English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1672-1681 DOI: 10.7536/PC160502 前一篇   后一篇

• 综述与评论 •

新型生物质基平台分子γ-戊内酯的应用

魏珺楠, 唐兴*, 孙勇, 曾宪海, 林鹿*   

  1. 厦门大学能源学院 厦门 361102
  • 收稿日期:2016-05-01 修回日期:2016-09-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 唐兴, 林鹿 E-mail:x.tang@xmu.edu.cn;lulin@xmu.edu.cn

Applications of Novel Biomass-Derived Platform Molecule γ-Valerolactone

Wei Junnan, Tang Xing*, Sun Yong, Zeng Xianhai, Lin Lu*   

  1. College of Energy, Xiamen University, Xiamen 361102, China
  • Received:2016-05-01 Revised:2016-09-01 Online:2016-11-15 Published:2016-10-08
通过生物质基平台分子将可再生的生物质资源转化为各种化学品和燃料的研究日益受到人们的关注。在众多生物质基平台分子中,γ-戊内酯(γ-valerolactone,GVL)可作为一种可持续供应的原料用于生产碳基化学品及能源,因此被认为是最具应用前景的平台分子之一。本文中将着重从四个方面介绍和总结近年来GVL的应用研究进展,包括以GVL作为绿色溶剂、以GVL作为起始原料合成其他碳基化学品、聚合材料及液体烃类燃料,以期为开拓生物质平台分子GVL的应用研究提供一些思路和参考。
The transformation of renewable biomass resources into a variety of chemicals and fuels via biomass-derived platform molecules has recently attracted increasing attention from industrial and academic communities. Of numerous platform molecules, γ-valerolactone (GVL) is able to be employed as a sustainable starting material that can be used to produce carbon-based chemicals and energy, which thus is considered as one of the most promising biomass-derived platform molecules. This paper mainly introduces and summarizes research advances on the downstream applications of GVL which have been made in the last decade, including employing GVL as a green solvent and employing GVL as a starting material to produce carbon-based chemicals, polymers and liquid hydrocarbon fuels. The perspective of GVL is also suggested in this review.

Contents
1 Introduction
2 Employing GVL as a green solvent
3 Synthesis of carbon-based chemicals from GVL
4 Synthesis of polymeric materials from GVL
5 Synthesis of liquid hydrocarbon fuels from GVL
6 Conclusion

中图分类号: 

()
[1] Liu S J. Bioproc. Eng. Biorefinery, 2012, 1:129.
[2] 余强(Yu Q), 庄新姝(Zhuang X S), 袁振宏(Yuan Z H), 亓伟(Qi W), 王琼(Wang Q), 谭雪松(Tan X S), 许敬亮(Xu J L), 张宇(Zhang Y), 徐慧娟(Xu H J), 马隆龙(Ma L L). 化工进展(Chemical Industry and Engineering Progress), 2012, 31(4):784.
[3] Perlack R D, Wright L L, Turhollow A, Graham R L, Stoks B, Erbach D C. Biomass as feedstock for a bioenergy and bioproducts industry:The technical feasibility of a billion-ton annual supply,[2005-04-28]. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA436753.
[4] Saxena R C, Adhikari D K, Goyal H B. Renew. Sustain. Energy Rev., 2009, 13(1):167.
[5] 林鹿(Lin L), 何北海(He B H), 孙润仓(Sun R C), 胡若飞(Hu R F). 化学进展(Progress in Chemistry), 2007, 19(7/8):1206.
[6] 陆强(Lu Q), 朱锡锋(Zhu X F), 李全新(Li Q X), 郭庆祥(Guo Q X), 朱清时(Zhu Q S). 化学进展(Progress in Chemistry), 2007, 19(7):1064.
[7] Fischer G, Schrattenholzer L. Biomass Bioenergy, 2001, 20(3):151.
[8] Kumar P, Barrett D M, Delwiche M J, Ind P S. Ind. Eng. Chem. Res., 2009, 48(8):3713.
[9] 江俊飞(Jiang J F), 应浩(Ying H), 蒋剑春(Jiang J C), 涂军令(Tu J L). 生物质化学工程(Biomass Chemical Engineering), 2012, 46(4):52.
[10] Spivey J J, Egbebi A. Chem. Soc. Rev., 2007, 36(9):1514.
[11] Zaldivar J, Nielsen J, Olsson L. Appl. Microbiol. Biotechnol., 2001, 56(1/2):17.
[12] Maki-Arvela P, Simakova I L, Salmi T, Murzin D Y. Chem. Res., 2014, 114(3):1909.
[13] Yan K, Wu G, Lafleur T, Jarvis C. Renew. Sustain. Energy Rev., 2014, 38:663.
[14] van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Chem. Res., 2013, 113(3):1499.
[15] Rackemann D W, Doherty W O S. Biofuel Bioprod. Bior., 2011, 5(2):198.
[16] Tang X, Zeng X H, Li Z, Hu L, Sun Y, Liu S J, Lei T Z, Lin L. Renew. Sust. Energy Rev., 2014, 40:608.
[17] Laskar D D, Yang B, Wang H, Lee J. Biofuel Bioprod. Bior., 2013, 7(5):602.
[18] 彭林才(Peng L C), 林鹿(Lin Lu), 李辉(Li H). 化学进展(Progress in Chemistry), 2012, 24:801.
[19] 唐兴(Tang X), 胡磊(Hu L), 孙勇(Sun Y), 曾宪海(Zeng X H), 林鹿(Lin L). 化学进展(Progress in Chemistry), 2013, 25(11):1906.
[20] Wright W R, Palkovits R. ChemSusChem, 2012, 5(9):1657.
[21] Horváth I T, Mehdi H, Fábos V, Mike L L. Green Chem., 2008, 10(2):238.
[22] Fegyverneki D, Orha L, Láng G, Horváth I T. Tetrahedron, 2010, 66(5):1078.
[23] Strádi A, Molnár M, Óvári M, Dibo G, Richter F U, Mika L T. Green Chem., 2013, 15(7):1857.
[24] Strádi A, Molnár M, Szakál P, Dibó G, Gáspár D, Mika L T. RSC Adv., 2015, 5(89):72529.
[25] Duan Z Q, Hu F. Green Chem., 2012, 14(6):1581.
[26] Ismalaj E, Strappaveccia G, Ballerini E, Vaccaro L. ACS Sustain. Chem. Eng., 2014, 2(10):2461.
[27] Vaccaro L, Strappaveccia G, Marrocchi A, Pizzo F, Luciani L, Bartollini E. Green Chem., 2015, 17(2):1071.
[28] Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L. Green Chem., 2015, 17(1):365.
[29] Qi L, Mui Y F, Lo S W, Lui M Y, Akien G R, Horváth I T. ACS Catal., 2014, 4(5):1470.
[30] Gallo J M R, Alonso D M, Mellmer M A, Dumesic J A. Green Chem., 2013, 15(1):85.
[31] Qi L, Horváth I T. ACS Catal., 2012, 2(11):2247.
[32] Wettstein S, Martin Alonso D, Chong Y, Dumesic J A. Energy Environ. Sci., 2012, 5(8):8199.
[33] Alonso D M, Gallo J M R, Mellmer M A, Dumesic J A, Lim W Y, Dumesic J A. Catal. Sci. Technol., 2013, 3:927.
[34] Heltzel J, Lund C R F. Catal. Today, 2016, 269:88.
[35] Gurbuz E I, Gallo J M R, Alonso D M, Wettstein S G. Angew. Chem. Int. Ed., 2013, 52(4):1270.
[36] Zhang L, Yu H, Wang P, Li Y. Bioresour. Technol., 2014, 151:355.
[37] Xu Z, Li W, Du Z, Wu H, Jameel H, Chang H M, Ma L. Bioresour. Technol., 2015, 198:764.
[38] Bruce S M, Zong Z, Chatzidimitriou A, Wettstein S. J. Mol. Catal. A, 2016, DOI:http://dx.doi.org/10.1016/j.molcata.2016.02.025.
[39] Alonso D M, Wettstein S G, Mellmer M A, Gurbuz E I, Dumesic J A. Energy Environ. Sci., 2013, 6(1):76.
[40] Shuai L, Questell-Santiago Y M, Luterbacher J S. Green Chem., 2016, 18(4):937.
[41] Wu M, Yan Z Y, Zhang X M, Xu F, Sun R C. Bioresour. Technol., 2015, 200:23.
[42] Luterbacher J S, Rand J M, Alonso D M, Han J, Youngquist J T, Maravelias C T, Pfleger B F, Dumesic J A. Science, 2014, 343(6168):277.
[43] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 44:4632
[44] Han J, Luterbacher J S, Alonso D M, Dumesic J A, Maravelias C T. Bioresour. Technol., 2015, 182:258.
[45] Luterbacher J S, Alonso D M, Rand J M, Questell-Santiago Y M, Yeap J H, Pfleger B F, Dumesic J A. ChemSusChem, 2015, 8(8):1317.
[46] Mellmer M A, Martin Alonso D, Luterbacher J S, Gallo J M R, Dumesic J A. Green Chem., 2014, 16(11):4659.
[47] Fang W, Sixta H. ChemSusChem, 2015, 8(1):73.
[48] Wu M, Liu J K, Yan Z Y. RSC Adv., 2016, 6(8):6196.
[49] Luterbacher J S, Azarpira A, Motagamwala A H, Lu F, Ralph J, Dumesic J A. Energy Environ. Sci., 2015, 8(9):2657.
[50] Cannon G W, Casler Jr. J J, Gaines W A. J. Org. Chem., 1952, 17(9):1245.
[51] Caretto A, Noè M, Selva M, Perosa A. ACS Sustain. Chem. Eng., 2014, 2(9):2131.
[52] Mosby W L. J. Am. Chem. Soc., 1952, 74(10):2564.
[53] Mosby W L. J. Org. Chem., 1953, 18(8):964.
[54] Mosby W L. J. Org. Chem., 1954, 19(3):294.
[55] Brauman J I, Pandell A J. J. Am. Chem. Soc., 1967, 89(21):5421.
[56] Blicke F F, Brown B A. J. Org. Chem., 1961, 26(10):3685.
[57] Bond J Q, Alonso D M, West R M, Dumesic A. Langmuir, 2010, 26(21):16291.
[58] Kellicutt A B, Salary R, Abdelrahman O A, Bond J Q. Catal. Sci. Technol., 2014, 4:2267.
[59] Wang D, Hakim S H, Alonso D M, Dumesic J A. Chem. Commun., 2013, 48(63):7040.
[60] Bond J Q, Wang D, Alonso D M, Dumesic J A. J. Catal., 2011, 281(2):290.
[61] De Bruycker R, Carstensen H H, Simmie J M, Geem K M V,Marin G B. P. Combust. Inst., 2015, 35(1):515.
[62] Serrano-Ruiz J C, Wang D, Dumesic J A. Green Chem., 2010, 12(4):574.
[63] Pham H N, Pagan-Torres Y J, Serrano-Ruiz J C, Serrano-Ruiz J C, Wang D, Dumesic J A, Datye A K. Appl. Catal. A, 2011, 397(1):153.
[64] Kon K, Onodera W, Shimizu K I. Catal. Sci. Technol., 2014, 4:3227.
[65] Luo W, Bruijnincx P C A, Weckhuysen B M. J. Catal., 2014, 320:33.
[66] Patel A D, Serrano-Ruiz J C, Dumesic J A, Anex R P. Chem. Eng. J., 2010, 160(1):311.
[67] Christian R V, Brown H D, Hixon R M. J. Am. Chem. Soc., 1947, 69(8):1961.
[68] Mehdi H, Fábos V, Tuba R, Bodor A, Mika L T, Horváth I T. Top. Catal. Chem., 2008, 48(1/4):49.
[69] Al-Shaal M G, Dzierbinski A, Palkovits R. Green Chem., 2014, 16(3):1358.
[70] Du X L, Bi Q Y, Liu Y M, Cao Y, He H Y, Fan K N. Green Chem., 2012, 14(4):935.
[71] Upare P P, Lee J M, Hwang Y K, Hwang D W, Lee J H, Halligudi S B, Hwang J S, Chang J S. ChemSusChem, 2011, 4(12):1749.
[72] Obregon I, Gandarias I, Miletic N, Arias P L. ChemSusChem, 2015, 8(20):3483.
[73] Bermúdez J M, Menéndez J Á, Romero A A, Serrano E, Garcia-Martinez J. Green Chem., 2013, 15(10):2786.
[74] Corbel-Demailly L, Ly B K, Minh D P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C. ChemSusChem, 2013, 6(12):2388.
[75] Li M, Li G, Li N, Wang A Q, Dong W J, Wang X D, Yu C. Chem. Commun., 2014, 50(12):1414.
[76] Mizugaki T, Nagatsu Y, Togo K, Maeno A, Mitsudome T, Jitsukawa K, Kaneda K. Green Chem., 2015, 17(12):5136.
[77] Mizugaki T, Togo K, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K. ACS Sustain. Chem. Eng., 2016, 4(3):682.
[78] 夏海岸(Xia H A), 张军(Zhang J), 闫晓沛(Yan X P), 徐思泉(Xu S Q), 杨莉(Li Y). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2015, 43(5):575.
[79] Lee C W, Urakawa R, Kimura Y. Eur. Polym. J., 1998, 34(1):117.
[80] Manzer L E. Appl. Catal. A, 2004, 272(1/2):249.
[81] Vobecka Z, Wei C, Tauer K, Esposito D. Polymer, 2015, 74:262.
[82] Lange J P, Vestering J Z, Haan R J. Chem. Commun., 2007, 33:3488.
[83] Raoufmoghaddam S, Rood M T, Buijze F K W, Drent E, Bouwman E. ChemSusChem, 2014, 7(7):1984.
[84] Gagliardi M, Di Michele F, Mazzolai B, Bifone A. J. Polym. Res., 2015, 22(2):1.
[85] Zeng F X, Liu H F, Deng L, Liao B, Pang H, Guo Q X. ChemSusChem, 2013, 6(4):600.
[86] Yang Y, Wei X, Zeng F, Deng L. Green Chem., 2016, 18(3):691.
[87] Chalid M, Heeres H J, Broekhuis A A. Procedia Chem., 2012, 4:260.
[88] Chalid M, Heeres H J, Broekhuis A A. J. Appl. Polym. Sci., 2012, 123(6):3556.
[89] Chalid M, Heeres H J, Broekhuis A A. Polym-Plast Technol. Eng., 2015, 54(3):234.
[90] Bruno T J, Wolk A, Naydich A. Energy Fuels, 2010, 24(4):2758.
[91] Bereczky Á, Lukács K, Farkas M, Dóbé S. Study of γ-Valerolactone as a Diesel Blend:Engine Performance and Emission characteristics. Sweden:Lund, 2013. 3.
[92] Bereczky Á, Lukács K, Farkas M, Dóbé S. Nat. Resour., 2014, 5(5):177.
[93] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9):4044.
[94] Lange J P, Price R, Ayoub P M, Louis J, Petrus L, Clarke L, Gosselink H. Angew. Chem. Int. Ed. Eng., 2010, 49(26):4479.
[95] Dong L L, He L, Tao G H, Hu C. RSC Adv., 2013, 3(14):4806.
[96] Pan T, Deng J, Xu Q, Xu Y, Guo X Q, Fu Y. Green Chem., 2013, 15(10):2967.
[97] Sun P, Gao G, Zhao Z, Xia C, Li F. ACS Catal., 2014, 4(11):4136.
[98] Zhang D, Ye F, Guan Y, Wang Y M, Hensen E J M. RSC Adv., 2014, 4(74):39558.
[99] Yan K, Lafleur T J, Wu X, Chai J J, Wu G S, Xie X M. Chem. Commun., 2015, 51(32):6984.
[100] Sun P, Gao G, Zhao Z, Xi C, Li F. Appl. Catal. B, 2016, 189:19.
[101] Chan-Thaw C E, Marelli M, Psaro R, Marelli M, Psaro R, Ravasio N, Zaccheria F. RSC Adv., 2013, 3(5):1302.
[102] Scotti N, Dangate M, Gervasini A, Evangelisti C, Ravasio N, Zaccheria F. ACS Catal., 2014, 4(8):2818.
[103] Rye L, Blakey S, Wilson C W. Energy Environ. Sci., 2010, 3(1):17.
[104] Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327(5969):1110.
[105] Braden D J, Henao C A, Heltzel J, Maravelias C C, Dumesic J A. Green Chem., 2011, 13(7):1755.
[106] Xin J Y, Yan D X, Ayodele O, Zhang Z, Lu X M, Zhang S J. Green Chem., 2014, 17(2):1065.
[107] Serrano-Ruiz J C, Braden D J, West R M, Dumesic J A. Appl. Catal. B, 2010, 100(1):184.
[108] Gaertner C A, Serrano-Ruiz J C, Braden D J. Ind. Eng. Chem. Res., 2010, 49(13):6027.
[109] Tang X, Li Z, Zeng X H, Jiang Y T, Liu S J, Lei T Z, Sun Y, Lin L. ChemSusChem, 2015, 8(9):1601.
[110] Tang X, Zeng X H, Li Z, Li W F, Jiang Y T, Hu L, Liu S J, Sun Y, Lin L. ChemCatChem, 2015, 7(8):1372.
[111] Tang X, Chen H W, Hu L, Hao W W, Sun Y, Zeng X H, Lin L, Liu S J. Appl. Catal. B, 2014, 147:827.
[1] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[2] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[3] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[4] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[5] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[6] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 尹钰, 马春慧, 李伟, 刘守新. 葡萄糖制备5-羟甲基糠醛的溶剂体系及转化机理[J]. 化学进展, 2021, 33(10): 1856-1873.
[9] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[10] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[11] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[12] 钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛. 生物质基分子水相催化加氢反应及多相催化剂[J]. 化学进展, 2019, 31(8): 1075-1085.
[13] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[14] 赵剑曦, 顾攀攀, 曾慧, 邓生禄. 表面活性剂在非极性有机溶剂中的自组装[J]. 化学进展, 2019, 31(5): 643-653.
[15] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424-1433.