English
新闻公告
More
化学进展 2022, Vol. 34 Issue (1): 131-141 DOI: 10.7536/PC201242 前一篇   后一篇

• 综述 •

催化转化呋喃类生物质制备芳香烃化合物的研究

曾滴1,2, 刘雪晨1, 周沅逸1,2, 王海鹏1,2, 张玲1,2,*(), 王文中1,2,3,*()   

  1. 1 中国科学院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室 上海 200050
    2 中国科学院大学材料科学与光电工程中心 北京 100049
    3 中国科学院大学杭州高等研究院 化学与材料科学学院 杭州 310024
  • 收稿日期:2020-12-25 修回日期:2021-02-03 出版日期:2022-01-20 发布日期:2021-03-04
  • 通讯作者: 张玲, 王文中
  • 基金资助:
    国家自然科学基金项目(51972327); 国家自然科学基金项目(51772312); 国家自然科学基金项目(51961165107)

Renewable Aromatic Production from Biomass-Derived Furans

Di Zeng1,2, Xuechen Liu1, Yuanyi Zhou1,2, Haipeng Wang1,2, Ling Zhang1,2(), Wenzhong Wang1,2,3()   

  1. 1 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050, China
    2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
    3 School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310024, China
  • Received:2020-12-25 Revised:2021-02-03 Online:2022-01-20 Published:2021-03-04
  • Contact: Ling Zhang, Wenzhong Wang
  • Supported by:
    National Natural Science Foundation of China(51972327); National Natural Science Foundation of China(51772312); National Natural Science Foundation of China(51961165107)

芳香烃化合物是一类与人类生产生活密切相关的重要有机化工原料。基于石油资源的日益枯竭及其生产过程中带来的环境污染问题,寻找新的合成芳香烃化合物的绿色化学路线成为有机合成领域中的研究热点。呋喃类生物质主要来源于植物系生物质,廉价和分子多样性使其成为合成芳香烃化合物的重要候选原料。通过热催化或低温催化反应,呋喃类生物质与乙烯、丙烯等亲二烯体可进行Diels-Alder环加成和脱水等反应芳构化为芳香烃化合物。以呋喃类生物质为基础的催化反应可高效利用可再生能源,工业应用前景广阔。目前呋喃类生物质催化转化制备芳香烃化合物的研究大部分依赖高温高压的高能耗反应条件,且面临“一锅法”副反应繁杂的问题,例如水解、烷基化、异构化和低聚等。本文综述了基于不同呋喃生物质分子所取得的研究成果和面临的问题,简要介绍 Diels-Alder环加成的反应机理,详细讨论催化剂组分、溶剂效应和亲二烯体对反应效率的影响,并对未来基于生物质的芳香烃化合物合成路径进行展望。

As one of the most important renewable chemicals, aromatic compounds are closely related to human production and life. Increasing concerns about diminishing oil resources and the relevant environmental pollution have gradually motivated interests in exploring new green chemistry routes towards aromatic hydrocarbons synthesis. Prized for the low cost and molecular diversity, biomass-derived furans arise as vital candidate raw materials for the production of aromatic compounds in the new century. Through Diels-Alder cycloaddition and the subsequent dehydration, furans could react with enophiles (such as ethylene and propylene) to obtain value-added aromatics including para-xylene. To our knowledge there exist broad industrial application prospects and economic benefits, and the catalytic reation of biomass-derived furans can effectively utilize renewable, abundant, sustainable energy. However, most of the reported catalytic conversion requires elevated temperature and high pressure, and the one-pot method usually results in multifarious and unrestricted side effects, such as hydrolysis, alkylation, isomerization and oligomerization. In this review, we summarize recent developments in the research achievements and issues of aromatic synthesis based on different biomass-derived furan molecules. The mechanism of Diels-Alder cycloaddition reaction is briefly introduced, followed by its influencing factors: catalyst composition, solvent effect and enophile. Then, perspectives and challenges for biomass-based aromatic synthesis are discussed.

Contents

1 Introduction

2 The mechanism of catalytic conversion

2.1 The mechanism of reaction

2.2 Possible side reactions

3 Influence factors

3.1 Solid acid catalyst composition

3.2 Solvents effect

3.3 Dienophile

4 From biomass-derived furans to aromatic hydrocarbons

4.1 By 2,5-dimethylfuran

4.2 By 2-methylfuran

4.3 By 5-hydroxymethylfurfural

4.4 By furfural

4.5 By other biomass-derived furans

5 Conclusion and outlook

()
表1 呋喃生物质的基本物理性质
Table 1 Basic physical properties of biomass-derived furans
图1 呋喃类生物质催化转化为芳香烃化合物可能经历的反应机理图
Fig. 1 Schematic representations of the reaction network of the production of aromatic from furan compounds
图2 DMF和乙烯转化过程中可能发生的副反应类型
Fig. 2 Possible side reactions of the reaction of DMF and ethylene
图3 各种催化剂对DMF与乙烯反应合成对二甲苯的催化性能[27]
Fig. 3 Catalytic performance of various catalysts for the p-xylene production from the reaction of DMF with ethylene[27]
图4 呋喃与丙烷共加料的级联反应方案[46]
Fig. 4 Furan with the co-feeding of propane proposed to follow a cascade reaction scheme[46]
表2 呋喃生物质在多种催化剂上发生的Diels-Alder环加成反应
Table 2 Catalytic performances of various catalysts for the cycloaddition of biomass-derived furans
图5 MF和甲醇偶联转化的反应模型[70]
Fig. 5 Proposed reaction chemistry for the coupling conversion of MF and methanol[70]
图6 糠醛和丙烯腈合成间二甲苯二胺的反应路线[60]
Fig. 6 Pathway to meta-xylylenediamine from furfural and acrylonitrile[60]
[1]
Li N, Shi M J, Zhou S L, L. Z X . Resour. Conserv. Recycl., 2016,121: 11.

doi: 10.1016/j.resconrec.2016.03.016     URL    
[2]
Vispute T P, Zhang H Y, Sanna A, Xiao R, Huber G W. Science, 2010,330(6008): 1222.

doi: 10.1126/science.1194218     pmid: 21109668
[3]
Gao P, Xu J, Qi G D, Wang C, Wang Q, Zhao Y X, Zhang Y H, Feng N D, Zhao X L, Li J L, Deng F. ACS Catal., 2018,8(10): 9809.

doi: 10.1021/acscatal.8b03076     URL    
[4]
Xu Y B, Wang T, Shi C M, Liu B, Jiang F, Liu X H. Ind. Eng. Chem. Res., 2020,59(18): 8581.

doi: 10.1021/acs.iecr.0c00992     URL    
[5]
Shen D K, Zhao J, Xiao R. Energy Convers. Manag., 2016,124: 61.

doi: 10.1016/j.enconman.2016.06.067     URL    
[6]
Lyons T W, Guironnet D, Findlater M, Brookhart M. J. Am. Chem. Soc., 2012,134(38): 15708.

doi: 10.1021/ja307612b     URL    
[7]
Wang Y, Gao W Z, Kazumi S, Li H J, Yang G H, Tsubaki N. Chem. Eur. J., 2019,25(20): 5149.

doi: 10.1002/chem.v25.20     URL    
[8]
Tanaka K, Omata D, Asada Y, Hoshino Y, Honda K. J. Org. Chem., 2019,84(17): 10669.

doi: 10.1021/acs.joc.9b01156     pmid: 31322873
[9]
Lee J S, Kim S Y, Kwon S J, Kim T W, Jeong S Y, Kim C U, Lee K Y. J. Nanosci. Nanotechnol., 2018,18(2): 1419.

doi: 10.1166/jnn.2018.14893     URL    
[10]
Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. Chem. Rev., 2018,118(22): 11023.

doi: 10.1021/acs.chemrev.8b00134     URL    
[11]
Sun Y, Wang Z, Liu Y, Meng X H, Qu J B, Liu C Y, Qu B. Energies, 2019,13(1): 21.

doi: 10.3390/en13010021     URL    
[12]
Dissanayake I, Hart J D, Becroft E C, Sumby C J, Newton C G. J. Am. Chem. Soc., 2020,142(31): 13328.

doi: 10.1021/jacs.0c06306     pmid: 32686408
[13]
Yu J Y, Zhu S Y, Dauenhauer P J, Cho H J, Fan W, Gorte R J. Catal. Sci. Technol., 2016,6(14): 5729.

doi: 10.1039/C6CY00501B     URL    
[14]
Chang C C, Je Cho H, Yu J Y, Gorte R J, Gulbinski J, Dauenhauer P, Fan W. Green Chem., 2016,18(5): 1368.

doi: 10.1039/C5GC02164B     URL    
[15]
Yin J B, Shen C, Feng X Q, Ji K Y, Du L. ACS Sustainable Chem. Eng., 2018,6(2): 1891.

doi: 10.1021/acssuschemeng.7b03297     URL    
[16]
Zhao R R, Zhao Z C, Li S K, Parvulescu A N, Müller U, Zhang W P. ChemSusChem, 2018,11(21): 3803.

doi: 10.1002/cssc.v11.21     URL    
[17]
Nikbin N, Feng S T, Caratzoulas S, Vlachos D G. J. Phys. Chem. C, 2014,118(42): 24415.

doi: 10.1021/jp506027f     URL    
[18]
Wijaya Y P, Kristianto I, Lee H, Jae J. Fuel, 2016,182: 588.

doi: 10.1016/j.fuel.2016.06.010     URL    
[19]
Do P T M, McAtee J R, Watson D A, Lobo R F. ACS Catal., 2013,3(1): 41.

doi: 10.1021/cs300673b     URL    
[20]
Espindola J S, Gilbert C J, Perez-Lopez O W, Trierweiler J O, Huber G W. Fuel Process. Technol., 2020,201: 106319.

doi: 10.1016/j.fuproc.2019.106319     URL    
[21]
Li Y P, Martin H G, Alexis B T. J. Phys. Chem. C, 2014,118: 22090.

doi: 10.1021/jp506664c     URL    
[22]
Patet R E, Koehle M, Lobo R F, Caratzoulas S, Vlachos D G. J. Phys. Chem. C, 2017,121(25): 13666.

doi: 10.1021/acs.jpcc.7b02344     URL    
[23]
Kim J C, Kim T W, Kim Y, Ryoo R, Jeong S Y, Kim C U. Appl. Catal. B: Environ., 2017,206: 490.

doi: 10.1016/j.apcatb.2017.01.031     URL    
[24]
Williams C L, Chang C C, Do P, Nikbin N, Caratzoulas S, Vlachos D G, Lobo R F, Fan W, Dauenhauer P J. ACS Catal., 2012,2(6): 935.

doi: 10.1021/cs300011a     URL    
[25]
Li S K, Zhao Z C, Zhao R R, Zhou D H, Zhang W P. ChemCatChem, 2017,9(8): 1494.

doi: 10.1002/cctc.201601623     URL    
[26]
Gulbinski J, Ren L M, Vattipalli V, Chen H Y, Delaney J, Bai P, Dauenhauer P, Tsapatsis M, Abdelrahman O A, Fan W. Ind. Eng. Chem. Res., 2020,59(51): 22049.

doi: 10.1021/acs.iecr.0c04493     URL    
[27]
Cho H J, Ren L M, Vattipalli V, Yeh Y H, Gould N, Xu B J, Gorte R J, Lobo R, Dauenhauer P J, Tsapatsis M, Fan W. ChemCatChem, 2017,9(3): 398.

doi: 10.1002/cctc.v9.3     URL    
[28]
Kasipandi S, Cho J M, Park K S, Shin C H, Bae J W. J. Catal., 2020,385: 10.

doi: 10.1016/j.jcat.2020.02.026     URL    
[29]
Rohling R Y, Uslamin E, Zijlstra B, Tranca I C, Filot I A W, Hensen E J M, Pidko E A. ACS Catal., 2018,8(2): 760.

doi: 10.1021/acscatal.7b03343     URL    
[30]
Mendoza Mesa J A, Brandi F, Shekova I, Antonietti M, Al-Naji M. Green Chem., 2020,22(21): 7398.

doi: 10.1039/D0GC01517B     URL    
[31]
Gao Z B, Feng Y C, Zhang L Q, Zeng X H, Sun Y, Tang X, Lei T Z, Lin L. ChemistrySelect, 2020,5(8): 2449.

doi: 10.1002/slct.v5.8     URL    
[32]
Feng X Q, Cui Z H, Ji K Y, Shen C, Tan T W. Appl. Catal. B: Environ., 2019,259: 118108.

doi: 10.1016/j.apcatb.2019.118108     URL    
[33]
Ni L L, Xin J Y, Dong H X, Lu X M, Liu X M, Zhang S J. ChemSusChem, 2017,10(11): 2394.

doi: 10.1002/cssc.201700020     URL    
[34]
Wijaya Y P, Winoto H P, Park Y K, Suh D J, Lee H, Ha J M, Jae J. Catal. Today, 2017,293/294: 167.

doi: 10.1016/j.cattod.2016.12.032     URL    
[35]
Fikri Z A, Ha J M, Park Y K, Lee H, Suh D J, Jae J. Catal. Today, 2020,351: 37.

doi: 10.1016/j.cattod.2019.01.063     URL    
[36]
Li Y, Cheng H Y, Lin W W, Zhang C, Wu Q F, Zhao F Y, Arai M. Catal. Sci. Technol., 2018,8(14): 3580.

doi: 10.1039/C8CY00943K     URL    
[37]
Walker T W, Chew A K, Li H X, Demir B, Zhang Z C, Huber G W, van Lehn R C, Dumesic J A. Energy Environ. Sci., 2018,11(6): 1639.

doi: 10.1039/C8EE90031K     URL    
[38]
Salavati-fard T, Caratzoulas S, Doren D J. J. Phys. Chem. A, 2015,119(38): 9834.

doi: 10.1021/acs.jpca.5b05060     pmid: 26331220
[39]
Wijaya Y P, Suh D J, Jae J. Catal. Commun., 2015,70: 12.

doi: 10.1016/j.catcom.2015.07.008     URL    
[40]
Chang C C, Green S K, Williams C L, Dauenhauer P J, Fan W. Green Chem., 2014,16(2): 585.

doi: 10.1039/C3GC40740C     URL    
[41]
Xiong R C, Sandler S I, Vlachos D G, Dauenhauer P J. Green Chem., 2014,16(9): 4086.

doi: 10.1039/C4GC00727A     URL    
[42]
Song Y, He X, Yu B, Li H R, He L N. Chin. Chem. Lett., 2020,31(3): 667.

doi: 10.1016/j.cclet.2019.07.053     URL    
[43]
Bini R, Chiappe C, Mestre V L, Pomelli C S, Welton T. Theor. Chem. Acc., 2009,123(3/4): 347.

doi: 10.1007/s00214-009-0525-0     URL    
[44]
Uslamin E A, Luna-Murillo B, Kosinov N, Bruijnincx P C A, Pidko E A, Weckhuysen B M, Hensen E J M. Chem. Eng. Sci., 2019,198: 305.

doi: 10.1016/j.ces.2018.09.023    
[45]
Cheng Y T, Huber G W. Green Chem., 2012,14(11): 3114.

doi: 10.1039/c2gc35767d     URL    
[46]
Qi X D, Fan W. ACS Catal., 2019,9(3): 2626.

doi: 10.1021/acscatal.8b04859     URL    
[47]
Sedighi M, Ghasemi M, Sadeqzadeh M, Hadi M. Powder Technol., 2016,291: 131.

doi: 10.1016/j.powtec.2015.11.066     URL    
[48]
Teixeira I F, Lo B T W, Kostetskyy P, Ye L, Tang C C, Mpourmpakis G, Tsang S C E. ACS Catal., 2018,8(3): 1843.

doi: 10.1021/acscatal.7b03952     URL    
[49]
Zhu L J, Fan M H, Wang Y L, Wang S F, He Y T, Li Q X. J. Chem. Technol. Biotechnol., 2019,94(9): 2876.
[50]
Wang C G, Si Z, Wu X P, Lv W, Bi K, Zhang X H, Chen L G, Xu Y, Zhang Q, Ma L L. J. Anal. Appl. Pyrolysis, 2019,139: 87.

doi: 10.1016/j.jaap.2019.01.013     URL    
[51]
Noorizadeh S, Maihami H. J. Mol. Struct.: THEOCHEM, 2006,763(1/3): 133.

doi: 10.1016/j.theochem.2006.01.022     URL    
[52]
Xia Y, Yin D L, Rong C Y, Xu Q, Yin D H, Liu S B. J. Phys. Chem. A, 2008,112(40): 9970.

doi: 10.1021/jp805410c     URL    
[53]
Salavati-fard T, Vasiliadou E S, Jenness G R, Lobo R F, Caratzoulas S, Doren D J. ACS Catal., 2019,9(1): 701.

doi: 10.1021/acscatal.8b03664    
[54]
Shiramizu M, Toste F D. Chem. Eur. J., 2011,17(44): 12452.

doi: 10.1002/chem.v17.44     URL    
[55]
Bozell J J, Petersen G R. Green Chem., 2010,12(4): 539.

doi: 10.1039/b922014c     URL    
[56]
Feng X Q, Shen C, Ji K Y, Yin J B, Tan T W. Catal. Sci. Technol., 2017,7(23): 5540.

doi: 10.1039/C7CY01530E     URL    
[57]
Qiang F X, Chun S, Chen T C, Wei T T. Ind. Eng. Chem. Res., 2017,56: 5852.

doi: 10.1021/acs.iecr.7b00975     URL    
[58]
Green S K, Patet R E, Nikbin N, Williams C L, Chang C C, Yu J Y, Gorte R J, Caratzoulas S, Fan W, Vlachos D G, Dauenhauer P J. Appl. Catal. B: Environ., 2016,180: 487.

doi: 10.1016/j.apcatb.2015.06.044     URL    
[59]
Pacheco J J, Davis M E. Proc. Natl. Acad. Sci. U. S. A., 2014,111: 8363.

doi: 10.1073/pnas.1408345111     pmid: 24912153
[60]
Scodeller I, Mansouri S, Morvan D, Muller E, De Oliveira Vigier K, Wischert R, JÉrôme F. Angew. Chem. Int. Ed., 2018,57(33): 10510.

doi: 10.1002/anie.v57.33     URL    
[61]
Uslamin E A, Kosinov N, Filonenko G A, Mezari B, Pidko E, Hensen E J M. ACS Catal., 2019,9(9): 8547.

doi: 10.1021/acscatal.9b02259    
[62]
Lancefield C S, Fölker B, Cioc R C, Stanciakova K, Bulo R E, Lutz M, Crockatt M, Bruijnincx P C A. Angew. Chem. Int. Ed., 2020,59(52): 23480.

doi: 10.1002/anie.v59.52     URL    
[63]
Saha B, Abu-Omar M M. ChemSusChem, 2015,8(7): 1133.

doi: 10.1002/cssc.v8.7     URL    
[64]
Song S, Wu G J, Dai W L, Guan N J, Li L D. J. Mol. Catal. A: Chem., 2016,420: 134.

doi: 10.1016/j.molcata.2016.04.023     URL    
[65]
Zhao R R, Xu L L, Huang S J, Zhang W P. Catal. Sci. Technol., 2019,9(20): 5676.

doi: 10.1039/C9CY01113G     URL    
[66]
Salavati-fard T, Caratzoulas S, Doren D J. Chem. Phys., 2017,485/486: 118.

doi: 10.1016/j.chemphys.2017.01.010     URL    
[67]
Yeh J Y, Chen S S, Li S C, Chen C H, Shishido T, Tsang D C W, Yamauchi Y, Li Y P, Wu K C W. Angew. Chem. Int. Ed., 2021,60(2): 624.

doi: 10.1002/anie.v60.2     URL    
[68]
Corma A, De la Torre O, Renz M, Villandier N. Angew. Chem. Int. Ed., 2011,50(10): 2375.

doi: 10.1002/anie.201007508     URL    
[69]
Wang D, Osmundsen C M, Taarning E, Dumesic J A. ChemCatChem, 2013,5(7): 2044.

doi: 10.1002/cctc.v5.7     URL    
[70]
Zheng A Q, Zhao Z L, Chang S, Huang Z, Zhao K, Wu H X, Wang X B, He F, Li H B. Green Chem., 2014,16(5): 2580.

doi: 10.1039/c3gc42251h     URL    
[71]
Thiyagarajan S, Genuino H C, Śliwa M, van der Waal J C, De Jong E, Van Haveren J, Weckhuysen B M, Bruijnincx P C A, Van Es D S. ChemSusChem, 2015,8(18): 3052.

doi: 10.1002/cssc.201500511     pmid: 26235971
[72]
Xia H A, Xu S Q, Hu H, An J H, Li C Z. RSC Adv., 2018,8(54): 30875.

doi: 10.1039/C8RA05308A     URL    
[73]
Megías-Sayago C, Lolli A, Bonincontro D, Penkova A, Albonetti S, Cavani F, Odriozola J A, Ivanova S. ChemCatChem, 2020,12(4): 1177.

doi: 10.1002/cctc.v12.4     URL    
[74]
Esteves L M, Brijaldo M H, Oliveira E G, Martinez J J, Rojas H, Caytuero A, Passos F B. Fuel, 2020,270: 117524.

doi: 10.1016/j.fuel.2020.117524     URL    
[75]
McGlone J, Priecel P, da Vià L, Majdal L, Lopez-Sanchez J. Catalysts, 2018,8(6): 253.

doi: 10.3390/catal8060253     URL    
[76]
Tao L, Yan T H, Li W Q, Zhao Y, Zhang Q, Liu Y M, Wright M M, Li Z H, He H Y, Cao Y. Chem, 2018,4(9): 2212.

doi: 10.1016/j.chempr.2018.07.007     URL    
[77]
Jia W L, Sun Y, Zuo M, Feng Y C, Tang X, Zeng X H, Lin L. ChemSusChem, 2020,13(3): 640.

doi: 10.1002/cssc.v13.3     URL    
[78]
Ogunjobi J K, Farmer T J, McElroy C R, Breeden S W, MacQuarrie D J, Thornthwaite D, Clark J H. ACS Sustainable Chem. Eng., 2019,7(9): 8183.

doi: 10.1021/acssuschemeng.8b06196     URL    
[79]
Pacheco J J, Labinger J A, Sessions A L, Davis M E. ACS Catal., 2015,5(10): 5904.

doi: 10.1021/acscatal.5b01309     URL    
[80]
Cho H J, Kim D, Li J, Su D, Xu B J. J. Am. Chem. Soc., 2018,140(41): 13514.

doi: 10.1021/jacs.8b09568     URL    
[81]
Nakagawa Y, Tamura M, Tomishige K. ACS Catal., 2013,3(12): 2655.

doi: 10.1021/cs400616p     URL    
[82]
Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, LÓpez Granados M. Energy Environ. Sci., 2016,9(4): 1144.

doi: 10.1039/C5EE02666K     URL    
[83]
Fanchiang W L, Lin Y C. Appl. Catal. A: Gen., 2012,419/420: 102.

doi: 10.1016/j.apcata.2012.01.017     URL    
[84]
Kim M, Su Y Q, Fukuoka A, Hensen E J M, Nakajima K. Angew. Chem. Int. Ed., 2018,57(27): 8235.

doi: 10.1002/anie.v57.27     URL    
[85]
Kim M, Su Y Q, Aoshima T, Fukuoka A, Hensen E J M, Nakajima K. ACS Catal., 2019,9(5): 4277.

doi: 10.1021/acscatal.9b00450     URL    
[86]
Scodeller I, de Oliveira Vigier K, Muller E, Ma C R, GuÉgan F, Wischert R, JÉrôme F. ChemSusChem, 2021,14(1): 313.

doi: 10.1002/cssc.v14.1     URL    
[87]
Tachibana Y, Kimura S, Kasuya K I. Sci. Rep., 2015,5(1): 1.
[88]
Mahmoud E, Watson D A, Lobo R F. Green Chem., 2014,16(1): 167.

doi: 10.1039/C3GC41655K     URL    
[89]
Cheng Y T, Wang Z P, Gilbert C J, Fan W, Huber G W. Angew. Chem. Int. Ed., 2012,51(44): 11097.

doi: 10.1002/anie.201205230     URL    
[90]
Cheng Y T, Huber G W. ACS Catal., 2011,1(6): 611.

doi: 10.1021/cs200103j     URL    
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[3] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[4] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[5] 薛丽君, 张迪, 魏杰, 刘欣梅. 催化剂的孔道限域效应[J]. 化学进展, 2016, 28(4): 450-458.
[6] 金炜阳, 程党国, 陈丰秋, 詹晓力. 分子筛膜包覆型催化剂的制备和应用[J]. 化学进展, 2011, 23(10): 2021-2030.
[7] 刘丽丽 张鑫 徐春明. MOF基上创立活性位的方法及其催化应用*[J]. 化学进展, 2010, 22(11): 2089-2098.
[8] 许建华,陈清林,纪红兵. 原位漫反射红外光谱技术用于气固催化反应机理的研究*[J]. 化学进展, 2008, 20(06): 811-820.
[9] 钟丽琴,唐瑞仁,杨青. 手性pybox-金属络合物及其在不对称催化反应中的应用[J]. 化学进展, 2007, 19(06): 902-910.
[10] 刘振德,何煦昌. 手性二茂铁类配体在钯催化不对称反应中的应用*[J]. 化学进展, 2006, 18(11): 1489-1497.
[11] 曾莎莎,唐瑞仁,Artem,Melman,黄可龙. 手性相转移催化剂及其在不对称催化反应中的应用[J]. 化学进展, 2006, 18(06): 743-751.
[12] 高飞雪,华瑞茂. 芳烃化合物液(均)相催化羟化反应研究进展[J]. 化学进展, 2005, 17(03): 437-450.
[13] 唐玉朝,胡春,王怡中. TiO2光催化反应机理及动力学研究进展[J]. 化学进展, 2002, 14(03): 192-.
[14] 廖代伟,王丽华,陈守正,蔡启瑞. 氨合成催化剂及其催化反应机理研究进展[J]. 化学进展, 1999, 11(04): 376-.
[15] 时钧,徐南平. 无机膜与无机膜催化反应[J]. 化学进展, 1995, 7(03): 167-.