English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 103-110 DOI: 10.7536/PC150744 前一篇   后一篇

• 综述与评论 •

木质纤维素催化转化制备能源平台化合物

袁正求1,2, 龙金星1, 张兴华1, 夏莹1,2, 王铁军1*, 马隆龙1   

  1. 1. 中国科学院广州能源研究所 中国科学院可再生能源重点实验室 广州 510640;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2015-07-01 修回日期:2015-09-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 王铁军 E-mail:wangtj@ms.giec.ac.cn
  • 基金资助:
    国家高技术研究发展计划(863)项目(No.2012AA101806)、国家自然科学基金项目(No.51306191)和国家科技支撑项目(No.2014BAD02B01)资助

Catalytic Conversion of Lignocellulose into Energy Platform Chemicals

Yuan Zhengqiu1,2, Long Jinxing1, Zhang Xinghua1, Xia Ying1,2, Wang Tiejun1*, Ma Longlong1   

  1. 1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-07-01 Revised:2015-09-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National High Technology Research and Development Program of China (No. 2012AA101806), the National Natural Science Foundation of China (No. 51306191), and the National Key Technology R&D Program (No. 2014BAD02B01).
可再生生物质资源的能源化利用能有效缓解能源短缺和环境恶化的双重压力。木质纤维素类生物质原料通过催化转化途径可以转化成为用途广泛的平台化合物,如呋喃类化合物、多元醇和有机酸及其酯类衍生物等。以这些平台化合物为原料,通过基元反应的转化可以制备高附加值的生物质基液体燃料。基于上述背景,本文概述了国内外木质纤维素通过不同催化转化途径制备各种新能源平台化合物的研究进展。目前木质纤维素制备新能源平台化合物的可行途径主要包括液体酸催化、固体酸催化、离子液体催化和多功能材料催化。在介绍这些催化途径的同时,重点讨论了所使用的催化剂,分析了仍然存在的问题和可能的解决措施,同时对今后该领域的研究前景进行了展望。
With the shortage of fossil fuels and the concerns related to their environmental impact and greenhouse gas effect, extensive research and development programs have been initiated worldwide to convert biomass into valuable products for future biofuels and chemicals. The conversion of lignocellulose into platform chemicals has attracted more attention in recent years. During this process, cellulose and hemicellulose can be high selectively converted into soluble sugars in the presence of catalysts, and the soluble sugars are subsequently converted into widely used platform molecules, such as furan-based chemicals, polyols, organic acid and its ester derivatives. These platform molecules can be further refined into high value-added liquid hydrocarbon fuels through elementary reactions, which are important alternatives to fossil fuel. The catalysts used for the transformation of lignocellulose into various platform chemicals mainly include liquid acid, solid acid, ion liquid and multifunctional materials, which play an important role in the catalytic process. Based on the present research situation, this review provides new insights into the accomplishments in recent years in the chemocatalytic technologies to generate energy platform chemicals from lignocellulosic biomass, with an emphasis on various kinds of catalytic routes and their existing problems and possible solutions. Finally, the future research and development trend in the field is prospected.

Contents
1 Introduction
2 Conversion of lignocellulose into furan-based chemicals
2.1 5-Hydroxymethylfurfural (HMF)
2.2 Furfural
3 Conversion of lignocellulose into polyols
3.1 Hexitol
3.2 Xylitol
4 Conversion of lignocellulose into organic acid and its ester derivatives
4.1 Levulinic acid
4.2 Levulinate ester
5 Conclusion and outlook

中图分类号: 

()
[1] 2014 Key World Energy Statistics. International Energy Agency, 2014.
[2] Zeng Y, Zhao S, Yang S, Ding S Y. Curr. Opin. Biotechnol., 2014, 27: 38.
[3] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12(9): 1493.
[4] Gallezot P. ChemSusChem, 2008, 1(8/9): 734.
[5] Serrano-Ruiz J C, Dumesic J A. Energy Environ. Sci., 2011, 4(1): 83.
[6] Sanders J, Scott E, Weusthuis R A, Mooibroek H. Macromol. Biosci., 2007, 7(2): 105.
[7] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9): 4044.
[8] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107(6): 2411.
[9] Saha B, Abu-Omar M M. Green Chem., 2014, 16(1): 24.
[10] Dutta S, De S, Saha B. Biomass Bioenerg., 2013, 55: 355.
[11] Bozell J J, Moens L, Elliott D, Wang Y, Neuenscwander G G, Fitzpatrick S W, Bilski R J, Jarnefeld J L. Resour. Conserv. Recy., 2000, 28(3): 227.
[12] Sheldon R. Chem. Commun., 2001, (23): 2399.
[13] Tong X, Li Y. ChemSusChem, 2010, 3(3): 350.
[14] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124(18): 4974.
[15] Fort D A, Remsing R C, Swatloski R P, Moyna P, Moyna G, Rogers R D. Green Chem., 2007, 9(1): 63.
[16] Rinaldi R, Palkovits R, Schüth F. Angew. Chem. Int. Ed., 2008, 47(42): 8047.
[17] Qi X, Watanabe M, Aida T M, Smith J R. Cellulose, 2011, 18(5): 1327.
[18] Su Y, Brown H M, Huang X, Zhou X D, Amonette J E, Zhang Z C. Appl. Catal. A, 2009, 361(1): 117.
[19] Li C, Zhang Z, Zhao Z K. Tetrahedron Lett., 2009, 50(38): 5403.
[20] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131(5): 1979.
[21] Tucker M H, Crisci A J, Wigington B N, Phadke N, Alamillo R, Zhang J. ACS Catal., 2012, 2(9): 1865.
[22] Yang Y, Hu C W, Abu-Omar M M. ChemSusChem, 2012, 5(2): 405.
[23] Yang Y, Hu C W, Abu-Omar M M. Green Chem., 2012, 14(2): 509.
[24] Azadi P, Carrasquillo-Flores R, Pagán-Torres Y J, Gürbüz E I, Farnood R, Dumesic J A. Green Chem., 2012, 14(6): 1573.
[25] Gürbüz E I, Wettstein S G, Dumesic J A. ChemSusChem, 2012, 5(2): 383.
[26] Shi N, Liu Q, Zhang Q, Wang T, Ma L. Green Chem., 2013, 15(7): 1967.
[27] PagN-Torres Y J, Wang T, Gallo J M R, Shanks B H, Dumesic J A. ACS Catal., 2012, 2(6): 930
[28] Shi N, Liu Q, Ma L, Wang T, Zhang Q, Zhang Q, Liao Y. RSC Adv., 2014, 4(10): 4978.
[29] Lange J P, Heide E V D, Buijtenen J V, Price R. ChemSusChem, 2012, 5: 150.
[30] 朱晨杰(Zhu C J),张会岩(Zhang H Y),肖睿(Xiao R),陈勇(Chen Y),柳东(Liu D),杜风光(Du F G),应汉杰(Ying H J),欧阳平凯(Ouyang P K).中国科学:化学(Scientia Sinica Chimica), 2015: 45(5): 454.
[31] Panicker P K N. Chemical Age of India, 1975, 26: 457.
[32] Haque R, Chakrabarti R K, Borgohain J N. Chem. Eng. World, 1976, 11: 71.
[33] Harris J F. Tappi J., 1978, 61: 41.
[34] Telleria I A, Larreategui A, Requies J, Gllemez M B, Arias P L. Bioresour. Technol., 2011, 102: 7478.
[35] Rushin M. S. Masteral Dissertation of University of Natal, Durban. 1992.
[36] Dias A S, Pillinger M, Valente A A. J. Catal., 2005, 229: 414.
[37] Dias A S, Lima S, Brandao P. Catal. Lett., 2006, 108: 179.
[38] Lima S, Pillinger M, Valente A A. Catal. Commun., 2008, 9: 2144.
[39] 孙啸寅(Sun X Y). 石河子大学硕士论文(Master Dissertation of Shihezi University), 2013.
[40] Agirrezabal-Telleria I, Larreategui A, Requies J, Güemez M B, Arias P L. Bioresour. Technol., 2011, 102: 7478.
[41] Zhao H B, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316: 1597.
[42] 吕秀阳(Lv X Y), 迫田章义(Sakoda Akiyoshi), 铃木基之(Suzuki Motoyuki). 化工学报(Joutnal of Chemical Industry and Engineering), 2001, 52(6): 556.
[43] 庞斐(Pang F), 吕惠生(Lv H S), 张敏华(Zhang M H). 化学反应工程与工艺(Chemical Reaction Engineering and Technology), 2007, 23(1): 55.
[44] Mansilla H D, Baeza J, Urzua S, Maturana G, Villasenor J, Duran N. Bioresour. Technol., 1998, 66: 189.
[45] Kim Y C, Lee H S. J. Ind. Eng. Chem., 2001, 7: 424.
[46] Dias A S, Lima S, Pillinger M, Valente A A. Catalysis Lett., 2007. 114:151.
[47] Nguyen Q A, Tucker M P. US 6423145.2002.
[48] Liu L, Sun J S, Cai C Y, Wang S H, Pei H S, Zhang J S. Bioresour. Technol., 2009, 100: 5865.
[49] Gravitis J, Vedernikov N, Zandersons J, Kokorevics A. Furfural and Levoglucosan Production from Deciduous Wood and Agricultural Waste. ACS Symposium Series 784. Washington DC:American Chemical Society, 2001. 110.
[50] Geboers J, Vyver S V D, Carpentier K, Jacobs P, Sels B. Chem. Commun., 2011, 47(19): 5590.
[51] Palkovits R, Tajvidi K, Ruppert A M, Procelewska J. Chem. Commun., 2011, 47(1): 576.
[52] Geboers J, Vyver S V D, Carpentier K, Jacobs P, Sels B. Chem. Commun., 2010, 46(20): 3577.
[53] Liao Y H, Liu Q Y, Wang T J, Long J X, Ma L L, Zhang Q. Green Chem., 2014, 16, 3305.
[54] Liao Y H, Liu Q Y, Wang T J, Long J X, Ma L L, Zhang Q. Energy Fuels, 2014, 28 (9): 5778.
[55] Geboers J, Van De Vyver S, Carpentier K, Jacobs P, Sels B. Green Chem., 2011, 13(8): 2167.
[56] Fukuoka A, Dhepe P L. Angew. Chem. Int. Ed., 2006, 45(31): 5161.
[57] Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe P L, Kasai K, Hara K, Fukuoka A. Green Chem., 2011, 13(2): 326.
[58] Deng T, Liu H. Green Chem., 2013, 15(1): 116.
[59] Wang D, Niu W, Tan M, Wu M B, Zheng X J, Li Y P, Tsubaki N. ChemSusChem, 2014, 7(5):1398.
[60] Liang G, He L, Arai M, Zhao F. ChemSusChem, 2014, 7(5):1415.
[61] Zhu W, Yang H, Chen J, Chen C, Li G, Gan H. Green Chem., 2014, 16: 1534.
[62] Xi J, Zhang Y, Xia Q, Liu X, Ren J. Appl. Catal. A, 2013: 459: 52.
[63] Xie X, Han J, Wang H, Zhu X, Liu X, Niu Y. Catal. Today, 2014, 233: 70.
[64] Liang G, Cheng H, Li W, He L, Yu Y, Zhao F. Green Chem., 2012, 14(8): 2146.
[65] Negoi A, Triantafyllidis K, Parvulescu V I, Coman S M. Catal. Today, 2014, 223: 122.
[66] Negoi A, Trotus I T, Mamula Steiner O, Tudorache M, Kuncser V, Macovei D, Paevulescu V I, Coman S M. ChemSusChem, 2013, 6(11): 2090.
[67] Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena R K. Sep. Purif. Technol., 2011, 78(3): 266.
[68] Huber G W,Iborra S,Corma A. Chem. Rev., 2006, 106(9): 4044.
[69] Dahiya J S. Can. J. Micorbiol., 1991, 37: 14.
[70] Winkelhausen E, Kuzmanova S. J. Ferment. Bioeng., 1998, 86(1): 1.
[71] Silva D S S, Afschar A S. Bioprocess. Eng., 1994, 11: 129.
[72] Bozell J J. Science, 2010, 329: 522.
[73] Mascal M, Dutta S, Gandarias I. Angew. Chem. Int. Ed., 2014, 53: 1854.
[74] Xin J, Zhang S, Yan D, Ayodele O, Lu X, Wang J. Green Chem., 2014, 16: 3589.
[75] Horvat J, Klai D? B, Metelko B, Šunji D? V. Tetrahedron lett., 1985, 26(17): 2111.
[76] Wang P, Zhan S H, Yu H B. Adv. Mater. Res., 2010, 96: 183.
[77] Lai D M, Deng L, Guo Q X, Fu Y. Energy Environ. Sci., 2011, 4(9): 3552.
[78] Van De Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W. Energy Environ. Sci., 2011, 4(9): 3601.
[79] Weingarten R, Conner W C, Huber G W. Energy Environ. Sci., 2012, 5(6): 7559.
[80] Zuo Y, Zhang Y, Fu Y. ChemCatChem, 2014, 6(3): 753.
[81] Hegner J, Pereira K C, Deboef B, Lucht B L. Tetrahedron Lett., 2010, 51(17): 2356.
[82] Lourvanij K, Rorrer G L. J. Chem. Technol. Biotechnol., 1997, 69(1): 35.
[83] Jow J, Rorrer G L, Hawley M C, Lamport D T A. Biomass, 1987, 14(3): 185.
[84] Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G. Energy Environ. Sci., 2012, 5(12): 9773.
[85] Hu X, Li C Z. Green Chem., 2011, 13(7): 1676.
[86] Garves K. J. Wood Chem. Technol., 1988, 8(1): 121.
[87] Bianchi D, Romano A M. EP 2300410, 2011.
[88] Tominaga K I, Mori A, Fukushima Y, Shimada S, Sato K. Green Chem., 2011, 13(4): 810.
[89] Saravanamurugan S, Riisager A. Catal. Commun., 2012, 17: 71.
[90] Rataboul F, Essayem N. Ind. Eng. Chem. Res., 2010, 50(2): 799.
[91] Saravanamurugan S, Van Buu O N, Riisager A. ChemSusChem, 2011, 4(6): 723.
[92] 彭林才(Peng L C), 林鹿(Lin L), 李辉(Li H). 化学进展(Progress in Chemistry), 2012, 24(5): 801.
[1] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[2] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[3] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424-1433.
[4] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[5] 刘焕君, 高腾飞, 施达, 刘健, 季生福. 甲醇一步催化转化制甲缩醛和甲酸甲酯的双功能催化剂[J]. 化学进展, 2016, 28(6): 942-953.
[6] 周妍, 赵雪冰, 刘德华. 非离子型表面活性剂对木质纤维素酶催化水解的影响及机理[J]. 化学进展, 2015, 27(11): 1555-1565.
[7] 汪家喜, 魏晓骏, 沈佳宇, 吕晓萌, 谢吉民, 陈敏. 光催化选择性合成有机物[J]. 化学进展, 2014, 26(09): 1460-1470.
[8] 常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华. 金属离子在微生物燃料电池中的行为[J]. 化学进展, 2014, 26(07): 1244-1254.
[9] 唐兴, 胡磊, 孙勇, 曾宪海, 林鹿. 生物质基乙酰丙酸选择性还原制备新型平台化合物γ-戊内酯[J]. 化学进展, 2013, 25(11): 1906-1914.
[10] 郭肖, 颜雅妮, 张亚红, 唐颐. 生物质衍生糖多相催化转化[J]. 化学进展, 2013, 25(11): 1915-1927.
[11] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
[12] 张家仁, 邓甜音, 刘海超*. 油脂和木质纤维素催化转化制备生物液体燃料[J]. 化学进展, 2013, 25(0203): 192-208.
[13] 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24(01): 157-162.
[14] 孙绍晖 孙培勤 马国杰 衡明星 陈俊武. 单糖化学催化制取运输燃料[J]. 化学进展, 2010, 22(09): 1844-1851.
[15] 郭坤 张京京 李浩然 杜竹玮. 微生物电解电池制氢*[J]. 化学进展, 2010, 22(04): 748-753.