English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 707-716 DOI: 10.7536/PC120935 前一篇   后一篇

• 综述与评论 •

聚苯乙烯固载过渡金属催化剂在硅氢加成和加氢反应中的应用

张淑芳, 白赢, 彭家建, 胡应乾*, 来国桥*   

  1. 杭州师范大学有机硅化学及材料技术教育部重点实验室 杭州 310012
  • 收稿日期:2012-09-01 修回日期:2012-11-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 胡应乾, 来国桥 E-mail:yingqianhu@hznu.edu.cn;gqlai@hznu.edu.cn
  • 基金资助:

    浙江省钱江人才计划项目(No. 2009R10021)和杭州市科技计划项目(No. 20090231T01)资助

Application of Polystyrene Immobilized Transition Metals as Catalysts for Hydrosilylation and Hydrogenation

Zhang Shufang, Bai Ying, Peng Jiajian, Hu Yingqian*, Lai Guoqiao*   

  1. Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China
  • Received:2012-09-01 Revised:2012-11-01 Online:2013-05-24 Published:2013-04-15

聚苯乙烯树脂具有优良的物理化学性能,其与过渡金属的络合物在硅氢加成和催化加氢反应中得到了广泛应用,表现出良好的催化活性、反应选择性和重复使用性能,具有均相催化剂和其他固载型催化剂不具备的优势。利用含配位基团的化合物对聚苯乙烯改性后,可显著提高对金属的配位能力以及催化剂的稳定性,也往往表现出更好的催化性能。鉴于近年来聚苯乙烯固载的过渡金属催化剂在硅氢加成和催化加氢反应中的研究较为引人注目,本文对该类催化剂的制备方法、催化性能及相关机理进行了总结和分析。首先介绍了经胺、膦、巯基、不饱和烃等改性的聚苯乙烯固载的过渡金属催化剂在硅氢加成反应中的应用,其次介绍了聚苯乙烯固载的铂、钯、铑、钌、纳米金、铬、双金属胶体等在催化加氢反应中的应用,重点介绍了聚苯乙烯树脂与金属钯、铑的固载型催化剂,最后对该类催化剂的发展方向进行了分析和展望。

Polystyrene resin has been widely employed as carriers of transition metals due to its excellent physical and chemical properties. The obtained polystyrene-immobilized transition metal complexes generally exhibit high catalytic activity, enhanced reaction selectivity and good reusability, and thus have been attracting great attention for improving the efficiency of hydrosilylation and hydrogenation reactions in recent years. In addition, modifying polystyrene by coordinating-group-containing compounds could significantly enhance the coordination ability to metal ions. Consequently, the resultant catalysts usually provide better catalytic performance. In view of this, the current review summarizes the novel progress for the synthesis and application of polystyrene-immobilized transition metal complexes as catalysts in hydrosilylation and hydrogenation. The preparation method, catalytic performance and the related mechanism are introduced. Firstly, the amine-, phosphine-, mercapto groups-, and unsaturated hydrocarbon-modified polystyrene immobilized transition metals for catalytic hydrosilylation are described. Secondly, polystyrene immobilized transition metals (including Pt, Pd, Rh, Ru, Au nanoparticles, Cr, etc.) for catalytic hydrogenation are described, with the emphasis on the complexes of Pd and Rh. At last, the development trend of this kind of catalysts is suggested. Contents
1 Introduction
2 Application of polystyrene immobilized transition metals as catalysts for hydrosilylation
2.1 Polystyrene immobilized transition metal catalysts modified by amine
2.2 Polystyrene immobilized transition metal catalysts modified by phosphine
2.3 Polystyrene immobilized transition metal catalysts modified by mercapto groups
2.4 Polystyrene immobilized transition metal catalysts modified by unsaturated hydrocarbon
2.5 Others
3 Application of polystyrene immobilized transition metals as catalysts for hydrogenation
3.1 Polystyrene-Pt catalysts
3.2 Polystyrene-Pd catalysts
3.3 Polystyrene-Rh catalysts
3.4 Polystyrene-Ru catalysts
3.5 Polystyrene-Au catalysts
3.6 Polystyrene-Cr catalysts
3.7 Polystyrene-Au/Pd catalysts
4 Conclusion and outlook

中图分类号: 

()

[1] Capka M, Svoboda P, Cerny M. Tetrahed. Lett., 1971, 12(50): 4787-4790
[2] Capka M, Svoboda P, Kraus M. Chem. Ind., 1972, (16): 650
[3] Drake R, Dunn R, Sherrington D C, Thomson S J. Chem. Commun., 2000, (19): 1931-1932
[4] Drake R, Dunn R, Sherrington D C, Thomson S J. J. Mol. Catal. A: Chem., 2001, 177(1): 49-69
[5] Drake R, Sherrington D C, Thomson S J. J. Chem. Soc. Perkin Trans., 2002, (13): 1523-1534
[6] Drake R, Sherrington D C, Thomson S J. React. Funct. Polym., 2004, 60: 65-75
[7] 戴延凤(Dai Y F), 李磊(Li L), 李凤仪(Li F Y). 化工进展(Chemical Industry and Engineering Progress), 2006, 25(1): 74-77
[8] Cullen W R, Han N F. J. Organometal. Chem., 1987, 333(2): 269-280
[9] Dumont W, Paulin J C, Dang T P. J. Am. Chem. Soc., 1973, 95(25): 8295-8299
[10] 阚成友(Kan C Y), 袁青(Yuan Q), 杨勇(Yang Y), 孔祥正(Kong X Z). 高等学校化学学报(Chemical Journal of Chinese Universities), 1995, 16(11): 1806-1809
[11] Kan C Y, Yuan Q, Luo A G, Kong X Z. Polym. Adv. Techn., 1996, 7(2): 76-78
[12] Kan C Y, Du C M, Kong X Z. Polym. J., 2002, 34(3): 97-102
[13] 洪曼青(Hong M Q), 杜池敏(Du C M), 赵培真(Zhao P Z), 孔祥正(Kong X Z), 阚成友(Kan C Y). 有机硅材料(Silicone Material), 2000, 14(2): 10-13
[14] 阚成友(Kan C Y), 袁青(Yuan Q), 王颖(Wang Y), 贝小来(Bei X L). 有机硅材料及应用(Silicone Material & Applications), 1995, (2): 16-17
[15] 阚成友(Kan C Y), 杜池敏(Du C M), 刘德山(Liu D S). 有机硅材料(Silicone Material), 2002, 16(1): 1-4
[16] Kishi K, Ishimaru T, Ozono M, Tomita I, EdnoT. J. Polym. Sci. Part A: Polym. Chem., 2000, 38(1): 35-42
[17] Kowalewska A. J. Organometal. Chem., 2008, 693(12): 2193-2199
[18] Wawrzyńczak A, Dutkiewicz M, Guliński J, Maciejewski H, Marciniec B, Fiedorow R. Catalysis Today, 2011, 169(1): 69-74
[19] 陈远荫(Chen Y Y), 张宝莲(Zhang B L), 唐星华(Tang X H), 卢雪然(Lu X R). 离子交换与吸附(Ion Exchange and Adsorption), 1998, 14(3): 246-249
[20] 陈远荫(Chen Y Y), 孟令芝(Meng L Z), 柯爱青(Ke A Q). 催化学报(Chinese Journal of Catalysis), 1997, 18(2): 144-146
[21] 孟令芝(Meng L Z), 柯爱青(Ke A Q), 陈远荫(Chen Y Y). 应用化学(Chinese Journal of Applied Chemistry), 1997, 14(1): 107-109
[22] Török B, Kulkarni A, Sousa R D, Satuluri K, Török M, Prakash G K S. Catal. Lett., 2011, 141(10): 1435-1441
[23] Chen C W, Serizawa T, Akashi M. Chem. Mater., 1999, 11(5): 1381-1389
[24] Bhaduri S, Darshane V S, Sharmab K, Mukesh D. Chem. Commun., 1992, (23): 1738-1740
[25] Bykov A, Matveeva V, Sulman M, Valetskiy P, Tkachenko O, Kustov L, Bronstein L, Sulman E. Catalysis Today, 2009, 140(1/2): 64-69
[26] Andersson C, Larsson R. J. Am. Oil Chem. Soc., 1981, 58(6): 675-680
[27] Jo Y D, Ahn J H, Ihm S K. Korean J. Chem. Eng., 1997, 14(2): 125-128
[28] Alexander S, Udayakumar V, Gayathri V. Transition Met. Chem., 2012, 37(4): 367-372
[29] Nakao R, Rhee H, Uozumi Y. Org. lett., 2005, 7(1): 163-165
[30] 杨士勇(Yang S Y), 孙君坦(Sun J T), 李弘(Li H), 何炳林(He B L). 高分子学报(Acta Polymerica Sinica), 1989, (5): 572-578
[31] 胡卫兵(Hu W B), 周忠信(Zhou Z X), 李翔(Li X), 张曼征(Zhang M Z). 离子交换与吸附(Ion Exchange and Adsorption), 1995, 11(2): 117-121
[32] 何炳林(He B L), 王俐(Wang L). 高分子学报(Acta Polymerica Sinica), 1990, (1): 30-35
[33] 何炳林(He B L), 王俐(Wang L). 高分子学报(Acta Polymerica Sinica), 1987, (5): 404-408
[34] 潘才元(Pan C Y), 冯品珍(Feng P Z), 梁冰玉(Liang B Y). 催化学报(Chinese Journal of Catalysis), 1981, 2(2): 152-155
[35] 茅素芬(Mao S F), 陈宗翰(Chen Z H), 江英彦(Jiang Y Y). 西安交通大学学报(Journal of Xi’an Jiaotong University), 1989, 23(2): 113-120
[36] 张一平(Zhang Y P), 徐筠(Xu J), 廖世健(Liao S J), 袁华先(Yuan H X), 李悟崇(Li W C). 分子催化(Journal of Molecular Catalysis), 1991, 5(4): 362-366
[37] Sulman E, Bodrova Y, Matveeva V, Semagina N, Cerveny L, Kurtc V, Bronstein L, Platonova O, Valetsky P. Appl. Catal. A: General, 1999, 176(1): 75-81
[38] Bombi G, Lora S, Zancato M, D’Archivio A A, Jerabek K, Corain B. J. Mol. Catal. A: Chem., 2003, 194(1/2): 273-281
[39] Semikolenov V A, Likholobov V A, Valentini G, Braca G, Ciardelli F. React. Kinet. Catal. Lett., 1980, 15(3): 383-388
[40] Heldal J A, Moulton K J, Frankel E N. J. Am. Oil Chem. Soc., 1989, 66(7): 979-982
[41] Kaneda K, Terasawa M, Imanaka T, Teranishi S. Chem. Lett., 1976, 5(9): 995-998
[42] Kaneda K, Mizugaki T. Organometallics, 1996, 15(15): 3247-3249
[43] Krause H W. React. Kinet. Catal. Lett., 1979, 10(3): 243-246
[44] Parameswaran V R, Vancheesan S. React. Kinet. Catal. Lett., 1991, 44(1): 185-190
[45] Parameswaran V R, Vancheesan S. React. Kinet. Catal. Lett., 1991, 45(1): 55-60
[46] Parameswaran V R, Vancheesan S. Proc. Indian Acad. Sci. (Chem. Sci. ), 1991, 103(2): 99-106
[47] Bhaduri S, Lahiri G K, Munshi P. J. Organometal. Chem., 2000, 606(2): 151-155
[48] Nunes R M D, Fernandes T F, Carvalho G A, Santos E N, Moreno M J S M, Piedade A P, Pereira M M. J. Mol. Catal. A: Chem., 2009, 307(1/2): 115-120
[49] Norma A C, Gerardo A, Miguel P H, Ratnasamy S. Tetrahed. Lett., 2009, 50(19): 2228-2231
[50] Fish R H, Thormondsen A D, Heinemann H. J. Mol. Catal., 1985, 31(2): 191-198
[51] Itsuno S, Tsuji A, Takahashi M. Tetrahed. Lett., 2003, 44(19): 3825-3828
[52] Islam S M, Tuhina K, Mubarak M, Mondal P. J. Mol. Catal. A: Chem., 2009, 297(1): 18-25
[53] Arakawa Y, Haraguchi N, Itsuno S. Tetrahed. Lett., 2006, 47(19): 3239-3243
[54] Takahashi Y, Yukita W, Chatterjee M, Suzuki T M. React. Funct. Polym., 2008, 68(10): 1476-1482
[55] Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh S K, Pal T. J. Phys. Chem. C, 2007, 111(12): 4596-4605
[56] Pittman C U J, Kim B T, Douglas W M. J. Org. Chem., 1975, 40(5): 590-593
[57] Seregina M V, Bronstein L M, Platonova O A, Chernyshov D M, Valetsky P M. Chem. Mater., 1997. 9(4): 923-931

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.