English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 2063-2080 DOI: 10.7536/PC211022 前一篇   后一篇

• 综述 •

二维钙钛矿光伏器件

姬超1,2,3, 李拓1,2, 邹晓峰1,2, 张璐1,2, 梁春军3,*()   

  1. 1 高效能服务器和存储技术国家重点实验室 济南 250013
    2 山东浪潮人工智能研究院有限公司 济南 250013
    3 北京交通大学理学院 发光与光信息技术教育部重点实验室 北京 100044
  • 收稿日期:2021-10-22 修回日期:2022-02-19 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    国家自然科学基金项目(61874008)

Two-Dimensional Perovskite Photovoltaic Devices

Chao Ji1,2,3, Tuo Li1,2, Xiaofeng Zou1,2, Lu Zhang1,2, Chunjun Liang3()   

  1. 1 State Key Laboratory of High-End Server & Storage Technology, Jinan 250013, China
    2 Shandong Inspur Artificial Intelligence Research Institute Co., Ltd, Jinan 250013, China
    3 Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University,Beijing 100044, China
  • Received:2021-10-22 Revised:2022-02-19 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: chjliang@bjtu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(61874008)

有机-无机杂化卤化物钙钛矿太阳能电池(perovskite solar cells, PSCs)由于其成本低廉、制备工艺简单、光电转换率高等优点引起了越来越多的关注,在下一代半导体光伏技术中显示出巨大的发展潜力。然而PSCs器件在商业化生产应用之前,必须解决某些关键问题,例如器件在湿度、光照和过热条件下缺乏稳定性,性能会急剧衰退。层状二维(two-dimensional, 2D)钙钛矿由于其优异的环境稳定性而受到研究人员的广泛关注。通过引入不同种类的疏水性大体积有机铵阳离子可以在钙钛矿体内形成稳定的2D结构。然而,由于绝缘有机间隔阳离子的存在,使其电荷输运能力受阻并影响光电转换性能。本文根据不同种类2D钙钛矿光伏器件的发展进程,总结了影响2D钙钛矿结构和性能的关键问题,如晶体垂直取向设计、量子阱调控和有机层间隔阳离子替换工程等。最后对2D PSCs的未来发展进行展望。

Organic-inorganic hybrid halide perovskite solar cells (PSCs) have attracted more attention because of their low cost, simple preparation process and high power conversion efficiency(PCE). It is widely considered as ideal candidates for the next generation semiconductor photovoltaic technology. However, the instability caused by moisture, light and heat is still the main factor restricting the commercialization of PSCs devices. Layered two-dimensional (2D) perovskite has attracted extensive attention because of its good environmental stability. By introducing different kinds of hydrophobic large volume organic ammonium cations, a stable 2D structure can be formed. However, due to the existence of insulating organic spacer cations, its charge transport capacity is blocked and its power conversion efficiency is poor. Therefore, improving the PCE of 2D PSCs on the premise of maintaining excellent stability is the key problem. According to the development process of different kinds of 2D perovskite photovoltaic devices, this paper summarizes the key problems affecting the structure and performance of 2D perovskite, such as vertical orientation, mixed dimensional engineering, quantum well regulation, organic spacer cation replacement engineering and so on. Finally, the future development of 2D PSCs is prospected.

Contents

1 Introduction

2 Crystal structure and physical properties of two-dimensional perovskite

3 RP phase perovskite solar cell

3.1 Low n-value 2D-RP perovskite

3.2 High n-value 2D-RP perovskite

4 DJ phase perovskite solar cell

4.1 Asymmetric diammonium structure

4.2 Symmetrical diammonium structure

5 ACI phase perovskite solar cell

6 Conclusion and Prospect

()
图1 (a)钙钛矿的立方晶体结构; (b)理想立方相钙钛矿结构的容限因子
Fig. 1 (a) Cubic crystal structure of perovskite; (b) Tolerance factor of ideal cubic perovskite structure
图2 (a)从3D钙钛矿<100>表面切割形成的带有有机间隔阳离子的不同n值层状钙钛矿;(b)2D钙钛矿材料的相空间图示,典型的n=1的2D层状钙钛矿结构:(c)单铵基和(d)双铵基;(e)多量子阱2D钙钛矿的能带结构
Fig. 2 (a) Layered perovskite with different n values with organic spacer cations cut from 3D perovskite <100> plane. (b) Illustration of the 2D perovskite material phase space. Typical n=1 2D layered perovskite structures: (c) monoamine and (d) diamine. (e) Band structure of 2D perovskite with multiple quantum wells
图3 不同2D钙钛矿组分的光学带隙(a)和光致发光谱(b); (c)不同n值2D钙钛矿的薄膜照片(上),(BA)2(MA)2Pb3I10的晶体取向示意图(中),以及SEM截面图(下)[31]
Fig. 3 (a) Optical band gap and (b) photoluminescence spectra of different 2D perovskite; (c) images of 2D perovskite film with different N values (top), crystal orientation diagram of (BA)2(MA)2Pb3I10 (middle) and cross-sectional SEM images (bottom)[31]
图4 (a)分别通过室温旋涂法(左)和热铸法旋涂(中)制备的(BA)2(MA)3Pb4I13 钙钛矿薄膜的掠入射广角X射线散射(GIWAXS)强度图,根据GIWAXS数据分析的沿着2D钙钛矿(111)面和(202)面的晶体取向示意图(右)[32];(b)基于BTA热铸法降维工程制备的四种不同维度尺寸区域的GIWAXS测量[33];(c)n=5钙钛矿薄膜中的载流子转移示意图,电子从小n向大n钙钛矿相转移,空穴从大n向小n钙钛矿相转移, 并且该薄膜中几乎没有n=1相[34]
Fig. 4 (a) GIWAXS maps for polycrystalline room-temperature-cast (left) and hot-cast (middle) near-single-crystalline (BA)2(MA)3Pb4I13 perovskite films. Schematic representation of the (101) orientation, along with the (111) and (202) planes of a 2D perovskite crystal, consistent with the GIWAXS data (right)[32]. (b) GIWAXS measurements of hot-cast BTA-based RDPs in four different size regimes[33]. (c) Schematic of carrier transfer in the n = 5 perovskite film. The electron transfers from small-n to large-n perovskite phases, and the hole transfers from large-n to small-n perovskite phases, and there is little n = 1 phase in this thin film[34]
图5 (a)Csx-2D钙钛矿薄膜的形貌表征(扫描电子显微镜);(b)Cs5-2D钙钛矿器件的电流密度-电压(J-V)曲线[38];(c)通过吸收光谱估算的激子结合能,2D钙钛矿显示出典型的激子峰和阶梯状的带间吸收,BA2PbI4和MA2PbI4的激子结合能分别为502 meV和153 meV[39];(d)(PPA)2(Cs/FA/MA)n-1Pbn $(I/Br)_{3_{n+1}}$ (n≤4)的GIWAXS图谱[42]
Fig. 5 (a) Morphology characterization of the Csx-2D perovskite films (scanning electron microscope). (b) The current density-voltage (J-V) curve of Cs5-2D perovskite devices[38]. (c) Estimated exciton binding energy by absorption spectra. The 2D perovskites show a typical exciton peak and a step-like band-to-band absorption. The exciton binding energy of BA2PbI4 and MA2PbI4 are 502 meV and 153 meV, respectively[39]. (d) GIWAXS patterns of (PPA)2(Cs/FA/MA)n-1Pbn $(I/Br)_{3_{n+1}}$ (n ≤ 4) films[42]
图6 (a)2D-RP钙钛矿(MTEA)2(MA)n-1Pbn I 3 n + 1和(BA)2(MA)n-1Pbn I 3 n + 1的晶体结构示意图以及MTEA和BA基2D钙钛矿薄膜的电荷输运示意图[43];(b)由不同有机间隔物(EA-HA)制备的2DRP钙钛矿的图示结构和最佳2D-RP PSCs(AA2MA3Pb4I13 )的J-V特性[44]
Fig. 6 (a) Schematic crystal structures of the 2D-RP perovskites (MTEA)2(MA)n-1Pbn I 3 n + 1 and (BA)2(MA)n-1Pbn I 3 n + 1 and charge transport diagram of MTEA and BA based 2D perovskite films[43]. (b) Illustrated structures of RP-phase two-dimensional (2DRP) perovskites integrated by different organic spacers (EA-HA) and J-V characteristics of the best 2D-RP PSC (AA2MA3Pb4I13)[44]
图7 (a) 性能最佳的FPEA-FA器件的电流密度-电压(J-V)曲线;插图是2D-RPP太阳能电池的器件结构;(b) 30%~70%相对湿度下未封装FPEA-FA、FPEA-MA和PEA-MA器件的归一化PCE[45];(c) 采用GABr后处理的PSCs的J-V曲线;插图是2D-RPP太阳能电池的器件结构;(d) 经不同GABr浓度处理的钙钛矿薄膜的俯视扫描电子显微镜(SEM)图像[46]
Fig. 7 (a) The current density-voltage (J-V) curve of the best-performing FPEA-FA device; the inset is the device structure of the 2D-RPP solar cell. (b) The normalized PCE of unencapsulated FPEA-FA, FPEA-MA, and PEA-MA devices under 30%~70% RH[45]. (c) The J-V curve of the PSCs using GABr post-treatment; the inset is the device structure of the 2D-RPP solar cell. (d) Top-view scanning electron microscopy (SEM) images of the perovskite films treated with various GABr concentrations[46]
图8 (a)从2D (n=1)到3D (n=∞)具有不同n值的(PEA)2MAn-1Pbn I 3 n + 1钙钛矿的晶胞结构(上),器件性能是n值的函数,随着n值的增加,性能得到了提高;然而,与此同时,稳定性降低(下)[47];(b)描绘了BA掺杂含量x=0.09薄膜中3D钙钛矿相的取向,与x=0薄膜相比,显示了对[h00]方向的优先取向。请注意这些方块只是示意性地说明了晶体方向,而不是真实晶粒;(c)对于两种不同的BA浓度(x=0和0.09)钙钛矿退火过程(从室温到175℃)随时间变化的稳定性[48]
Fig. 8 (a) Unit cell structure of (PEA)2(MA)n-1Pbn I 3 n + 1 perovskites with different n values, showing the evolution of dimensionality from 2D (n=1) to 3D (n=∞) (upper). Device performance as a function of n value, which shows that increased performance was achieved with increased n value; however, in the meantime, stability was decreased (lower)[47]. (b) Illustration depicting the orientation of the 3D perovskite phase in the x = 0.09 film, compared with a low-textured x = 0 film, showing a preference for the [h00] direction to align out-of-plane. Note that these squares just schematically illustrate the crystal orientation rather than the crystal grains. (c) Intensity of (100) reflection as a function of time during the perovskite annealing procedure (from room temperature to 175℃) for two different BA concentrations (x = 0 and 0.09)[48]
图9 (a)在晶界含有2D钙钛矿的多晶3D钙钛矿薄膜示意图;(b)在180 K条件下纯FAPbI3薄膜器件和含有1.67 mol% 2D PEA2PbI4钙钛矿器件的电流-电压(I-V)曲线[50]
Fig. 9 (a) Schematics of the device incorporating polycrystalline 3D perovskite film with 2D perovskite at grain boundaries. Current-voltage (I-V) curves measured from the devices at 180 K for (b) Bare FAPbI3 film and (c) FAPbI3 film with 1.67 mol% 2D PEA2PbI4 perovskite[50]
图10 (a)轴向和赤道向Pb-I-Pb角的定义以及3AMP和4AMP的平均轴向角和赤道角统计;(b)2D钙钛矿光伏器件的J-V曲线[51];(c)(3AMPY)(MA)Pb2I7和(4AMPY)(MA)Pb2I7晶体结构的侧视图和顶视图以及不同n值的两种钙钛矿的光吸收光谱;(d)相应器件的J-V曲线[52];(e)Pb-I-Pb的平均角;(f)(3AMP)(MA1-xFAx)3Pb4I13(x=0~0.3)薄膜的XRD图谱;(g)(3AMP)(MA1-xFAx)3Pb4I13 (x=0~0.3)器件的J-V特性曲线[53]
Fig. 10 (a) Definition of axial and equatorial Pb-I-Pb angles and statistics of average axial and equatorial angles of 3AMP and 4 AMP. (b) J-V curves of the 2D perovskite solar cell devices[51]. (c) The side and top view of (3AMPY)(MA)Pb2I7 and (4AMPY)(MA)Pb2I7 and the optical absorption spectra of two perovskites with different n values. (d) J-V curves for the corresponding devices[52]. (e) averaged Pb-I-Pb angles. (f) XRD patterns of (3AMP)(MA1-xFAx)3Pb4I13 (x=0~0.3) films. (g) J-V curves of (3AMP)(MA1-xFAx)3Pb4I13 (x=0~0.3) devices[53]
图11 (a)RP和DJ相2D层状钙钛矿示意图[55];(b)晶体(101)面的方位角变化示意图[57];(c)原始器件和改性器件的电荷传输模型示意图(上)以及对应薄膜的光致发光呈现不同载流子寿命的分布(下)[58];(d)不同器件的J-V曲线[59]
Fig. 11 (a) Schematic Illustration of RP and DJ Phase 2D Layered Perovskites[55]. (b) The schematic of azimuth angle evolution of (101) crystallographic[57]. (c) Schematic diagram of morphology and charge transport model of the control and target devices (up) and PL occurs distribution of different carrier lifetime for the corresponding films (down)[58]. (d) J-V curves of different devices[59]
图12 (a)在FACl辅助下2D钙钛矿薄膜的微观生长机制的示意图[61];(b)最优器件的J-V曲线和未封装器件在黑暗中60℃老化的热稳定性[62];(c)通过I-和Br-之间的离子交换反应进行的梯度溴掺杂技术(GBD)来制备(BDA)FA4Pb5I16-xBrx薄膜的过程示意图和不同PSCs器件能级图示意图;(d)不同器件的J-V特性曲线[63]
Fig. 12 (a) Schematic illustration depicting the microscopic growth mechanism of the 2D perovskite film under the assistance of FACl[61]. (b) J-V curves of the champion devices and thermal stability of the unencapsulated control and target devices aged at 60℃ in the dark[62]. (c) Schematic illustration of preparation process of (BDA)FA4Pb5I16-xBrx with GBD formed via the ion exchange reaction between I- and Br- and energy level diagram of PSCs based on the control and target perovskite films. (d) J-V curves of the champion control and target devices[63]
图13 (a)(GA)(MA)nPbn I 3 n + 1(n=1~3)的晶胞单元视图(突出了钙钛矿层之间GA和MA阳离子的有序晶体堆积)[64];(b)ACI型钙钛矿自组装的模型示意图[65];(c)从小n相到大n相的载流子分布以及从ACI钙钛矿中提取载流子的示意图[66];(d)混合钙钛矿量子阱的能带结构示意图和载流子传输路径。(BA)2MA2Pb3I10薄膜实现阶梯传输(上),而(BEA)0.5MA3Pb3I10薄膜具有平坦传输的途径(下);(e)以(BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10和(BA)2Cs0.1(FA0.83MA0.17)1.9Pb3(I0.83Br0.17)10为活性层的B-ACI和LDRP钙钛矿型器件的J-V曲线[67]
Fig. 13 (a) View of the unit cells of the (GA)(MA)nPbn I 3 n + 1 (n = 1~3) perovskites along the crystallographic a-axis highlighting the ordered crystal packing of the GA and MA cations between the perovskite layers[64]. (b) Schematic model illustrating the self-assembly of the ACI perovskite[65]. (c) Schematics of the charge carrier localization from small n to large n phases and the charge carrier extraction from the ACI perovskite[66]. (d) Schematic of the band structure for mixed perovskite QWs and carrier transport pathway. (BA)2MA2Pb3I10 film enables a stepped transmission (up), while there is a flat transmission for (BEA)0.5MA3Pb3I10 films (down). (e) J-V curves of B-ACI and LDRP perovskite solar cells with (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 and (BA)2Cs0.1(FA0.83MA0.17)1.9Pb3(I0.83Br0.17)10 as the active layer[67]
表1 不同类型2D PSCs的光伏性能参数
Table 1 Photovoltaic performance parameters of different types of 2D PSCs
Type 2D organic spacer cation 2D perovskite Voc(V) Jsc(mA/cm2) FF(%) PCE(%) ref
RP (PEA)2(MA)2Pb3I10 1.18 6.72 60 4.73 13
RP (BA)2(MA)2Pb3I10 0.929 9.42 46 4.02 31
RP (BA)2(MA)3Pb4I13 1.01 16.76 74.13 12.51 32
RP BTA-MAPbI3
PEA-MAPbI3
33
RP PEA2MAn-1PbnI3n+1 34
RP PEA2MA4Pb5I16
(Vacuum polarization treatment)
1.223 17.91 82.4 18.04 35
RP (BA)2(MA0.95Cs0.05)3Pb4I13/(BrB-PEDOT:PSS) 1.11 17.08 72.5 13.74 36
RP BA2MA3Pb4I13
(DMF/DMSO)
1.10 14.2 71 11.1 37
RP (BA)2(MA)3Pb4I13(Cs+ doping) 1.08 19.95 63.47 13.68 38
RP MA2PbI4 1.06 21.00 76 16.92 39
RP (ThFA)2MA2PbnI10 1.05 20.17 79 16.72 41
RP (PPA)2(Cs0.05(FA0.88MA0.12)0.95)3
Pb4(I0.88Br0.12)13
1.14 19.33 67 14.76 42
RP (MTEA)2(MA)4Pb5I16 1.088 21.77 76.27 18.06 43
RP (AA)2MA3Pb4I13 1.13 18.20 76.86 15.78 44
RP (FPEA)2(FA)8Pb9I28 1.07 20.88 72.29 16.15 45
RP (GA)2MA4Pb5I16 1.17 21.9 75 19.3 46
RP PEA2MAn-1PbnI3n+1(n=60) 1.09 19.12 73.7 15.36 47
RP BA0.09(FA0.83Cs0.17)0.91
Pb(I0.6Br0.4)3
1.18 19.8 73 17.2 48
RP (AVA)2PbI4@MAPbI3 1.06 22.3 76 18.0 49
RP PEA2PbI4@FA0.98Cs0.02PbI3 1.126 24.44 76.5 21.06 50
DJ (3AMP)(MA)3Pb4I13 1.06 10.17 67.6 7.32 51
DJ (3AMPY)(MA)3Pb4I13 1.08 14.34 59.58 9.20 52
DJ (3AMP)(MA0.75FA0.25)3Pb4I13 1.09 13.69 81.04 12.04 53
DJ (PDA) (MA)3Pb4I13 0.98 19.50 69 13.3 55
DJ (BzDA)(Cs0.05MA0.15FA0.8)9Pb10(I0.93Br0.07)31 1.02 21.5 71 15.6 56
DJ (BDA)(MA)4Pb5I16
(NH4SCN as additive)
1.11 16.07 81.45 14.53 57
DJ (ThDMA)(MA)4Pb5I16 1.07 19.55 75.46 15.75 58
DJ (PDMA)(MA)3Pb4I13 1.15±0.025 21.10±0.53 62.58±1.5 15.09±0.32 59
DJ (mPDA)MA5Pb6I19 0.82 14.74 51 6.16 60
DJ (PDA)(FA)3Pb4I13
(FACl as additive)
1.10 17.30 72.5 13.8 61
DJ (BDA)FA4Pb5I16
(CDTA as additive)
1.064 19.71 76.6 16.07 62
DJ (BDA)FA4Pb5I16-xBrx 1.107 19.69 76.8 16.75 63
ACI GAMA3Pb3I10 0.974 9.357 79.68 7.26 64
ACI GAMA3Pb3I10 1.15 18.8 67.8 14.69 65
ACI (GA)(MA)3Pb3I10 1.08 20.75 74.52 16.65 66
ACI (BEA)0.5Cs0.15
(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10
1.10 21.89 72.2 17.39 67
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r     URL    
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2: 591.

doi: 10.1038/srep00591     URL    
[3]
Lee Michael M, Teuscher J, Miyasaka T, Murakami Takurou N, Snaith Henry J. Science, 2012, 338: 643.

doi: 10.1126/science.1228604     pmid: 23042296
[4]
Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y. Science, 2014, 345(6196): 542.

doi: 10.1126/science.1254050     URL    
[5]
Leijtens T, Bush K A, Prasanna R, McGehee M D. Nat. Energy, 2018, 3(10): 828.

doi: 10.1038/s41560-018-0190-4     URL    
[6]
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I. Science, 2015, 348(6240): 1234.

doi: 10.1126/science.aaa9272     URL    
[7]
Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354(6309): 206.

doi: 10.1126/science.aah5557     URL    
[8]
Bi D Q, Li X, Milić J V, Kubicki D J, Pellet N, Luo J S, LaGrange T, Mettraux P, Emsley L, Zakeeruddin S M, Grätzel M. Nat. Commun., 2018, 9: 4482.

doi: 10.1038/s41467-018-06709-w     URL    
[9]
Hu Y H, Hutter E M, Rieder P, Grill I, Hanisch J, Aygüler M F, Hufnagel A G, Handloser M, Bein T, Hartschuh A, Tvingstedt K, Dyakonov V, Baumann A, Savenije T J, Petrus M L, Docampo P. Adv. Energy Mater., 2018, 8(16): 1870073.

doi: 10.1002/aenm.201870073     URL    
[10]
Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S I. Science, 2019, 366(6466): 749.

doi: 10.1126/science.aay7044     URL    
[11]
Slavney A H, Smaha R W, Smith I C, Jaffe A, Umeyama D, Karunadasa H I. Inorg. Chem., 2017, 56(1): 46.

doi: 10.1021/acs.inorgchem.6b01336     pmid: 27494338
[12]
Misra R K, Cohen B E, Iagher L, Etgar L. ChemSusChem, 2017, 10(19): 3712.

doi: 10.1002/cssc.201701026     pmid: 28703944
[13]
Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I. Angew. Chem. Int. Ed., 2014, 53(42): 11232.

doi: 10.1002/anie.201406466     pmid: 25196933
[14]
Li X T, Hoffman J M, Kanatzidis M G. Chem. Rev., 2021, 121(4): 2230.

doi: 10.1021/acs.chemrev.0c01006     URL    
[15]
Krishna A, Gottis S, Nazeeruddin M K, Sauvage F. Adv. Funct. Mater., 2019, 29(8): 1806482.

doi: 10.1002/adfm.201806482     URL    
[16]
Goldschmidt V M. Naturwissenschaften, 1926, 14(21): 477.

doi: 10.1007/BF01507527     URL    
[17]
Saparov B, Mitzi D B. Chem. Rev., 2016, 116(7): 4558.

doi: 10.1021/acs.chemrev.5b00715     URL    
[18]
Blancon J C, Even J, Stoumpos C C, Kanatzidis M G, Mohite A D. Nat. Nanotechnol., 2020, 15(12): 969.

doi: 10.1038/s41565-020-00811-1     URL    
[19]
Mao L L, Stoumpos C C, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(3): 1171.

doi: 10.1021/jacs.8b10851     URL    
[20]
Beznosikov B V, Aleksandrov K S. Crystallogr. Rep., 2000, 45(5): 792.

doi: 10.1134/1.1312923     URL    
[21]
Ruddlesden S N, Popper P. Acta Crystallogr., 1958, 11(1): 54.

doi: 10.1107/S0365110X58000128     URL    
[22]
Cheng Z Y, Lin J. CrystEngComm, 2010, 12(10): 2646.

doi: 10.1039/c001929a     URL    
[23]
Ishihara T, Hong X, Ding J, Nurmikko A V. Surf. Sci., 1992, 267(1/3): 323.

doi: 10.1016/0039-6028(92)91147-4     URL    
[24]
Hong X, Ishihara T, Nurmikko A V. Phys. Rev. B, 1992, 45(12): 6961.

pmid: 10000465
[25]
Era M, Morimoto S, Tsutsui T, Saito S. Appl. Phys. Lett., 1994, 65(6): 676.

doi: 10.1063/1.112265     URL    
[26]
Hattori T, Taira T, Era M, Tsutsui T, Saito S. Chem. Phys. Lett., 1996, 254(1/2): 103.

doi: 10.1016/0009-2614(96)00310-7     URL    
[27]
Zou Y, Yuan Z, Bai S, Gao F, Sun B. Mater. Today Nano, 2019, 5: 100028.
[28]
Zhu T, Yang Y R, Gong X. ACS Appl. Mater. Interfaces, 2020, 12(24): 26776.

doi: 10.1021/acsami.0c02575     URL    
[29]
Yang W F, Igbari F, Lou Y H, Wang Z K, Liao L S. Adv. Energy Mater., 2020, 10(13): 1902584.

doi: 10.1002/aenm.201902584     URL    
[30]
Zhu H L, Choy W C H. Sol. RRL, 2018, 2(10): 1800146.

doi: 10.1002/solr.201800146     URL    
[31]
Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. J. Am. Chem. Soc., 2015, 137(24): 7843.

doi: 10.1021/jacs.5b03796     URL    
[32]
Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. Nature, 2016, 536(7616): 312.

doi: 10.1038/nature18306     URL    
[33]
Quintero-Bermudez R, Gold-Parker A, Proppe A H, Munir R, Yang Z Y, Kelley S O, Amassian A, Toney M F, Sargent E H. Nat. Mater., 2018, 17(10): 900.

doi: 10.1038/s41563-018-0154-x     pmid: 30202112
[34]
Shang Q Y, Wang Y N, Zhong Y G, Mi Y, Qin L, Zhao Y F, Qiu X H, Liu X F, Zhang Q. J. Phys. Chem. Lett., 2017, 8(18): 4431.

doi: 10.1021/acs.jpclett.7b01857     URL    
[35]
Zhang J, Qin J J, Wang M S, Bai Y J, Zou H, Keum J K, Tao R M, Xu H X, Yu H M, Haacke S, Hu B. Joule, 2019, 3(12): 3061.

doi: 10.1016/j.joule.2019.09.020    
[36]
Liu T F, Jiang Y Y, Qin M C, Liu J X, Sun L L, Qin F, Hu L, Xiong S X, Jiang X S, Jiang F Y, Peng P, Jin S Y, Lu X H, Zhou Y H. Nat. Commun., 2019, 10: 878.

doi: 10.1038/s41467-019-08843-5     URL    
[37]
Caiazzo A, Datta K, Jiang J K, GÉlvez-Rueda M C, Li J Y, Ollearo R, Vicent-Luna J M, Tao S X, Grozema F C, Wienk M M, Janssen R A J. Adv. Energy Mater., 2021, 11(42): 2102144.

doi: 10.1002/aenm.202102144     URL    
[38]
Zhang X, Ren X D, Liu B, Munir R, Zhu X J, Yang D, Li J B, Liu Y C, Smilgies D M, Li R P, Yang Z, Niu T Q, Wang X L, Amassian A, Zhao K, Liu S F. Energy Environ. Sci., 2017, 10(10): 2095.

doi: 10.1039/C7EE01145H     URL    
[39]
Zhu X J, Xu Z, Zuo S N, Feng J S, Wang Z Y, Zhang X R, Zhao K, Zhang J, Liu H R, Priya S, Liu S F, Yang D. Energy Environ. Sci., 2018, 11(12): 3349.

doi: 10.1039/C8EE02284D     URL    
[40]
Passarelli J V, Mauck C M, Winslow S W, Perkinson C F, Bard J C, Sai H, Williams K W, Narayanan A, Fairfield D J, Hendricks M P, Tisdale W A, Stupp S I. Nat. Chem., 2020, 12(8): 672.

doi: 10.1038/s41557-020-0488-2     pmid: 32632185
[41]
Dong Y X, Lu D, Xu Z Y, Lai H T, Liu Y S. Adv. Energy Mater., 2020, 10(28): 2000694.

doi: 10.1002/aenm.202000694     URL    
[42]
Xi J, Spanopoulos I, Bang K, Xu J, Dong H, Yang Y G, Malliakas C D, Hoffman J M, Kanatzidis M G, Wu Z X. J. Am. Chem. Soc., 2020, 142(46): 19705.

doi: 10.1021/jacs.0c09647     URL    
[43]
Ren H, Yu S D, Chao L F, Xia Y D, Sun Y H, Zuo S W, Li F, Niu T T, Yang Y G, Ju H X, Li B X, Du H Y, Gao X Y, Zhang J, Wang J P, Zhang L J, Chen Y H, Huang W. Nat. Photonics, 2020, 14(3): 154.

doi: 10.1038/s41566-019-0572-6     URL    
[44]
Wu G B, Yang T H, Li X, Ahmad N, Zhang X N, Yue S L, Zhou J, Li Y X, Wang H, Shi X H, Liu S Z, Zhao K, Zhou H Q, Zhang Y. Matter, 2021, 4(2): 582.

doi: 10.1016/j.matt.2020.11.011     URL    
[45]
Wei Y, Chen B Q, Zhang F, Tian Y Y, Yang X C, Cai B, Zhao J J. Sol. RRL, 2021, 5(4): 2000661.

doi: 10.1002/solr.202000661     URL    
[46]
Huang Y W, Li Y H, Lim E L, Kong T F, Zhang Y, Song J, Hagfeldt A, Bi D Q. J. Am. Chem. Soc., 2021, 143(10): 3911.

doi: 10.1021/jacs.0c13087     URL    
[47]
Quan L N, Yuan M J, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H, Sargent E H. J. Am. Chem. Soc., 2016, 138(8): 2649.

doi: 10.1021/jacs.5b11740     pmid: 26841130
[48]
Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M, Snaith H J. Nat. Energy, 2017, 2(9): 17135.

doi: 10.1038/nenergy.2017.135     URL    
[49]
Ye T, Bruno A, Han G F, Koh T M, Li J, Jamaludin N F, Soci C, Mhaisalkar S G, Leong W L. Adv. Funct. Mater., 2018, 28(30): 1801654.

doi: 10.1002/adfm.201801654     URL    
[50]
Lee J W, Dai Z H, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H X, Sun P Y, Huang Y, Yang Y. Nat. Commun., 2018, 9: 3021.

doi: 10.1038/s41467-018-05454-4     URL    
[51]
Mao L L, Ke W J, Pedesseau L, Wu Y L, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G. J. Am. Chem. Soc., 2018, 140(10): 3775.

doi: 10.1021/jacs.8b00542     URL    
[52]
Li X T, Ke W J, TraorÉ B, Guo P J, Hadar I, Kepenekian M, Even J, Katan C, Stoumpos C C, Schaller R D, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(32): 12880.

doi: 10.1021/jacs.9b06398     URL    
[53]
Ke W J, Mao L L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G. Adv. Energy Mater., 2019, 9(10): 1803384.

doi: 10.1002/aenm.201803384     URL    
[54]
Yin J, Naphade R, Maity P, GutiÉrrez-Arzaluz L, Almalawi D, Roqan I S, BrÉdas J L, Bakr O M, Mohammed O F. Nat. Commun., 2021, 12: 3995.

doi: 10.1038/s41467-021-24258-7     URL    
[55]
Ahmad S, Fu P, Yu S W, Yang Q, Liu X, Wang X C, Wang X L, Guo X, Li C. Joule, 2019, 3(3): 794.

doi: 10.1016/j.joule.2018.11.026     URL    
[56]
Cohen B E, Li Y M, Meng Q B, Etgar L. Nano Lett., 2019, 19(4): 2588.

doi: 10.1021/acs.nanolett.9b00387     URL    
[57]
Li F Z, Zhang J, Jo S, Qin M C, Li Z, Liu T T, Lu X H, Zhu Z L, Jen A K Y. Small Methods, 2020, 4(5): 1900831.

doi: 10.1002/smtd.201900831     URL    
[58]
Lu D, Lv G W, Xu Z Y, Dong Y X, Ji X F, Liu Y S. J. Am. Chem. Soc., 2020, 142(25): 11114.

doi: 10.1021/jacs.0c03363     URL    
[59]
Zhang X, Yang T H, Ren X D, Zhang L, Zhao K, Liu S F. Adv. Energy Mater., 2021, 11(19): 2002733.

doi: 10.1002/aenm.202002733     URL    
[60]
Gao L L, Li X T, TraorÉ B, Zhang Y L, Fang J J, Han Y, Even J, Katan C, Zhao K, Liu S Z, Kanatzidis M G. J. Am. Chem. Soc., 2021, 143(31): 12063.

doi: 10.1021/jacs.1c03687     URL    
[61]
Cheng L, Liu Z, Li S D, Zhai Y F, Wang X, Qiao Z, Xu Q F, Meng K, Zhu Z Y, Chen G. Angew. Chem. Int. Ed., 2021, 60(2): 856.

doi: 10.1002/anie.202006970     pmid: 33021033
[62]
Su P Y, Bai L, Bi H, Liu B B, He D M, Wang W Q, Cao X B, Chen S, Lee D, Yang H, Zang Z G, Chen J Z. ACS Appl. Mater. Interfaces, 2021, 13(25): 29567.

doi: 10.1021/acsami.1c05498     URL    
[63]
Su P Y, Bai L, Bi H, Liu B B, Chen S, Lee D, Yang H, Chen C, Zang Z G, Chen J Z. J. Power Sources, 2021, 506: 230213.

doi: 10.1016/j.jpowsour.2021.230213     URL    
[64]
Soe C M M, Stoumpos C C, Kepenekian M, TraorÉ B, Tsai H, Nie W Y, Wang B H, Katan C, Seshadri R, Mohite A D, Even J, Marks T J, Kanatzidis M G. J. Am. Chem. Soc., 2017, 139(45): 16297.

doi: 10.1021/jacs.7b09096     URL    
[65]
Zhang Y L, Wang P J, Tang M C, Barrit D, Ke W J, Liu J X, Luo T, Liu Y C, Niu T Q, Smilgies D M, Yang Z, Liu Z K, Jin S Y, Kanatzidis M G, Amassian A, Liu S F, Zhao K. J. Am. Chem. Soc., 2019, 141(6): 2684.

doi: 10.1021/jacs.8b13104     URL    
[66]
Gu H, Liang C, Xia Y D, Wei Q, Liu T H, Yang Y G, Hui W, Chen H R, Niu T T, Chao L F, Wu Z H, Xie X J, Qiu J, Shao G S, Gao X Y, Xing G C, Chen Y H, Huang W. Nano Energy, 2019, 65: 104050.

doi: 10.1016/j.nanoen.2019.104050     URL    
[67]
Li P W, Liang C, Liu X L, Li F Y, Zhang Y Q, Liu X T, Gu H, Hu X T, Xing G C, Tao X T, Song Y L. Adv. Mater., 2019, 31(35): 1901966.

doi: 10.1002/adma.201901966     URL    
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[5] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[6] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[7] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[8] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[9] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[10] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[11] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[12] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[13] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.
[14] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[15] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
阅读次数
全文


摘要

二维钙钛矿光伏器件