English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1906-1914 DOI: 10.7536/PC130332 前一篇   后一篇

• 综述与评论 •

生物质基乙酰丙酸选择性还原制备新型平台化合物γ-戊内酯

唐兴, 胡磊, 孙勇*, 曾宪海, 林鹿*   

  1. 厦门大学能源研究院 厦门 361005
  • 收稿日期:2013-03-01 修回日期:2013-07-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 孙勇, 林鹿 E-mail:sunyong@xmu.edu.cn;lulin@xmu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2010CB732201)、国家自然科学基金项目(No. 201106121)、中央高校基本业务费专项资金项目(No. 2010121077)和厦门大学研究生基础创新基金(No. 201212G006)资助

Conversion of Biomass to Novel Platform Chemical γ-Valerolactone by Selective Reduction of Levulinic Acid

Tang Xing, Hu Lei, Sun Yong*, Zeng Xianhai, Lin Lu*   

  1. School of Energy Research, Xiamen University, Xiamen 361005, China
  • Received:2013-03-01 Revised:2013-07-01 Online:2013-11-15 Published:2013-09-12

生物质是唯一能替代化石资源转化得到液体燃料及化学品的可再生资源,近年来,催化转化生物质制备各种平台化合物的研究受到了人们越来越广泛的关注。和乙酰丙酸(LA)一样,γ-戊内酯(GVL)也被认为是一种具有广泛应用潜能的新型生物质基平台化合物。目前,人们已经开发出多种催化剂和反应体系用于催化生物质基LA选择性还原制备GVL。根据氢源的不同可将LA制备GVL的途径概括为4种:分别以分子H2、甲酸(FA)、合成气和醇类作为氢源的途径。本文着重从氢源的差异来归纳和总结生物质基LA选择性还原制备GVL的途径及其研究进展,以期为寻找一种高效、经济、环保的GVL合成途径提供一些思路和参考。

Biomass is the only renewable resources on the earth that can be converted to liquid fuels and chemicals to replace fossil resources. Recently, the catalytic conversion of biomass to platform molecules has attracted more and more attentions from the researchers worldwide. γ-Valerolactone (GVL) is regarded as a platform molecule that has extensive application potential, similar to levulinic acid (LA). Up to now, various of catalysts and reaction systems were developed and applied to the selective reduction of biomass-derived LA to GVL, and the hydrogenation of LA can be driven by various hydrogen sources, including molecule H2, formic acid (FA), syngas and alcohols. In this review, the catalytic hydrogenation routes and recent research progress for the reduction of LA are systematically summarized in view of the diversity of hydrogen sources. The future research trends of the selective reduction of LA to GVL are suggested.

Contents
1 Introduction
2 Catalytic hydrogenation mechanism of LA to GVL
3 Production of GVL using external molecule H2 as a hydrogen source
3.1 Heterogeneous catalytic systems
3.2 Homogeneous catalytic systems
4 Production of GVL using FA as a hydrogen source
5 Production of GVL using syngas as a hydrogen source
6 Production of GVL using alcohols as a hydrogen donor
7 Conclusion and outlook

中图分类号: 

()

[1] 袁振宏 (Yuan Z H), 罗文 (Luo W), 吕鹏梅 (Lv P M), 王忠铭 (Wang Z M), 李惠文 (Li H W). 化工进展 (Chemical Industry and Engineering Progress), 2009, 28 (10): 1687—1692
[2] Field C B, Campbell J E, Lobell D B. Trends Ecol. Evol., 2008, 23: 65—72
[3] 方向晨 (Fang X C). 化工进展 (Chemical Industry and Engineering Progress), 2011, 30 (11): 2333—2339
[4] Fischer G, Schrattenholzer L. Biomass Bioenergy, 2001, 20: 151—159
[5] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106: 4044—4098
[6] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107: 2411—2502
[7] 林鹿 (Lin L), 何北海 (He B H), 孙润仓 (Sun R C), 胡若飞 (Hu R F). 化学进展 (Progress in Chemistry), 2007, 19 (7/8): 1206—1216
[8] 王泽 (Wang Z), 林伟刚 (Lin W G), 宋文立 (Song W L), 姚建中 (Yao J Z), 鲁长波 (Lu C B), 都林 (Du L). 化学进展 (Progress in Chemistry), 2007, 19 (7/8): 1190—1197
[9] 余强 (Yu Q), 庄新姝 (Zhuang X S), 袁振宏 (Yuan Z H), 亓伟 (Qi W), 王琼 (Wang Q), 谭雪松 (Tan X S), 许敬亮 (Xu J L), 张宇 (Zhang Y), 徐慧娟 (Xu H J), 马隆龙 (Ma L L). 化工进展 (Chemical Industry and Engineering Progress), 2012, 31 (4): 784—791
[10] Rackemann D W, Doherty W O S. Biofuels, Bioprod. Biorefin., 2011, 5: 198—214
[11] 彭红 (Peng H), 刘玉环 (Liu Y H), 张锦胜 (Zhang J S), 阮榕生 (Ruan R S). 化工进展 (Chemical Industry and Engineering Progress), 2009, 28 (12): 2237—2241
[12] 彭林才 (Peng L C), 林鹿 (Lin L), 李辉 (Li H). 化学进展 (Progress in Chemistry), 2012, 24 (5): 801—809
[13] Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S J. RSC Advances, 2012, 2: 11184—11206
[14] 胡磊 (Hu L), 孙勇 (Sun Y), 林鹿 (Lin L). 化学进展 (Progress in Chemistry), 2012, 24 (4): 483—491
[15] Horváth I T, Mehdi H, Fábos V, Boda L, Mika L T. Green Chem., 2008, 10: 238—242
[16] Kamm B. Angew. Chem. Int. Ed., 2007, 46: 5056—5058
[17] Oser B L, Carson S, Oser M. Food Cosmet. Toxicol., 1965, 3: 563—569
[18] Cannon G W, Casler J J Jr, Gaines W A. J. Org. Chem., 1952, 17: 1245—1251
[19] Bond J Q, Alonso D M, West R M, Dumesic J A. Langmuir, 2010, 26: 16291-16298
[20] Fegyverneki D, Orha L, Láng G, Horváth I T. Tetrahedron, 2010, 66: 1078—1081
[21] Chalid M, Heeres H J, Broekhuis A A. J. Appl. Polym. Sci., 2012, 123: 3556—3564
[22] Bruno T J, Wolk A, Naydich A. Energy Fuels, 2010, 24: 2758—2767
[23] Alonso D M, Bond J Q, Serrano-Ruiz J C, Dumesic J A. Green Chem., 2010, 12: 992—999
[24] Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327: 1110—1114
[25] Mosby W L. J. Am. Chem. Soc., 1952, 74: 2564—2569
[26] Mosby W L. J. Org. Chem., 1953, 18: 964—970
[27] Mosby W L. J. Org. Chem., 1954, 19: 294—304
[28] Lee C W, Urakawa R, Kimura Y. Eur. Polym. J., 1998, 34: 117—122
[29] Manzer L E. Appl. Catal. A, 2004, 272: 249—256
[30] Lange J P, Vestering J Z, Haan R J. Chem. Commun., 2007, 3488—3490
[31] Schuette H A, Thomas R W. J. Am. Chem. Soc., 1930, 52: 3010—3012
[32] Kyrides L P, Craver J K. US 2368366, 1945
[33] Christian R V Jr, Brown H D, Hixon R M. J. Am. Chem. Soc., 1947, 69: 1961—1963
[34] Dunlop A P, Madden J W. US 2786852, 1957
[35] Broadbent H S, Campbell G C, Bartley W J, Johnson J H. J. Org. Chem., 1959, 24: 1847—1854
[36] Yan Z P, Lin L, Liu S. Energy Fuels, 2009, 23: 3853—3858
[37] Al-Shaal M G, Wright W R H, Palkovits R. Green Chem., 2012, 14: 1260—1263
[38] Primo A, Concepcion P, Corma A. Chem. Commun., 2011, 47: 3613—3615
[39] Ortiz-Cervantes C, García J J. Inorg. Chim. Acta, 2013, 397: 124—128
[40] Raspolli-Galletti A M, Antonetti C, De Luise V, Martinelli M. Green Chem., 2012, 14: 688—694
[41] Raspolli-Galletti A M, Antonetti C, Ribechini E, Colombini M P, Di Nasso N D O, Bonari E. Appl. Energy, 2013, 102: 157—162
[42] Hengne A M, Rode C V. Green Chem., 2012, 14: 1064—1072
[43] Heeres H, Handana R, Chunai D, Borromeus R C, Girisuta B, Heeres H J. Green Chem., 2009, 11: 1247—1255
[44] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 4632—4634
[45] Selva M, Gottardo M, Perosa A. ACS Sustainable Chem. Eng., 2013, 1: 180—189
[46] Alonso D M, Wettstein S G, Bond J Q, Root T W, Dumesic J A. ChemSusChem, 2011, 4: 1078—1081
[47] Wettstein S G, Bond J Q, Alonso D M, Pham H N, Datye A K, Dumesic J A. Appl. Catal. B, 2012, 117/118: 321—329
[48] Azadi P, Carrasquillo-Flores R, Pagán-Torres Y J, Gürbüz E I, Farnood R, Dumesic J A. Green Chem., 2012, 14: 1573—1576
[49] Upare P P, Lee J M, Hwang D W, Halligudi S B, Hwang Y K, Chang J S. J. Ind. Eng. Chem., 2011, 17: 287—292
[50] Braca G, Galletti A M R, Sbrana G. J. Organomet. Chem., 1991, 417: 41—49
[51] Starodubtseva E V, Turova O V, Vinogradov M G, Gorshkova L S, Ferapontov V A. Russ. Chem. Bull., 2005, 54: 2374—2378
[52] Mehdi H, Fábos V, Tuba R, Bodor A, Mika L T, Horváth I T. Top. Catal., 2008, 48: 49—54
[53] Delhomme C, Schaper L A, Zhang-Pree M, Raudaschl-Sieber G, Weuster-Botz D, Kühn F E. J. Organomet. Chem., 2013, 724: 297—299
[54] Tukacs J M, Király D, Strádi A, Novodárszki G, Eke Z, Dibó G, Kégl T, Mika L T. Green Chem., 2012, 14: 2057—2065
[55] Chalid M, Broekhuis A A, Heeres H J. J. Mol. Catal. A: Chem., 2011, 341: 14—21
[56] Li W, Xie J H, Lin H, Zhou Q L. Green Chem., 2012, 14: 2388—2390
[57] Laurenczy G, Grasemann M. Energy Environ. Sci., 2012, 5: 8171—8181
[58] Johnson T C, Morris D J, Wills M. Chem. Soc. Rev., 2010, 39: 81—88
[59] Gu X, Lu Z H, Jiang H L, Akita T, Xu Q. J. Am. Chem. Soc., 2011, 133: 11822—11825
[60] Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84: 339—349
[61] Weingarten R, Cho J, Xing R, Conner W C, Huber G W. ChemSusChem, 2012, 5: 1280—1290
[62] Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew. Chem. Int. Ed., 2009, 48: 6529—6532
[63] Du X L, He L, Zhao S, Liu Y M, Cao Y, He H Y, Fan K N. Angew. Chem. Int. Ed., 2011, 50: 7815—7819
[64] Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo Q X. ChemSusChem, 2010, 3: 1172—1175
[65] Stratakis M, Garcia H. Chem. Rev., 2012, 112: 4469—4506
[66] Zhang Y, Cui X, Shi F, Deng Y. Chem. Rev., 2012, 112: 2467—2505
[67] Bi Q Y, Du X L, Liu Y M, Cao Y, He H Y, Fan K N. J. Am. Chem. Soc., 2012, 134: 8926—8933
[68] Du X L, Bi Q Y, Liu Y M, Cao Y, Fan K N. ChemSusChem, 2011, 4: 1838—1843
[69] Yu L, Du X L, Yuan J, Liu Y M, Cao Y, He H Y, Fan K N. ChemSusChem, 2013, 6: 42—46
[70] Kopetzki D, Antonietti M. Green Chem., 2010, 12: 656—660
[71] Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina C D. Angew. Chem. Int. Ed., 2007, 46: 4434—4440
[72] Yung M M, Jablonski W S, Magrini-Bair K A. Energy Fuels, 2009, 23: 1874—1887
[73] Ruiz J R, Jiménez-Sanchidrián C. Cur. Org. Chem., 2007, 11: 1113—1125
[74] Graauw C F D, Peters J A, Bekkum H V, Huskens J. Synthesis, 1994, 10: 1007—1017
[75] Chia M, Dumesic J A. Chem. Commun., 2011, 47: 12233—12235
[76] Tanabe K, Yamaguchi T. Catal. Today, 1994, 20: 185—198
[77] Liu S H, Jaenicke S, Chuah G K. J. Catal., 2002, 206: 321—330
[78] Zhu Y. J. Catal., 2003, 218: 396—404
[79] Zhu Y, Liu S, Jaenicke S, Chuah G. Catal. Today, 2004, 97: 249—255
[80] Miambres J F, Aramendía M A, Marinas A, Marinas J M, Urbano F J. J. Mol. Catal. A: Chem., 2011, 338: 121—129

[1] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[2] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[3] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[4] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[5] 钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛. 生物质基分子水相催化加氢反应及多相催化剂[J]. 化学进展, 2019, 31(8): 1075-1085.
[6] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[7] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424-1433.
[8] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[9] 魏珺楠, 唐兴, 孙勇, 曾宪海, 林鹿. 新型生物质基平台分子γ-戊内酯的应用[J]. 化学进展, 2016, 28(11): 1672-1681.
[10] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[11] 潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541.
[12] 郭肖, 颜雅妮, 张亚红, 唐颐. 生物质衍生糖多相催化转化[J]. 化学进展, 2013, 25(11): 1915-1927.
[13] 张淑芳, 白赢, 彭家建, 胡应乾*, 来国桥*. 聚苯乙烯固载过渡金属催化剂在硅氢加成和加氢反应中的应用[J]. 化学进展, 2013, 25(05): 707-716.
[14] 张家仁, 邓甜音, 刘海超*. 油脂和木质纤维素催化转化制备生物液体燃料[J]. 化学进展, 2013, 25(0203): 192-208.
[15] 陈洪章*, 彭小伟. 汽爆技术促进中药资源高值化利用[J]. 化学进展, 2012, (9): 1857-1864.