic illustrations[56]. Copyright 2012, American Chemical Society
图7 (a) 手性分子开关5a和5b的化学结构。(b) 掺杂1.0 mol%手性分子开关5b的胆甾相液晶在2.2 V交流电场作用下形成的光栅图案,及其在可见光照射下随螺旋翻转的变化。从左到右依次为440 nm照射下的光稳态,瞬态向列相和530 nm照射下的光稳态[57]
Fig.7 (a) Chemical structures of chiral switches 5a and 5b. (b) POM images and corresponding diffraction patterns of CLC containing 1.0 mol% 5b under 2.2 V AC electric field. The handedness inversion of the CLCs is triggered upon visible light irradiation, inducing the change of the diffraction patterns change PSS440nm (left), transient nematic phase (middle), and PSS530nm (right)[57]. Copyright 2020, Wiley-VCH
图8 (a) 手性分子开关6的化学结构。(b) 含有0.8 mol%手性分子开关6的5CB制得的胆甾相液晶在楔形盒和垂直取向液晶盒中随紫外光照下螺旋结构的变化,以及相应的液晶相示意图[60]
Fig.8 (a) Chemical structures of chiral switches 6. (b) POM images to show handedness inversion of 6 (0.8 mol%) in 5CB upon UV irradiation in a wedge cell (a-e) and in a homeotropic cell (f-j; conoscopic observation for (h)); illustrations of the corresponding liquid crystal phases (bottom)[60]. Copyright 2013, Wiley-VCH.
图9 由手性分子开关6和核-壳结构纳米转换器构筑的螺旋结构在不同波长近红外光刺激下发生螺旋翻转的示意图[62]
Fig.9 Schematic illustration of wavelength-selective NIR light triggered reversible handedness inversion of the self-organized helical superstructure incorporated with chiral switch 6 and core-multishell nanotransducers[62].Copyright 2015,Wiley-VCH
图10 (a) 手性分子开关7a和7b的化学结构。(b) 含有10 wt%手性分子开关7a的ZLI-1132制得的胆甾相液晶在5 μm平行取向液晶盒中的偏光照片,光照下胆甾相液晶呈现出可逆的相转变过程[64]
Fig.10 (a) Chemical structures of chiral switches 7a and 7b. (b) POM images of a planar aligned cholesteric film containing 10 wt % 7a in ZLI-1132 at room temperature, showing reversible phase transitions occurring by light irradiation of the sample inside a 5 μm cell[64]. Copyright 2010, American Chemical Society
图11 (a) 分子马达8、9和10的化学结构。(b) 紫外光照下玻璃棒在液晶中转动[66]
Fig.11 (a) Chemical structures of chiral motor 8, 9 and 10. (b) Glass rod rotating on the CLC during irradiation with UV light[66]. Copyright 2006, American Chemical Society
图12 (a) 分子马达11a~11c的化学结构及光驱动转变过程。(b) 非偏振光、左旋和右旋圆偏振光照射下胆甾相液晶显示图案的照片,不同区域反射颜色对应的透射光谱[72]
Fig.12 (a) Chemical structures and light-driven rotation process of chiral motor 11a~11c. (b) Photographs and the transmission spectra of the CLCs with recorded patterns under nonpolarized light, left-, and right-circular polarized light[72]. Copyright 2020, Wiley-VCH
图13 (a) 利用螺旋性竞争策略诱导胆甾相液晶发生螺旋翻转的机理示意图[73]。(b) 手性分子开关12a~12c的化学结构。(c) 手性分子开关13a~13d的化学结构
Fig.13 (a) Schematic illustration of the mechanism of handedness inversion in self-organized helical superstructures induced by chiral conflict[73]. Copyright 2013, Wiley-VCH. (b) Chemical structures of chiral switches 12a~12c. (c) Chemical structures of chiral switches 13a~13d
图14 (a) 手性分子开关14a和14b的化学结构。(b) 借助光掩膜版编码信息的过程示意图。(c) 365 nm紫外灯激发下显示的荧光二进制代码照片及其对应的单词。在365 nm紫外光激发下达到光稳态的圆圈不发光,将其记为数字“0”;450 nm光照下达到光稳态的部分发射右旋圆偏振光,记为数字“1”;整体背景发射左旋圆偏振光[75]
Fig.14 (a) Chemical structures of chiral switches 14a and 14b. (b) Schematic illustration of preparation process of information coding by using photomasks. (c) The photographs of fluorescent binary code under UV light (365 nm) and the encode word “OPEN”. The circles in PSS365 without circularly polarized luminescence represent the number “0”, the circles in PSS450 with right circularly polarized luminescence represent the number “1”, and the background emits left circularly polarized luminescence[75]. Copyright 2021, Wiley-VCH
图15 (a) 手性分子开关15的化学结构。(b) 手性分子开关16和手性掺杂剂LM36的化学结构
Fig.15 (a) Chemical structure of the chiral switch 15. (b) Chemical structure of the chiral switch 16 and the chiral dopant LM36
图16 (a) 光驱动胆甾相液晶在405 nm紫光照射下的透射光谱(8.8 mW·cm-2)。(b) 光驱动光谱可调艾里光束,紫光照射0, 2, 45, 65, 85和150 s后的显微照片和反射衍射图。比例尺为100 μm[82]
Fig.16 (a) The transmission spectra of the light-driven CLC under 405 nm violet light irradiation (8.8 mW·cm-2). (b) The light-driven spectrum tunable Airy beams. Micrographs and reflected diffraction patterns under 0, 2, 45, 65, 85, and 150 s violet light irradiation, respectively. The scale bars are 100 μm[82]. Copyright 2019, Springer Nature
图17 (a) 手性分子开关17和手性掺杂剂R5011的化学结构。(b) 365 nm紫外光照射下(15 mW cm-2)胆甾相液晶微球内微观光学织构变化的偏光显微镜照片。图i和iv中的逆时针箭头和图viii和x中的顺时针箭头代表了相反的螺旋方向;图v中虚线连接了微球两端的点缺陷,图ix中的虚线环代表了环缺陷[84]
Fig.17 (a) Chemical structures of the chiral switch 17 and the chiral dopant R5011. (b) POM images to show changes of microscopic optical textures in cholesteric microdroplets under 365 nm UV irradiation (15 mW cm-2). Anti-clockwise (i and iv) and clockwise (viii and x) arrows indicate the opposite spirals; the dashed line (v) connects two point defects at the poles of the droplets and the dashed ring (ix) indicates a ring defect[84]. Copyright 2017, The Royal Society of Chemistry
表1 手性分子开关在不同液晶基体中的螺旋扭曲力及其变化值
Table 1 HTPs of the chiral molecular switches in LC hosts and the changes between different states
[1]
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S H, Kaplan D L, Buehler M J, Ling S J. Chem. Rev., 2019, 119(24): 12279.

doi: 10.1021/acs.chemrev.9b00416     URL    
[2]
Wang L, Urbas A M, Li Q. Adv. Mater., 2020, 32(41): 1801335.

doi: 10.1002/adma.v32.41     URL    
[3]
Dumanli A G, Savin T. Chem. Soc. Rev., 2016, 45(24): 6698.

pmid: 27510041
[4]
Bisoyi H K, Bunning T J, Li Q. Adv. Mater., 2018, 30(25): 1706512.

doi: 10.1002/adma.v30.25     URL    
[5]
Nguyen T D, Peres B U, Carvalho R M, MacLachlan M J. Adv. Funct. Mater., 2016, 26(17): 2875.

doi: 10.1002/adfm.v26.17     URL    
[6]
Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Chem. Soc. Rev., 2012, 41(8): 3297.

doi: 10.1039/c2cs15267c     URL    
[7]
Sharma V, Crne M, Park J O, Srinivasarao M. Science, 2009, 325(5939): 449.

doi: 10.1126/science.1172051     pmid: 19628862
[8]
Jewell S A, Vukusic P, Roberts N W. New J. Phys., 2007, 9(4): 99.

doi: 10.1088/1367-2630/9/4/099     URL    
[9]
Lv J W, Ding D F, Yang X K, Hou K, Miao X, Wang D W, Kou B C, Huang L, Tang Z Y. Angew. Chem. Int. Ed., 2019, 58(23): 7783.

doi: 10.1002/anie.v58.23     URL    
[10]
Vignolini S, Rudall P J, Rowland A V, Reed A, Moyroud E, Faden R B, Baumberg J J, Glover B J, Steiner U. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(39): 15712.

doi: 10.1073/pnas.1210105109     URL    
[11]
Dumanli A G, Kamita G, Landman J, van der Kooij H, Glover B J, Baumberg J J, Steiner U, Vignolini S. Adv. Opt. Mater., 2014, 2(7): 646.

pmid: 26229742
[12]
Yablonovitch E. Phys. Rev. Lett., 1987, 58(20): 2059.

doi: 10.1103/PhysRevLett.58.2059     URL    
[13]
John S. Phys. Rev. Lett., 1987, 58(23): 2486.

doi: 10.1103/PhysRevLett.58.2486     URL    
[14]
Zheng Z G, Lu Y Q, Li Q. Adv. Mater., 2020, 32(41): 1905318.

doi: 10.1002/adma.v32.41     URL    
[15]
Dai L L, Li W, Cao J, Li J, Liu S X. Progress in Chemistry, 2015, 27(7): 861.
(代林林, 李伟, 曹军, 李坚, 刘守新. 化学进展, 2015, 27(7): 861.).
[16]
He Y R, Lin S Y, Guo J B, Li Q. Aggregate, 2021, 2(6): e141.
[17]
Bisoyi H K, Li Q. Chem. Rev., 2016, 116(24): 15089.

doi: 10.1021/acs.chemrev.6b00415     URL    
[18]
Mitov M. Adv. Mater., 2012, 24(47): 6260.

doi: 10.1002/adma.201202913     URL    
[19]
Guo Q Y, Wu S B, Qian Y, Hu W. Acta Polym. Sin., 2020, 51(5): 484.
(郭清仪, 吴赛博, 钱妍, 胡伟. 高分子学报, 2020, 51(5): 484.).
[20]
Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J. Nature, 2010, 468(7322): 422.

doi: 10.1038/nature09540    
[21]
Ge J P, Yin Y D. Angew. Chem. Int. Ed., 2011, 50(7): 1492.

doi: 10.1002/anie.200907091     URL    
[22]
Liu X J, Qin L, Zhan Y Y, Chen M, Yu Y L. Acta Chim. Sinica, 2020, 78(6): 478.

doi: 10.6023/A20040103     URL    
(刘晓珺, 秦朗, 詹媛媛, 陈萌, 俞燕蕾. 化学学报, 2020, 78(6): 478.).
[23]
Qin L, Gu W, Wei J, Yu Y L. Adv. Mater., 2018, 30(8): 1704941.

doi: 10.1002/adma.v30.8     URL    
[24]
Bisoyi H K, Li Q. Acc. Chem. Res., 2014, 47(10): 3184.

doi: 10.1021/ar500249k     URL    
[25]
Zhao D X, Jiang Q, Wang J, Qiu Y, Liao Y G, Xie X L. Chin. J. Polym. Sci., 2021, 39(12): 1617.

doi: 10.1007/s10118-021-2618-8    
[26]
Tamaoki N. Adv. Mater., 2001, 13(15): 1135.

doi: 10.1002/(ISSN)1521-4095     URL    
[27]
Zhan X Q, Xu F F, Zhou Z H, Yan Y L, Yao J N, Zhao Y S. Adv. Mater., 2021, 33(37): 2104418.

doi: 10.1002/adma.v33.37     URL    
[28]
Hong W, Yuan Z K, Chen X D. Small, 2020, 16(16): 1907626.

doi: 10.1002/smll.v16.16     URL    
[29]
Chen P, Wei B Y, Hu W, Lu Y Q. Adv. Mater., 2020, 32(27): 1903665.
[30]
Cui S Z, Qin L, Liu X J, Yu Y L. Adv. Opt. Mater., 2022, 10(5): 2102108.

doi: 10.1002/adom.v10.5     URL    
[31]
Zola R S, Bisoyi H K, Wang H, Urbas A M, Bunning T J, Li Q. Adv. Mater., 2019, 31(7): 1806172.

doi: 10.1002/adma.v31.7     URL    
[32]
Ryabchun A, Bobrovsky A. Adv. Opt. Mater., 2018, 6(15): 1800335.

doi: 10.1002/adom.v6.15     URL    
[33]
Ma L L, Hu W, Zheng Z G, Wu S B, Chen P, Li Q, Lu Y Q. Adv. Optical Mater., 2019, 7(16): 1900393.

doi: 10.1002/adom.v7.16     URL    
[34]
McConney M E, Rumi M, Godman N P, Tohgha U N, Bunning T J. Adv. Optical Mater., 2019, 7(16): 1900429.

doi: 10.1002/adom.v7.16     URL    
[35]
Bisoyi H K, Li Q. Angewandte Chemie Int. Ed., 2016, 55(9): 2994.

doi: 10.1002/anie.v55.9     URL    
[36]
Wang Y, Li Q. Adv. Mater., 2012, 24(15): 1926.

doi: 10.1002/adma.201200241     URL    
[37]
Wang L, Li Q. Chem. Soc. Rev., 2018, 47(3): 1044.

doi: 10.1039/C7CS00630F     URL    
[38]
Klajn R. Chem. Soc. Rev., 2014, 43(1): 148.

doi: 10.1039/C3CS60181A     URL    
[39]
Shi Y H, Han J L, Jin X, Miao W G, Zhang Y, Duan P F. Adv. Sci., 2022, 9(20): 2201565.

doi: 10.1002/advs.v9.20     URL    
[40]
Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim S N, Kurihara S. Adv. Mater., 2005, 17(10): 1226.

doi: 10.1002/(ISSN)1521-4095     URL    
[41]
Hou J X, Toyoda R, Meskers S C J, Feringa B L. Angewandte Chemie Int. Ed., 2022, 61(41): e202206310.
[42]
Hu H L, Liu B H, Li M Q, Zheng Z G, Zhu W H. Adv. Mater., 2022, 34(15): 2110170.

doi: 10.1002/adma.v34.15     URL    
[43]
Lin S Y, Gutierrez-Cuevas K G, Zhang X F, Guo J B, Li Q. Adv. Funct. Mater., 2021, 31(7): 2007957.

doi: 10.1002/adfm.v31.7     URL    
[44]
Yu H T, Tang J W, Feng Y Y, Feng W. Chin. J. Polym. Sci., 2019, 37(12): 1183.

doi: 10.1007/s10118-019-2331-z    
[45]
Qin L, Wei J, Yu Y L. Adv. Optical Mater., 2019, 7(18): 1900430.

doi: 10.1002/adom.v7.18     URL    
[46]
Qin L, Gu W, Chen Y Y, Wei J, Yu Y L. RSC Adv., 2018, 8(68): 38935.

doi: 10.1039/C8RA07657J     URL    
[47]
Zou Q, Zhang J J, Tian H. Progress in Chemistry, 2012, 24(9): 1632.
(邹祺, 张隽佶, 田禾. 化学进展, 2012, 24(9): 1632.).
[48]
Li Y N, Urbas A, Li Q. J. Am. Chem. Soc., 2012, 134(23): 9573.

doi: 10.1021/ja302772z     URL    
[49]
Zheng Z G, Hu H L, Zhang Z P, Liu B H, Li M Q, Qu D H, Tian H, Zhu W H, Feringa B L. Nat. Photon., 2022, 16(3): 226.

doi: 10.1038/s41566-022-00957-5    
[50]
Eelkema R, Feringa B L. Org. Biomol. Chem., 2006, 4(20): 3729.

pmid: 17024276
[51]
Štacko P, Kistemaker J C M, van Leeuwen T, Chang M C, Otten E, Feringa B L. Science, 2017, 356(6341): 964.

doi: 10.1126/science.aam8808     pmid: 28572394
[52]
Denekamp C, Feringa B L. Adv. Mater., 1998, 10(14): 1080.

doi: 10.1002/(ISSN)1521-4095     URL    
[53]
Rameshbabu K, Urbas A, Li Q. J. Phys. Chem. B, 2011, 115(13): 3409.

doi: 10.1021/jp112401k     URL    
[54]
Ruslim C, Ichimura K. J. Mater. Chem., 2002, 12(12): 3377.

doi: 10.1039/b208578j     URL    
[55]
Proni G, Spada G P, Lustenberger P, Welti R, Diederich F. J. Org. Chem., 2000, 65(18): 5522.

pmid: 10970290
[56]
Hayasaka H, Miyashita T, Nakayama M, Kuwada K, Akagi K. J. Am. Chem. Soc., 2012, 134(8): 3758.

doi: 10.1021/ja2088053     URL    
[57]
Wang H, Bisoyi H K, Li B X, McConney M E, Bunning T J, Li Q. Angew. Chem. Int. Ed., 2020, 59(7): 2684.

doi: 10.1002/anie.201913977     pmid: 31802595
[58]
BlÉger D, Schwarz J, Brouwer A M, Hecht S. J. Am. Chem. Soc., 2012, 134(51): 20597.

doi: 10.1021/ja310323y     URL    
[59]
Goh M, Akagi K. Liq. Cryst., 2008, 35(8): 953.

doi: 10.1080/02678290802305098     URL    
[60]
Li Y N, Xue C M, Wang M F, Urbas A, Li Q. Angew. Chem. Int. Ed., 2013, 52(51): 13703.

doi: 10.1002/anie.201306396     URL    
[61]
Yuan C L, Huang W B, Zheng Z G, Liu B H, Bisoyi H K, Li Y N, Shen D, Lu Y Q, Li Q. Sci. Adv., 2019, 5(10): eaax9501.
[62]
Wang L, Dong H, Li Y N, Liu R, Wang Y F, Bisoyi H K, Sun L D, Yan C H, Li Q. Adv. Mater., 2015, 27(12): 2065.

doi: 10.1002/adma.v27.12     URL    
[63]
Zheng Z G, Li Y N, Bisoyi H K, Wang L, Bunning T J, Li Q. Nature, 2016, 531(7594): 352.

doi: 10.1038/nature17141    
[64]
Mathews M, Zola R S, Hurley S, Yang D K, White T J, Bunning T J, Li Q. J. Am. Chem. Soc., 2010, 132(51): 18361.

doi: 10.1021/ja108437n     pmid: 21126075
[65]
van Delden R A, Koumura N, Harada N, Feringa B L. Proc. Natl. Acad. Sci. U. S. A., 2002, 99(8): 4945.

doi: 10.1073/pnas.062660699     URL    
[66]
Eelkema R, Pollard M M, Katsonis N, Vicario J, Broer D J, Feringa B L. J. Am. Chem. Soc., 2006, 128(44): 14397.

pmid: 17076514
[67]
Feringa B L, Huck N P M, van Doren H A. J. Am. Chem. Soc., 1995, 117(39): 9929.

doi: 10.1021/ja00144a027     URL    
[68]
van Delden R A, van Gelder M B, Huck N P M, Feringa B L. Adv. Funct. Mater., 2003, 13(4): 319.

doi: 10.1002/adfm.200304313     URL    
[69]
White T J, Cazzell S A, Freer A S, Yang D K, Sukhomlinova L, Su L L, Kosa T, Taheri B, Bunning T J. Adv. Mater., 2011, 23(11): 1389.

doi: 10.1002/adma.v23.11     URL    
[70]
Sleczkowski P, Zhou Y, Iamsaard S, de Pablo J J, Katsonis N, Lacaze E. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(17): 4334.

doi: 10.1073/pnas.1720742115     URL    
[71]
Bao J Y, Lan R C, Shen C, Huang R, Wang Z Z, Hu W, Zhang L Y, Yang H. Adv. Opt. Mater., 2022, 10(3): 2101910.

doi: 10.1002/adom.v10.3     URL    
[72]
Ryabchun A, Lancia F, Chen J W, Morozov D, Feringa B L, Katsonis N. Adv. Mater., 2020, 32(47): 2004420.

doi: 10.1002/adma.v32.47     URL    
[73]
Li Y N, Wang M F, White T J, Bunning T J, Li Q. Angew. Chem. Int. Ed., 2013, 52(34): 8925.

doi: 10.1002/anie.201303786     URL    
[74]
Fu D W, Li J T, Wei J, Guo J B. Soft Matter, 2015, 11(15): 3034.

doi: 10.1039/C5SM00128E     URL    
[75]
He Y R, Zhang S, Bisoyi H K, Qiao J H, Chen H, Gao J J, Guo J B, Li Q. Angew. Chem. Int. Ed., 2021, 60(52): 27158.

doi: 10.1002/anie.v60.52     URL    
[76]
Li J T, Zhang Z W, Tian J J, Li G Q, Wei J, Guo J B. Adv. Opt. Mater., 2017, 5(8): 1700014.

doi: 10.1002/adom.201700014     URL    
[77]
Li J T, Bisoyi H K, Lin S Y, Guo J B, Li Q. Angew. Chem. Int. Ed., 2019, 58(45): 16052.

doi: 10.1002/anie.v58.45     URL    
[78]
Li J T, Bisoyi H K, Tian J J, Guo J B, Li Q. Adv. Mater., 2019, 31(10): 1807751.

doi: 10.1002/adma.v31.10     URL    
[79]
Kurihara S, Nomiyama S, Nonaka T. Chem. Mater., 2000, 12(1): 9.

doi: 10.1021/cm9901616     URL    
[80]
Kurihara S, Nomiyama S, Nonaka T. Chem. Mater., 2001, 13(6): 1992.

doi: 10.1021/cm0007555     URL    
[81]
Ryabchun A, Yakovlev D, Bobrovsky A, Katsonis N. ACS Appl. Mater. Interfaces, 2019, 11(11): 10895.

doi: 10.1021/acsami.8b22465     URL    
[82]
Chen P, Ma L L, Hu W, Shen Z X, Bisoyi H K, Wu S B, Ge S J, Li Q, Lu Y Q. Nat. Commun., 2019, 10: 2518.

doi: 10.1038/s41467-019-10538-w    
[83]
Chen P, Shen Z X, Xu C T, Zhang Y H, Ge S J, Ma L L, Hu W, Lu Y Q. Laser Photonics Rev., 2022, 16(5): 2270024.

doi: 10.1002/lpor.v16.5     URL    
[84]
Wang L, Chen D, Gutierrez-Cuevas K G, Krishna Bisoyi H, Fan J, Zola R S, Li G Q, Urbas A M, Bunning T J, Weitz D A, Li Q. Mater. Horiz., 2017, 4(6): 1190.

doi: 10.1039/C7MH00644F     URL    
[85]
Qiao J H, He Y R, Lin S Y, Fan Q Y, Guo J B. J. Mater. Chem. C, 2022, 10(18): 7311.

doi: 10.1039/D2TC00424K     URL    
[86]
Zhu L, Xu C T, Chen P, Zhang Y H, Liu S J, Chen Q M, Ge S J, Hu W, Lu Y Q. Light. Sci. Appl., 2022, 11: 135.

doi: 10.1038/s41377-022-00835-3    
[1] 朱世琴, 李文龙, 朱为宏. 新型烯桥二芳基乙烯光致变色体系[J]. 化学进展, 2016, 28(7): 975-992.
[2] 宋宇飞,杨频. 对DNA具有识别和断裂功能的金属插入剂的研究[J]. 化学进展, 2001, 13(05): 368-.
[3] 杨频,宋宇飞. 金属配合物键合DNA的研究进展*[J]. 化学进展, 2000, 12(01): 32-.
阅读次数
全文


摘要

胆甾相液晶螺旋方向的光调控