English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1424-1433 DOI: 10.7536/PC180139 前一篇   后一篇

• 综述 •

由生物质合成高密度喷气燃料

谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*   

  1. 天津大学化工学院 先进燃料与化学推进剂教育部重点实验室 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2018-01-31 修回日期:2018-03-07 出版日期:2018-09-15 发布日期:2018-05-16
  • 通讯作者: 邹吉军 E-mail:jj_zou@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.U1462119)和装备预研教育部联合基金项目(No.6141A0202020507)资助

Synthesis of High-Density Jet Fuels from Biomass

Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*   

  1. Key Laboratory for Advanced Fuel and Chemical Propellant of Ministry of Education, Collaborative Innovative Center of Chemical Science and Engineering(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2018-01-31 Revised:2018-03-07 Online:2018-09-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.U1462119) and the Weaponry and Equipment Pre-Research Joint Foundation of Ministry of Education(No.6141A0202020507).
高密度喷气燃料是为先进航空航天飞行器而合成的燃料,以生物质基原料制备高密度喷气燃料符合国家可持续发展战略并可拓展燃料来源。本文综述了近年来由生物质基原料制备高密度喷气燃料的研究进展,燃料种类包括链烷烃、带支链的单环烷烃以及多环烷烃,燃料合成原料包括环酮(醇)、呋喃醛(醇)、芳香族含氧化合物(苯酚、苯甲醚、愈创木酚)、蒎烯等生物质及其平台化合物。发动机的推进性能高度依赖于所用燃料的性能,其中,最重要的性能是密度和低温性能。本文总结了典型燃料的性能以讨论分子结构的影响,增加燃料分子中环的个数会增加燃料密度但是也会导致低温性能不期望的变化,引入支链可改善低温性能。同时讨论了烷基化、缩合、加成、加氢脱氧等燃料合成反应涉及的催化剂、反应机理及其调控等关键因素,最后对由生物质基原料合成高密度喷气燃料的发展趋势进行了展望。本文将有助于探索及发展高密度燃料合成的方法及工艺。
High-density jet fuels are advanced fuel synthesized to improve the performance of aerospace vehicles. As response to the sustainable development, the development of high-density biofuels becomes extremly necessary, which can also extend the sources of fuels. Herein, the progress in synthesis of high-density jet fuels using biomass-derived feedstock has been reviewed. Biofuels with different structure, such as paraffins, branched monocycloalkanes, and polycycloalkanes, and the feedstock including pinenes and lignocellulose-derived platform molecules such as cyclic ketones/alcohols, furanic aldehydes/alcohols, aromatic oxygenates, etc. are covered. The propulsion performance of the engine is deeply dependent on the properties of the applied fuel, for which the most important features are density and low-temperature properties. Specially, the properties of typical biofuels are summarized to discuss the effect of molecular structure. Increasing the number of the ring in fuel molecular improves the fuel density, with undesirable variation in low-temperature properties. Fortunately, introducing the branched chain will improve the low-temperature properties. And several reactions such as alkylation, condensation, cyclic addition, and hydrodeoxygenation are discussed from the aspects of catalyst and reaction condition. An outlook on further development of high-density biofuels is also given. This review will be helpful to explore and develop better approach and process for high-density biofuel synthesis and upgrade for advanced aerospace vehicles.
Contents
1 Introduction
2 Synthesis of paraffin biofuels
3 Synthesis of branched monocycloalkane biofuels
4 Synthesis of polycycloalkane biofuels
4.1 Terpene-derived biofuels
4.2 Lignocellulose-derived polycycloalkane biofuels
4.3 Lignocellulose-derived fused-ring biofuels
5 Conclusion

中图分类号: 

()
[1] Zhang X W, Pan L, Wang L, Zou J J. Chem. Eng. Sci., 2017, doi:https://doi.org/10.1016/j.ces.2017.11.044.
[2] 潘伦(Pan L), 邓强(Deng Q), 鄂秀天凤(E X T F), 聂根阔(Nie G K), 张香文(Zhang X W), 邹吉军(Zou J J). 化学进展(Progress in Chemistry), 2015, 27(11):1531.
[3] Chung H S, Chen C S H, Kremer R A, Boulton J R. Energy Fuels, 1999, 13:641.
[4] Zou J J, Xu Y, Zhang X W, Wang L. Appl. Catal. A, 2012, 421/422:79.
[5] Wang L, Zou J J, Zhang X W, Wang L. Fuel, 2012, 91:164.
[6] Wang L, Zou J J, Zhang X W, Wang L. Energy Fuels, 2011, 25:1342.
[7] Wang L, Zhang X W, Zou J J, Han H, Li Y H, Wang L. Energy Fuels, 2009, 23:2383.
[8] Zou J J, Liu Y, Pan L, Wang L, Zhang X W. Appl. Catal. B, 2010, 95:439.
[9] Zou J J, Xiong Z Q, Wang L, Zhang X W, Mi Z T. J. Mol. Catal. A, 2007, 271:209.
[10] Zou J J, Zhang X W, Kong J, Wang L. Fuel, 2008, 87:3655.
[11] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107:2411.
[12] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12:1493.
[13] Rinaldi R, Schüth F. ChemSusChem, 2009, 2:1096.
[14] Motagamwala A H, Won W Y, Maravelias C T, Dumesic J A. Green Chem., 2016, 18:5756.
[15] Hronec M, Fulajtarová K. Catal. Commun., 2012, 24:100.
[16] Xiong K, Lee W S, Bhan A, Chen J G G. ChemSusChem, 2014, 7:2146.
[17] Ulonska K, Voll A, Marquardt W. Energy Fuels, 2016, 30:445.
[18] Luo H Z, Ge L B, Zhang J S, Ding J, Chen R, Shi Z P. Bioresource Technol., 2016, 200:111.
[19] Isikgor F H, Becer C R. Polym. Chem., 2015, 6:4497.
[20] Harvey B G, Quintana R L. Energy Environ. Sci., 2010, 3:352.
[21] Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327:1110.
[22] Xing R, Subrahmanyam A V, Olcay H, Qi W, van Walsum G P, Pendse H, Huber G W. Green Chem., 2010, 12:1933.
[23] Olcay H, Subrahmanyam A V, Xing R, Lajoie J, Dumesic J A, Huber G W. Energy Environ. Sci., 2013, 6:205.
[24] Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. ChemSusChem, 2013, 6:1149.
[25] Pholjaroen B, Li N, Yang J F, Li G Y, Wang W T, Wang A Q, Cong Y, Wang X D, Zhang T. Ind. Eng. Chem. Res., 2014, 53:13618.
[26] Li S S, Li N, Li G Y, Li L, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2015, 17:3644.
[27] Yang J F, Li N, Li S S, Wang W T, Li L, Wang A Q, Wang X D, Cong Y, Zhang T. Green Chem., 2014, 16:4879.
[28] Corma A, de la Torre O, Renz M, Villandier N. Angew. Chem. Int. Ed., 2011, 50:2375.
[29] Corma A, de la Torre O, Renz M. Energy Environ. Sci., 2012, 5:6328.
[30] Chen F, Li N, Li S S, Li G Y, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2016, 18:5751.
[31] Frey A M, Bitter J H, de Jong K P. ChemCatChem, 2011, 3:1193.
[32] Deng Q, Han P J, Xu J S, Zou J J, Wang L, Zhang X W. Chem. Eng. Sci., 2015, 138:239.
[33] Zhang X W, Deng Q, Han P J, Xu J S, Pan L, Wang L, Zou J J. AIChE J., 2017, 63:680.
[34] Arias K S, Climent M J, Corma A, Iborra S. Energy Environ. Sci., 2015, 8:317.
[35] Han P J, Nie G K, Xie J J, E X T F, Pan L, Zhang X W, Zou J J. Fuel Process. Technol., 2017, 163:45.
[36] Deng Q, Xu J S, Han P J, Pan L, Wang L, Zhang X W, Zou J J. Fuel Process. Technol., 2016, 148:361.
[37] Yang J F, Li S S, Li N, Wang W T, Wang A Q, Zhang T, Cong Y, Wang X D, Huber G W. Ind. Eng. Chem. Res., 2015, 54:11825.
[38] Li S S, Chen F, Li N, Wang W T, Sheng X R, Wang A Q, Cong Y, Wang X D, Zhang T. ChemSusChem, 2017, 10:711.
[39] Li S S, Li N, Wang W T, Li L, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2016, 6:32379.
[40] Meylemans H A, Quintana R L, Harvey B G. Fuel, 2012, 97:560.
[41] Harvey B G, Meylemans H A, Gough R V, Quintana R L, Garrison M D, Bruno T J. Phys. Chem. Chem. Phys., 2014, 16:9448.
[42] Harvey B G, Wright M E, Quintana R L. Energy Fuels, 2010, 24:267.
[43] Meylemans H A, Baldwin L C, Harvey B G. Energy Fuels, 2013, 27:883.
[44] Zou J J, Chang N, Zhang X W, Wang L. ChemCatChem, 2012, 4:1289.
[45] Nie G K, Zou J J, Feng R, Zhang X W, Wang L. Catal. Today, 2014, 234:271.
[46] Meylemans H A, Quintana R L, Goldsmith B R, Harvey B G. ChemSusChem, 2011, 4:465.
[47] Goheen G E. J. Am. Chem. Soc., 1941, 63:744.
[48] Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. Chem. Commun., 2014, 50:2572.
[49] Jiang X D, He G J, Wu X, Guo Y S, Fang W J, Xu L. J. Chem. Eng. Data, 2014, 59:2499.
[50] Deng Q, Nie G K, Pan L, Zou J J, Zhang X W, Wang L. Green Chem., 2015, 17:4473.
[51] Wang W, Liu Y T, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2017, 7:6111.
[52] Wang W, Li N, Li G Y, Li S S, Wang W T, Wang A Q, Cong Y, Wang X D, Zhang T. ACS Sustainable Chem. Eng., 2017, 5:1812.
[53] Sheng X R, Li G Y, Wang W T, Cong Y, Wang X D, Huber G W, Li N, Wang A Q, Zhang T. AIChE J., 2016, 62:2754.
[54] Sheng X R, Li N, Li G Y, Wang W T, Yang J F, Cong Y, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2015, 5:9565.
[55] Xie J J, Zhang X W, Pan L, Nie G K, E X T F, Liu Q, Wang P, Li Y F, Zou J J. Chem. Commun., 2017, 53:10303.
[56] Chen F, Li N, Yang X F, Li L, Li G Y, Li S S, Wang W T, Hu Y C, Wang A Q, Cong Y, Wang X D, Zhang T. ACS Sustainable Chem. Eng., 2016, 4:6160.
[57] Roan M A, Boehman A L. Energy Fuels, 2004, 18:835.
[58] Nie G K, Zhang X W, Pan L, Wang M, Zou J J. Chem. Eng. Sci., 2017, 180:64.
[59] Nie G K, Zhang X W, Han P J, Xie J J, Pan L, Wang L, Zou J J. Chem. Eng. Sci., 2017, 158:64.
[60] Nie G K, Zhang X W, Pan L, Han P J, Xie J J, Li Z, Xie J W, Zou J J. Chem. Eng. Sci., 2017, 173:91.
[61] Ma T T, Feng R, Zou J J, Zhang X W, Wang L. Ind. Eng. Chem. Res., 2013, 52:2486.
[62] Kim S G, Han J, Jeon J K, Yim J H. Fuel, 2014, 137:109.
[1] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[2] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[3] 潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541.
[4] 常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华. 金属离子在微生物燃料电池中的行为[J]. 化学进展, 2014, 26(07): 1244-1254.
[5] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
[6] 张家仁, 邓甜音, 刘海超*. 油脂和木质纤维素催化转化制备生物液体燃料[J]. 化学进展, 2013, 25(0203): 192-208.
[7] 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24(01): 157-162.
[8] 孙绍晖 孙培勤 马国杰 衡明星 陈俊武. 单糖化学催化制取运输燃料[J]. 化学进展, 2010, 22(09): 1844-1851.
[9] 郭坤 张京京 李浩然 杜竹玮. 微生物电解电池制氢*[J]. 化学进展, 2010, 22(04): 748-753.
[10] 刘宏芳,郑碧娟. 微生物燃料电池[J]. 化学进展, 2009, 21(6): 1349-1355.
[11] 毛艳萍,蔡兰坤,张乐华,侯海萍,黄光团,刘勇弟. 生物阴极微生物燃料电池*[J]. 化学进展, 2009, 21(0708): 1672-1677.
[12] 卢娜,周顺桂,倪晋仁. 微生物燃料电池的产电机制*[J]. 化学进展, 2008, 20(0708): 1233-1240.
[13] 匡廷云,白克智,杨秀山. 我国生物质能发展战略的几点意见[J]. 化学进展, 2007, 19(0708): 1060-1063.
[14] 王泽,林伟刚,宋文立,姚建中,鲁长波,都林. 生物质热化学转化制备生物燃料及化学品*[J]. 化学进展, 2007, 19(0708): 1190-1197.
[15] 关毅,张鑫. 微生物燃料电池*[J]. 化学进展, 2007, 19(01): 74-79.
阅读次数
全文


摘要

由生物质合成高密度喷气燃料