English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 1957-1971 DOI: 10.7536/PC211129 前一篇   后一篇

• 综述 •

发光铱(Ⅲ)配合物抗肿瘤活性研究及应用

顾顺心, 姜琴*(), 施鹏飞   

  1. 江苏海洋大学环境与化学工程学院 连云港 222005
  • 收稿日期:2021-12-07 修回日期:2022-01-02 出版日期:2022-09-20 发布日期:2022-04-01
  • 作者简介:

    姜琴 主要研究方向为双光子发光材料和金属抗肿瘤药物,特别是有机无机复合的双光子发光材料的构筑与性能研究、三联吡啶类金属配合物的抗肿瘤活性研究、小分子与生物大分子的相互作用。已在Chem.Commun.,Inorg.Chem., Dalton,Coord.Chem.Rev.,等期刊上发表学术论文30篇。

  • 基金资助:
    江苏省高等教育重点学科建设基金、连云港市海燕计划、江苏省先进功能材料调控实验室开放基金(jsklfctam201808); 江苏省研究生科研创新计划(KYCX20_2950)

Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes

Shunxin Gu, Qin Jiang(), Pengfei Shi   

  1. School of Environmental and Chemical Engineering, Jiangsu Ocean University,Lianyungang 222005, China
  • Received:2021-12-07 Revised:2022-01-02 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: jiangqin@jou.edu.cn
  • Supported by:
    Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Lianyungang Petrel Project, Opening Foundation of Jiangsu Key Laboratory of Functional Control of Advanced Materials(jsklfctam201808); Jiangsu Provincial Graduate Scientific Research and Innovation Plan(KYCX20_2950)

铱(Ⅲ)配合物因其发光量子产率高且波长易调控、发光寿命长和光稳定性好的特点,在发光材料领域备受关注。铱(Ⅲ)配合物细胞渗透能力强,能靶向多种细胞组织并影响其结构和功能,表现出独特的抗肿瘤活性,是目前金属抗肿瘤药物特别是PDT光敏剂方向的研究热点。本文重点关注铱(Ⅲ)配合物的结构对其发光性能与抗肿瘤性能的影响,综述了近期铱(Ⅲ)配合物在生物成像、探针与传感、抗肿瘤诊疗等领域的研究进展,并对目前研究中存在的问题及其应用前景进行探讨和展望。

Iridium(Ⅲ) complexes have attracted much attention in the field of luminescent materials because of their high luminescence quantum yield, convenient wavelength regulation, long emission lifetime and good optical stability. Due to its strong cell permeability, Ir(Ⅲ) complex can target a variety of cell tissues and affect their structure and function, thus showing unique antitumor activity. Ir(Ⅲ) complexes have become a research hotspot in the direction of metal antitumor drugs, especially PDT photosensitizers. In this review, the structure-property relationship between the structure of Ir(Ⅲ) complexes and their luminescence and antitumor performances are summarized, the recent developments of Ir(Ⅲ) complexes in the fields of biological imaging, probes and sensors, antitumor therapy are highlighted. The scientific problems existing in the current research are discussed and future application of Ir(Ⅲ) complexes are also prospected.

Contents

1 Introduction

2 Structural modification of the Ir(Ⅲ) complexes

2.1 Mononuclear Ir(Ⅲ)complex

2.2 Multinuclear Ir(Ⅲ) complex

2.3 Macromolecular-Ir(Ⅲ) complex

3 Photophysical properties of Ir(Ⅲ) complexes

3.1 Single-photon emission of Ir(Ⅲ) complex

3.2 Two-photon emission of Ir(Ⅲ) complex

4 Biotargets for Ir(Ⅲ) complexes

4.1 Cell membrane

4.2 Cytoplasm

4.3 Cell organelle

5 Biological applications of Ir(Ⅲ) complexes

5.1 Bioimaging and biosensing

5.2 Antitumor diagnosis and therapy

6 Conclusion and outlook

()
图1 单核Ir(Ⅲ)配合物的分子结构图[14⇓⇓⇓~18]
Fig.1 Molecular structure diagram of mononuclear Ir(Ⅲ) complex[14⇓⇓⇓~18]
图2 多核Ir(Ⅲ)配合物的分子结构图[19⇓⇓⇓⇓⇓~25]
Fig.2 Molecular structure diagram of multinuclear Ir(Ⅲ) complex[19⇓⇓⇓⇓⇓~25]
图3 大分子-Ir(Ⅲ)复合物的分子结构图[26⇓⇓⇓⇓~31]
Fig.3 Structure diagram of the Ir(Ⅲ)-macromolecular hybrid[26⇓⇓⇓⇓~31]
图4 部分具有良好发光性能Ir(Ⅲ)配合物的分子结构图[32⇓⇓⇓⇓⇓⇓~39]
Fig.4 Molecular structure diagram of selected luminescent Ir(Ⅲ) complexes[32⇓⇓⇓⇓⇓⇓~39]
图5 靶向不同细胞器的Ir(Ⅲ)配合物的分子结构[43⇓⇓⇓⇓⇓⇓⇓⇓~52]
Fig.5 Molecular structure diagram of Ir(Ⅲ) complex with diverse intracellular biotarget[43⇓⇓⇓⇓⇓⇓⇓⇓~52]
图6 应用于生物传成像与传感的Ir(Ⅲ)配合物[54⇓⇓⇓⇓⇓⇓⇓⇓~63]
Fig.6 Ir(Ⅲ) complexes applied for bioimage and biosensor[54⇓⇓⇓⇓⇓⇓⇓⇓~63]
图7 应用于抗肿瘤治疗的Ir(Ⅲ)配合物[64⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~75]
Fig.7 Selected antitumot Ir(Ⅲ) complexes[64⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~75]
图8 应用于抗肿瘤治疗的Ir(Ⅲ)配合物[76⇓⇓⇓⇓⇓⇓⇓⇓~85]
Fig.8 Selected antitumot Ir(Ⅲ) complexes[76⇓⇓⇓⇓⇓⇓⇓⇓~85]
[1]
Mao H T, Li G F, Shan G G, Wang X L, Su Z M. Coord. Chem. Rev., 2020, 413: 213283.

doi: 10.1016/j.ccr.2020.213283     URL    
[2]
Colombo A, Dragonetti C, Guerchais V, Hierlinger C, Zysman-Colman E, Roberto D. Coord. Chem. Rev., 2020, 414: 213293.

doi: 10.1016/j.ccr.2020.213293     URL    
[3]
Shaikh S, Wang Y H, ur Rehman F, Jiang H, Wang X M. Coord. Chem. Rev., 2020, 416: 213344.

doi: 10.1016/j.ccr.2020.213344     URL    
[4]
Guan R L, Xie L N, Ji L N, Chao H. Eur. J. Inorg. Chem., 2020, 2020(42): 3978.

doi: 10.1002/ejic.202000754     URL    
[5]
Shi H D, Wang Y, Lin S M, Lou J X, Zhang Q L. Dalton Trans., 2021, 50(19): 6410.

doi: 10.1039/D1DT00592H     URL    
[6]
Bell J D, Murphy J A. Chem. Soc. Rev., 2021, 50(17): 9540.

doi: 10.1039/D1CS00311A     URL    
[7]
Tinker L L, Bernhard S. Inorg. Chem., 2009, 48(22): 10507.

doi: 10.1021/ic900777g     URL    
[8]
Chirdon D N, Transue W J, Kagalwala H N, Kaur A, Maurer A B, Pintauer T, Bernhard S. Inorg. Chem., 2014, 53(3): 1487.

doi: 10.1021/ic402411g     URL    
[9]
Bhat S S, Naveen S, Revankar V K, Lokanath N K, Pinjari R V, Kumbar V, Bhat K. New J. Chem., 2020, 44(40): 17442.

doi: 10.1039/D0NJ03421E     URL    
[10]
Young K J H, Yousufuddin M, Ess D H, Periana R A. Organometallics, 2009, 28(12): 3395.

doi: 10.1021/om900014h     URL    
[11]
Choi D, Kim T, Reddy S M, Kang J. Inorg. Chem. Commun., 2009, 12(1): 41.

doi: 10.1016/j.inoche.2008.10.026     URL    
[12]
Koga Y, Kamo M, Yamada Y, Matsumoto T, Matsubara K. Eur. J. Inorg. Chem., 2011, 2011(18): 2869.

doi: 10.1002/ejic.201100055     URL    
[13]
Boudreault P L T, Esteruelas M A, GÓmez-Bautista D, Izquierdo S, LÓpez A M, Oñate E, Raga E, Tsai J Y. Inorg. Chem., 2020, 59(6): 3838.

doi: 10.1021/acs.inorgchem.9b03509     URL    
[14]
He X D, Liu X C, Tang Y H, Du J Y, Tian M, Xu Z S, Liu X Y, Liu Z. Dyes Pigments, 2019, 160: 217.

doi: 10.1016/j.dyepig.2018.08.006     URL    
[15]
Liu Z, Romero-CanelÓn I, Qamar B, Hearn J M, Habtemariam A, Barry N P E, Pizarro A M, Clarkson G J, Sadler P J. Angew. Chem., 2014, 126(15): 4022.

doi: 10.1002/ange.201311161     URL    
[16]
Pracharova J, Vigueras G, Novohradsky V, Cutillas N, Janiak C, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. Chem. Eur. J., 2018, 24(18): 4607.

doi: 10.1002/chem.201705362     URL    
[17]
Jiang Q, Wang M, Yang L F, Chen H, Mao L Q. Anal. Chem., 2016, 88(20): 10322.

doi: 10.1021/acs.analchem.6b03383     pmid: 27686227
[18]
Li Y, Liu B, Lu X R, Li M F, Ji L N, Mao Z W. Dalton Trans., 2017, 46(34): 11363.

doi: 10.1039/C7DT01903C     URL    
[19]
Liu B Q, Monro S, Lystrom L, Cameron C G, ColÓn K, Yin H M, Kilina S, McFarland S A, Sun W F. Inorg. Chem., 2018, 57(16): 9859.

doi: 10.1021/acs.inorgchem.8b00789     URL    
[20]
Zhang Q, Lu X, Cao H Z, Wang H, Zhu T, Tian X H, Li D D, Zhou H P, Wu J Y, Tian Y P. ACS Appl. Bio Mater., 2020, 3(11): 8105.

doi: 10.1021/acsabm.0c01206     URL    
[21]
Na H, Song M N, Teets T S. Chem. Eur. J., 2019, 25(18): 4833.

doi: 10.1002/chem.201900167     URL    
[22]
Gupta P, Das B, Borah S T, Ganguli S. Chemistry (Weinheim an der Bergstrasse, Germany)., 2020, 0947.
[23]
Zhang C, Guan R L, Liao X X, Ouyang C, Liu J P, Ji L N, Chao H. Inorg. Chem. Front., 2020, 7(9): 1864.

doi: 10.1039/D0QI00224K     URL    
[24]
Chepelin O, Ujma J, Wu X H, Slawin A M Z, Pitak M B, Coles S J, Michel J, Jones A C, Barran P E, Lusby P J. J. Am. Chem. Soc., 2012, 134(47): 19334.

doi: 10.1021/ja309031h     pmid: 23137068
[25]
Zhu J H, Tang B Z, Lo K K W. Chem. Eur. J., 2019, 25(45): 10633.

doi: 10.1002/chem.201901029     URL    
[26]
Maggioni D, Galli M, D’Alfonso L, Inverso D, Dozzi M V, Sironi L, Iannacone M, Collini M, Ferruti P, Ranucci E, D’Alfonso G. Inorg. Chem., 2015, 54(2): 544.

doi: 10.1021/ic502378z     pmid: 25554822
[27]
Feng Z Y, Tao P, Zou L, Gao P L, Liu Y, Liu X, Wang H, Liu S J, Dong Q C, Li J, Xu B S, Huang W, Wong W Y, Zhao Q. ACS Appl. Mater. Interfaces, 2017, 9(34): 28319.

doi: 10.1021/acsami.7b09721     URL    
[28]
Zhang D Y, Zheng Y, Zhang H, Sun J H, Tan C P, He L, Zhang W, Ji L N, Mao Z W. Adv. Sci., 2018, 5(10): 1800581.

doi: 10.1002/advs.201800581     URL    
[29]
Li D, Yan X Q, Hu Y N, Liu Y, Guo R R, Liao M H, Shao B W, Tang Q L, Guo X, Chai R J, Zhang Q, Tang M L. ACS Biomater. Sci. Eng., 2019, 5(3): 1561.

doi: 10.1021/acsbiomaterials.8b01231     URL    
[30]
Chan L, Chen X D, Gao P, Xie J, Zhang Z Y, Zhao J F, Chen T F. ACS Nano, 2021, 15(2): 3047.

doi: 10.1021/acsnano.0c09454     URL    
[31]
Shen J C, Karges J, Xiong K, Chen Y, Ji L N, Chao H. Biomaterials, 2021, 275: 120979.

doi: 10.1016/j.biomaterials.2021.120979     URL    
[32]
Lai P N, Brysacz C H, Alam M K, Ayoub N A, Gray T G, Bao J M, Teets T S. J. Am. Chem. Soc., 2018, 140(32): 10198.

doi: 10.1021/jacs.8b04841     URL    
[33]
Fan C H, Sun P P, Su T H, Cheng C H. Adv. Mater., 2011, 23(26): 2981.

doi: 10.1002/adma.201100610     URL    
[34]
Shafikov M Z, Zaytsev A V, Suleymanova A F, Brandl F, Kowalczyk A, Gapińska M, Kowalski K, Kozhevnikov V N, Czerwieniec R. J. Phys. Chem. Lett., 2020, 11(15): 5849.

doi: 10.1021/acs.jpclett.0c01276     pmid: 32615767
[35]
Zhu X L, Liu B Q, Cui P, Kilina S, Sun W F. Inorg. Chem., 2020, 59(23): 17096.

doi: 10.1021/acs.inorgchem.0c02366     URL    
[36]
Bi X D, Yang R, Zhou Y C, Chen D M, Li G K, Guo Y X, Wang M F, Liu D D, Gao F. Inorg. Chem., 2020, 59(20): 14920.

doi: 10.1021/acs.inorgchem.0c01509     URL    
[37]
Wu W J, Guan R L, Liao X X, Yan X, Rees T W, Ji L N, Chao H. Anal. Chem., 2019, 91(15): 10266.

doi: 10.1021/acs.analchem.9b02415    
[38]
Jin Z H, Qi S, Guo X S, Tian N, Hou Y J, Li C, Wang X S, Zhou Q X. Chem. Commun., 2020, 56(19): 2845.

doi: 10.1039/C9CC09763E     URL    
[39]
Jin C Z, Liang F Y, Wang J Q, Wang L L, Liu J P, Liao X X, Rees T W, Yuan B, Wang H, Shen Y, Pei Z, Ji L N, Chao H. Angew. Chem. Int. Ed., 2020, 59(37): 15987.

doi: 10.1002/anie.202006964     URL    
[40]
Shi H F, Sun H B, Yang H R, Liu S J, Jenkins G, Feng W, Li F Y, Zhao Q, Liu B, Huang W. Adv. Funct. Mater., 2013, 23(26): 3268.

doi: 10.1002/adfm.201202385     URL    
[41]
Ma Y, Liu S J, Yang H R, Wu Y Q, Yang C J, Liu X M, Zhao Q, Wu H Z, Liang J C, Li F Y, Huang W. J. Mater. Chem., 2011, 21(47): 18974.

doi: 10.1039/c1jm13513a     URL    
[42]
Yasukagawa M, Yamada K, Tobita S, Yoshihara T. J. Photochem. Photobiol. A Chem., 2019, 383: 111983.

doi: 10.1016/j.jphotochem.2019.111983     URL    
[43]
Liu J P, Jin C Z, Yuan B, Chen Y, Liu X G, Ji L N, Chao H. Chem. Commun., 2017, 53(71): 9878.

doi: 10.1039/C7CC05518H     URL    
[44]
Huang H Y, Yang L, Zhang P Y, Qiu K Q, Huang J J, Chen Y, Diao J J, Liu J K, Ji L N, Long J G, Chao H. Biomaterials, 2016, 83: 321.

doi: 10.1016/j.biomaterials.2016.01.014     URL    
[45]
Liu J P, Jin C Z, Yuan B, Liu X G, Chen Y, Ji L N, Chao H. Chem. Commun., 2017, 53(12): 2052.

doi: 10.1039/C6CC10015E     URL    
[46]
Xiong K, Zhou Y, Lin X, Kou J, Lin M, Guan R, Chen Y, Ji L, Chao H. Photochem. Photobiol., 2022, 98: 85.

doi: 10.1111/php.13404     URL    
[47]
Zhang H W, Tian L, Xiao R X, Zhou Y, Zhang Y Y, Hao J, Liu Y J, Wang J P. Bioorg. Chem., 2021, 115: 105290.

doi: 10.1016/j.bioorg.2021.105290     URL    
[48]
He L, Tan C P, Ye R R, Zhao Y Z, Liu Y H, Zhao Q, Ji L N, Mao Z W. Angew. Chem., 2014, 126(45): 12333.

doi: 10.1002/ange.201407468     URL    
[49]
Wu W J, Zhang C, Rees T W, Liao X X, Yan X, Chen Y, Ji L N, Chao H. Anal. Chem., 2020, 92(8): 6003.

doi: 10.1021/acs.analchem.0c00259     URL    
[50]
Jin C Z, Li G Y, Wu X, Liu J P, Wu W J, Chen Y Z, Sasaki T, Chao H, Zhang Y. Angew. Chem. Int. Ed., 2021, 60(14): 7597.

doi: 10.1002/anie.202015913     URL    
[51]
Yuan B, Liu J P, Guan R L, Jin C Z, Ji L N, Chao H. Dalton Trans., 2019, 48(19): 6408.

doi: 10.1039/c9dt01072f     pmid: 30994678
[52]
He L, Cao J J, Zhang D Y, Hao L, Zhang M F, Tan C P, Ji L N, Mao Z W. Sens. Actuat. B Chem., 2018, 262: 313.

doi: 10.1016/j.snb.2018.02.022     URL    
[53]
Lu N, Luo Y H, Zhang Q L, Zhang P Y. Dalton Trans., 2020, 49(27): 9182.

doi: 10.1039/D0DT01444C     URL    
[54]
Han Z, Wang Y J, Chen Y C, Fang H B, Yuan H, Shi X C, Yang B, Chen Z Y, He W J, Guo Z J. Chem. Commun., 2020, 56(58): 8055.

doi: 10.1039/D0CC02328K     URL    
[55]
Zhang P Y, Chiu C K C, Huang H Y, Lam Y P Y, Habtemariam A, Malcomson T, Paterson M J, Clarkson G J, O’Connor P B, Chao H, Sadler P J. Angew. Chem. Int. Ed., 2017, 56(47): 14774.

doi: 10.1002/anie.201710973     URL    
[56]
Li G Y, Chen Y, Wang J Q, Lin Q, Zhao J, Ji L N, Chao H. Chem. Sci., 2013, 4(12): 4426.

doi: 10.1039/c3sc52301b     URL    
[57]
Li G Y, Chen Y, Wang J Q, Wu J H, Gasser G, Ji L N, Chao H. Biomaterials, 2015, 63: 128.

doi: 10.1016/j.biomaterials.2015.06.014     URL    
[58]
Liu B, Long J, Zhang M, Cheng K M, Gao X, Zhou Y B, Li Y, Tang Z L, Zhang W. J. Inorg. Biochem., 2022, 226: 111626.

doi: 10.1016/j.jinorgbio.2021.111626     URL    
[59]
Liao X X, Shen J C, Wu W J, Kuang S, Lin M W, Karges J, Tang Z L, Chao H. Inorg. Chem. Front., 2021, 8(23): 5045.

doi: 10.1039/D1QI01038G     URL    
[60]
Zhang D B, Guo Y Q, Xiao L, Pu S Z. J. Organomet. Chem., 2020, 928: 121551.

doi: 10.1016/j.jorganchem.2020.121551     URL    
[61]
Liu Y, Fan C B, Pu S Z. Microchem. J., 2020, 158: 105166.

doi: 10.1016/j.microc.2020.105166     URL    
[62]
Li Y Y, Wu Y Q, Chen L Y, Zeng H, Chen X Y, Lun W C, Fan X L, Wong W Y. J. Mater. Chem. B, 2019, 7(47): 7612.

doi: 10.1039/C9TB01673B     URL    
[63]
Carrod A J, Graglia F, Male L, Le Duff C, Simpson P, Elsherif M, Ahmed Z, Butt H, Xu G X, Kam-Wing Lo K, Bertoncello P, Pikramenou Z. Chem. -A Eur. J., 2022, 28(4): e202103541.
[64]
Ye R R, Tan C P, Ji L N, Mao Z W. Dalton Trans., 2016, 45(33): 13042.

doi: 10.1039/C6DT00601A     URL    
[65]
Yang J, Fang H J, Cao Q, Mao Z W. Chem. Commun., 2021, 57(9): 1093.

doi: 10.1039/D0CC07104H     URL    
[66]
Huang C, Liang C, Sadhukhan T, Banerjee S, Fan Z X, Li T X, Zhu Z L, Zhang P Y, Raghavachari K, Huang H Y. Angew. Chem. Int. Ed., 2021, 60(17): 9474.

doi: 10.1002/anie.202015671     URL    
[67]
Wang L L, Guan R L, Xie L N, Liao X X, Xiong K, Rees T W, Chen Y, Ji L N, Chao H. Angew. Chem. Int. Ed., 2021, 60(9): 4657.

doi: 10.1002/anie.202013987     URL    
[68]
Yang Y L, Guo L H, Tian Z Z, Ge X X, Gong Y T, Zheng H M, Shi S P, Liu Z. Organometallics, 2019, 38(8): 1761.

doi: 10.1021/acs.organomet.9b00080     URL    
[69]
Du F, Bai L, He M, Zhang W Y, Gu Y Y, Yin H, Liu Y J. J. Inorg. Biochem., 2019, 201: 110822.

doi: 10.1016/j.jinorgbio.2019.110822     URL    
[70]
Zhang Y Y, Fei W D, Zhang H W, Zhou Y, Tian L, Hao J, Yuan Y H, Li W L, Liu Y J. J. Inorg. Biochem., 2021, 225: 111622.

doi: 10.1016/j.jinorgbio.2021.111622     URL    
[71]
Kozieł S A, LesiÓw M K, Wojtala D, Dyguda-Kazimierowicz E, Bieńko D, Komarnicka U K. Pharmaceuticals, 2021, 14(7): 685.

doi: 10.3390/ph14070685     URL    
[72]
Ye R R, Peng W, Chen B C, Jiang N, Chen X Q, Mao Z W, Li R T. Metallomics, 2020, 12(7): 1131.

doi: 10.1039/d0mt00060d     URL    
[73]
Liu X C, Hao H L, Ge X X, He X D, Liu Y F, Wang Y, Wang H J, Shao M X, Jing Z H, Tian L J, Liu Z. J. Inorg. Biochem., 2019, 199: 110757.

doi: 10.1016/j.jinorgbio.2019.110757     URL    
[74]
Ma W L, Ge X X, Xu Z S, Zhang S M, He X D, Li J J, Xia X R, Chen X B, Liu Z. ACS Omega, 2019, 4(12): 15240.

doi: 10.1021/acsomega.9b01863     URL    
[75]
Liu X C, He X D, Zhang X J, Wang Y L, Liu J Y, Hao X J, Zhang Y, Yuan X A, Tian L J, Liu Z. ChemBioChem, 2019, 20(21): 2767.

doi: 10.1002/cbic.201900268     URL    
[76]
Boreham E M, Jones L, Swinburne A N, Blanchard-Desce M, Hugues V, Terryn C, Miomandre F, Lemercier G, Natrajan L S. Dalton Trans., 2015, 44(36): 16127.

doi: 10.1039/C5DT01855B     URL    
[77]
Bi X D, Yang R, Zhou Y C, Chen D M, Li G K, Guo Y X, Wang M F, Liu D D, Gao F. Inorg. Chem., 2020, 59(20): 14920.

doi: 10.1021/acs.inorgchem.0c01509     URL    
[78]
Lu C F, Xu W, Shah H, Liu B Q, Xu W, Sun L Y, Qian S Y, Sun W F. ACS Appl. Bio Mater., 2020, 3(10): 6865.

doi: 10.1021/acsabm.0c00784     URL    
[79]
Nam J S, Kang M G, Kang J, Park S Y, Lee S J C, Kim H T, Seo J K, Kwon O H, Lim M H, Rhee H W, Kwon T H. J. Am. Chem. Soc., 2016, 138(34): 10968.

doi: 10.1021/jacs.6b05302     URL    
[80]
Guo S, Han M P, Chen R Z, Zhuang Y L, Zou L, Liu S J, Huang W, Zhao Q. Sci. China Chem., 2019, 62(12): 1639.

doi: 10.1007/s11426-019-9583-4     URL    
[81]
Bevernaegie R, Doix B, Bastien E, Diman A, Decottignies A, Feron O, Elias B. J. Am. Chem. Soc., 2019, 141(46): 18486.

doi: 10.1021/jacs.9b07723     pmid: 31644286
[82]
Kuang S, Sun L L, Zhang X R, Liao X X, Rees T W, Zeng L L, Chen Y, Zhang X T, Ji L N, Chao H. Angew. Chem. Int. Ed., 2020, 59(46): 20697.

doi: 10.1002/anie.202009888     URL    
[83]
Lu H, Jiang X P, Chen Y Y, Peng K, Huang Y M, Zhao H, Chen Q, Lv F T, Liu L B, Wang S, Ma Y G. Nanoscale, 2020, 12(26): 14061.

doi: 10.1039/d0nr03398g     pmid: 32582896
[84]
Wang K N, Liu L Y, Qi G B, Chao X J, Ma W, Yu Z Q, Pan Q L, Mao Z W, Liu B. Adv. Sci., 2021, 8(8): 2004379.

doi: 10.1002/advs.202004379     URL    
[85]
Yuan H, Han Z, Chen Y C, Qi F, Fang H B, Guo Z J, Zhang S R, He W J. Angew. Chem. Int. Ed., 2021, 60(15): 8174.

doi: 10.1002/anie.202014959     pmid: 33656228
[1] 唐会, 李海蓉, 刘小春, 张亚会, 王周玉, 余孝其. 近红外二区发射AIE材料光动力-光热双模式协同治疗[J]. 化学进展, 2023, 35(9): 1399-1414.
[2] 包予晗, 郭子峰, 李金涛, 张明祖, 何金林, 倪沛红. 基于阿霉素纳米共递体系的抗肿瘤联合治疗[J]. 化学进展, 2023, 35(8): 1123-1135.
[3] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[4] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[5] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[6] 谭晓晓, 李国帅, 王庆鹏, 王炳全, 李大成, 王鹏. 作为抗肿瘤药物的小分子四价铂[J]. 化学进展, 2018, 30(6): 831-846.
[7] 何良, 谭彩萍, 曹乾, 毛宗万. 磷光环金属化铱(Ⅲ)配合物在癌症治疗方面的应用[J]. 化学进展, 2018, 30(10): 1548-1556.
[8] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.
[9] 郑小辉, 夏立新, 毛宗万. 基于核酸修饰新策略的抗肿瘤铂配合物设计[J]. 化学进展, 2016, 28(7): 1029-1038.
[10] 叶霁青, 岳晓虹, 孙丽萍. 小分子IL-6/STAT3信号通路抑制剂[J]. 化学进展, 2016, 28(7): 1099-1111.
[11] 姜玲, 阙亚萍, 丁勇, 胡林华, 张昌能, 戴松元. 上/下转换材料在染料敏化太阳电池中的应用进展[J]. 化学进展, 2016, 28(5): 637-646.
[12] 李思迪, 侯信, 亓洪昭, 赵瑾, 原续波. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2/3): 353-362.
[13] 王家敏, 史蕾, 刘海洋. 咔咯及其金属配合物与DNA的作用和抗肿瘤活性[J]. 化学进展, 2015, 27(6): 755-762.
[14] 苏玉苗, 林海娟, 李文木. 咔唑及其衍生物在蓝光OLED中的应用[J]. 化学进展, 2015, 27(10): 1384-1399.
[15] 李晓晖*, 黄美玲, 刘丽娜, 王燕云. 环肽类组蛋白去乙酰化酶抑制剂[J]. 化学进展, 2014, 26(09): 1527-1536.