English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1915-1927 DOI: 10.7536/PC130152 前一篇   后一篇

• 综述与评论 •

生物质衍生糖多相催化转化

郭肖, 颜雅妮, 张亚红*, 唐颐   

  1. 复旦大学化学系 上海 200433
  • 收稿日期:2013-01-01 修回日期:2013-05-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 张亚红 E-mail:zhangyh@fudan.edu.cn

Heterogeneously Catalytic Transformation of Biomass-Derived Sugars

Guo Xiao, Yan Yani, Zhang Yahong*, Tang Yi   

  1. Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received:2013-01-01 Revised:2013-05-01 Online:2013-11-15 Published:2013-09-12

生物质碳水化合物是最为丰富的可再生资源,也是未来绿色化学的重要原料,可用于生产作为人类生存所依赖化学品、材料以及石油替代品的相关平台化合物。生物质衍生的纤维素和半纤维素水解后经催化转化即可生成各种平台分子,其中五碳糖水解脱水产生的呋喃甲醛和六碳糖水解脱水产生的羟甲基糠醛以及深度产物乙酰丙酸和γ-戊内酯由于用途广泛而引起研究者的关注。相对于传统的均相催化,多相催化剂具有易于从产物中分离和循环使用,允许较高的反应温度,反应时间短等优点,这些优良性能使其在精细化工、生物燃油制造及大规模工业化应用中展现巨大优势,有望成为解决环境、能源和资源利用的关键。本文以生物质衍生糖为出发点,概述了多相催化在生物质多糖的水解以及转化为平台化合物反应中的研究进展及未来展望。

Biomass carbohydrates, the most abundant renewable resources available, currently are viewed as the only alternative carbon sources for the construction of chemicals and materials for human survival in the future. Biomass-derived sugars ——cellulose and hemicellulose can be transformed into a variety of platform chemicals, of which furfural from dehydration of pentoses, hydroxymethyl furfural (HMF), from dehydration of hexoses as well as succedent levulinic acid (LA) and γ-valerolactone (GVL) are attracting the most attention. Contrast to conventional homogeneous catalysis, heterogeneous catalysts have advantages of facile separation from products and recycling, permitting higher reaction temperature and shorter reaction time and so on, which accounts for their tremendous potential in fine chemicals, biofuels manufacture and large scale industrial application, and can be expected to be the groundbreaking solution of environment, energy and resource utilization. Herein, the paper starting with biomass-derived sugars, summarized the research development of heterogeneous catalysis on hydrolysis of sugars and their transformation to various platform chemicals containing furural, HMF, LA as well as GVL respectively. Finally, a prospect of the heterogeneous catalysis on the biomass transformation is envisaged which is expected to make a brief guidance for the readers.

Contents
1 Introduction
2 Heterogeneously catalytic hydrolysis of biomass-derived sugars
3 The research development of heterogeneously catalytic dehydration
3.1 Heterogeneous catalysis of sugars' transformation into furfural
3.2 Heterogeneous catalysis of sugars' transformation into HMF
3.3 Heterogeneous catalysis of sugars' transformation into LA
3.4 Heterogeneous catalysis of sugars' transformation into GVL
4 Conclusion and outlook

中图分类号: 

()

[1] Avelino C, Sara I, Alexandra V. Chem. Rev., 2007, 107: 2411—2502
[2] Huber G W, Sara I, Avelino C. Chem. Rev., 2006, 106: 4044—4098
[3] Cheng S, Zhu S. BioResources, 2009, 4: 456—457
[4] Carvalheiro F, Duarte L C, Girio F M. J. Sci. Ind. Res., 2008, 67: 849—864
[5] Roper H. Starch-Starke, 2002, 54: 89—94
[6] Juan A M, Jose I, Alicia G. Energy Environ. Sci., 2012, 5: 7393—7420
[7] David M A, Jesse Q B, James A D. Green Chem., 2010, 12: 1493—1513
[8] Maria J C, Avelino C, Sara I. Chem. Rev., 2011, 111: 1072—1133
[9] Maria J C, Avelino C, Sara I. Green Chem., 2011, 13: 520—540
[10] Yomaira J P, Tianfu W, Jean M R G, Brent H S, James A D. ACS Catal., 2012, 2: 930—934
[11] Chao W, Litang F, Xin L T, Qi W Y, Wen Q Z. Carbohydr. Res., 2012, 347: 182—185
[12] Juben N C, Yuriy R L, James A D. Green Chem., 2007, 9: 342—350
[13] Avelino C, Hermenegildo G. Chem. Rev., 2003, 103: 4307—4365
[14] Zhang H Y P, Lynd L R. Biotechnol. Bioeng., 2004, 88: 797—824
[15] Gusakov V, Baez M, Sinitsyn A P. Biotechnol. Bioeng., 2007, 97: 1028—1038
[16] Chia H S, Chung M H, Hsieh H J, Chang Y K, Ding J C, Wu H M. J. Taiwan Inst. Chem. Eng., 2012, 43: 573—577
[17] Carlini C, Patrono P, Sbrana G. Appl. Catal. A: Gen., 2004, 275: 111—120
[18] Li C Z, Zheng M Y, Wang A Q, Zhang T. Energy Environ. Sci., 2012, 5: 6383—6390
[19] Hirokazu K, Tasuku K, Samar K G, Kenji H, Atsushi F. Appl. Catal. A: Gen., 2011, 409/410: 13—20
[20] Stijn V V, Jan G, Pierre A J, Bert F S. ChemCatChem, 2011, 3: 82—94
[21] Roberto R, Ferdi S. ChemSusChem, 2009, 2: 1096—1107
[22] Li C, Wang Q, Zhao Z K. Green Chem., 2008, 10: 177—182
[23] Rinaldi R, Meine N, Stein J, Palkovits R, Schuth F. ChemSusChem, 2010, 3: 266—276
[24] Hendriks A, Zeeman G. Bioresour. Technol., 2009, 100: 10—18
[25] Rinaldi R, Palkovits R, Schüth F. Angew. Chem. Int. Ed., 2008, 47: 8047—8050
[26] Qi X H, Masaru W, Taku M A, Richard L S. Cellulose, 2011, 18: 1327—1333
[27] Guo H X, Qi X H, Li L Y, Richard L S. Bioresour. Technol., 2012, 116: 355—359
[28] Ayumu O. J. Jpn. Pet. Inst., 2012, 55: 73—86
[29] Zhen Z Y, Jin D, Tao P, Qing X G, Fu Y. Green Chem., 2012, 14: 2986—2989
[30] Nakajima K, Hara M. ACS Catal., 2012, 2: 1296—1304
[31] Ormsby R, Kastner J R, Miller J. Catal. Today, 2012, 190: 89—97
[32] Lai D M, Deng L, Liao J J B, Guo Q X, Fu Y. ChemSusChem, 2011, 4: 55—58
[33] Lai D M, Deng L, Guo Q X, Fu Y. Energy Environ. Sci., 2011, 4: 3552—3557
[34] Zeitsch K J. Sugar Ser., 2000, 13: 34—69
[35] Wachiraporn D, Panatpong B, Navadol L, Motonobu G, Artiwan S. Ind. Eng. Chem. Res., 2011, 50: 7903—7910
[36] Lange J P, Evert H, Jeroen B, Richard P. ChemSusChem, 2012, 5: 150—166
[37] Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P. Ind. Crops Prod., 1998, 7: 95—99
[38] Dias A S, Lima S, Brandao P, Pillinger M, Rocha J, Valente A A. Catal. Lett., 2006, 108: 179—186
[39] Telleria I A, Requies J, Guemez M B, Arias P L. Appl. Catal. B: Environ., 2012, 115/116: 169—178
[40] Dias A S, Lima S, Carriazo D, Rives V, Pillinger M, Valente A A. J. Catal., 2006, 244: 230—237
[41] Lima S, Pillinger M, Valente A A. Catal. Commun., 2008, 9: 2144—2148
[42] Lima S, Fernandes A, Ribeiro F, Valente A A. Catal. Lett., 2010, 135: 41—47
[43] Carlo P, Aldo B. Microporous Mesoporous Mater., 2011, 144: 28—39
[44] Moreau C, Belgacem M N, Gandini A. Top. Catal., 2004, 27: 11—30
[45] Eurick S K, Mahdi M A, Nathan S M. Energy Fuels, 2012, 26: 1298—1304
[46] Arghya D, Astam K P, Saikat D, Basudeb S, Asim B. J. Mater. Chem., 2012, 22: 14094— 14100
[47] Rosatella A A, Simeonov S P, Alfonso C A M. Green Chem., 2011, 13: 754—793
[48] Carlini C, Patrono P, Galletti A M R, Sbrana G. Appl. Catal. A, 2004, 275: 111—118
[49] Qi X, Watanabe M, Aida T M, Smith R L Jr, Catal. Commun., 2009, 10: 1771—1775
[50] Leshkow Y R, Chheda J N, Dumesic J A. Science, 2006, 312: 1933—1937
[51] Chheda J N, Leshkow Y R, Dumesic J A. Green Chem., 2007, 9: 342—350
[52] Zhao Q, Wang L, Zhao S, Wang X H, Wang S T. Fuel, 2011, 90: 2289—2293
[53] Guo X C, Cao Q, Jiang Y J, Wang X Y, Mu X D. Carbohydr. Res., 2012, 351: 35—41
[54] Qi X, Watanabe M, Aida T M, Smith R L. Green Chem., 2009, 11: 1327—1331
[55] Qi X H, Guo H X, Li L Y. Ind. Eng. Chem. Res., 2011, 50: 7985—7989
[56] Lei H, Yong S, Lu L. Ind. Eng. Chem. Res., 2012, 51: 1099—1104
[57] Bicker M, Kaiser D, Ott L, Vogel H. J. Supercrit. Fluids, 2005, 36: 118—126
[58] Asghari F S, Yoshida H. Carbohydr. Res., 2006, 341: 2379—2387
[59] Kovalevsky A Y, Hanson L, Fisher S Z, Mustyakimov M, Mason S A, Forsyth V T, Blakeley M P, Keen D A, Wagner T, Carrell H L, Katz A K, Glusker J P, Langan P. Structure, 2010, 18: 688—699
[60] Takagaki A, Ohara M, Nishimura S, Ebitani K. Chem. Commun., 2009, 41: 6276—6278
[61] Roman-Leshkov Y, Moliner M, Labinger J A, Davis M E. Angew. Chem. Int. Ed., 2010, 49: 8954 —8957
[62] Eranda N, Roman-Leshkov Y, Moliner M, Davis M E. ACS Catal., 2011, 1: 408—410
[63] Moliner M, Roman-Leshkov Y, Davis M E. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 6164—6168
[64] Corma A, Domine M E, Nemeth L, Valencia S. Nature, 2001, 412: 423—425
[65] Mascal M, Nikitin E B. Green Chem., 2010, 12: 370—373
[66] Khaled W O, Jessica E B, Francesca M K. Green Chem., 2012, 14: 1480—1487
[67] Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs P A, Sels B F. Energy Environ. Sci., 2011, 4: 3601—3610
[68] Rackemann D W, William O S D. Biofuels Bioprod. Bioref., 2011, 5: 198—214
[69] Schraufnagel R A, Rase H F. Ind. Eng. Chem. Prod. Res. Dev., 1975, 14: 40—44
[70] Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84: 339—349
[71] Wang P, Zhan S, Yu H B. Adv. Mater. Res., 2009, 96: 183—187
[72] Weingarten R, Conner W C, Huber G W. Energy Environ. Sci., 2012, 5: 7559—7574
[73] Jessica H, Kyle C P, Brenton D B, Brett L L. Tetrahedron Lett., 2010, 17: 2356—2358
[74] Nazlina Y, Saidina N A A, Mohd A. Bioresour. Technol., 2012, 116: 58—65
[75] Potvin J, Sorlien E, Hegner J, DeBoef B, Lucht B. Tetrahedron Lett., 2011, 52: 5891—5893
[76] Zeng W, Cheng D G, Zhang H H, Chen F Q, Zhan X L. Reac. Kinet. Mech. Cat., 2010, 100: 377—384
[77] Gurbuz E I, Wettstein S G, Dumesic J A. ChemSusChem, 2012, 5: 383—387
[78] Wettstein S G, Alonso D M, Chong Y X, Dumesic J A. Energy Environ. Sci., 2012, 5: 8199—8203
[79] Son P A, Nishimura S, Ebitani K. Reac. Kinet. Mech. Cat., 2012, 106(1): 185—192
[80] Girisuta B. Doctoral Dissertation of University of Groningen, 2007
[81] Jow J, Rorrer G L, Hawley M C, Lamport D T A. Biomass, 1987, 14: 185—194
[82] Redmon B C. US 2738367, 1956
[83] Lourvanij K. Doctoral Dissertation of Oregon State University, 1995
[84] Hegner J, Pereira K C, Deboef B, Lucht B L. Tetrahedron Lett., 2010, 51: 2356—2358
[85] Horvath I T, Mehdi H, Fabos V, Boda L, Mika L T. Green Chem., 2008, 10: 238—242
[86] Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew. Chem. Int. Ed., 2009, 48: 6529—6532
[87] Girisuta B, Janssen L, Heeres H J. Ind. Eng. Chem. Res., 2007, 46: 1696—1708
[88] Upare P P, Lee J M, Hwang D W, Halligudi S B, Hwang Y K, Chang J S. J. Ind. Eng. Chem., 2011, 17: 287—292
[89] Chalid M, Broekhuis A A, Heeres H J. J. Mol. Catal. A: Chem., 2011, 341: 14—21
[90] Mohammad G A, William R H W, Regina P. Green Chem., 2012, 14: 1260—1263
[91] Galletti A M R, Antonetti C, Ribechini E, Maria Colombini M P, Nassi N D N, Bonari E. Applied Energy, 2013, 102: 157—162
[92] Hengne A M, Rode C V. Green Chem., 2012, 14: 1064—1072
[93] Chia M, Dumesic J A. Chem. Commun., 2011, 47: 12233—12235
[94] Wright W R H, Palkovits R. ChemSusChem, 2012, 5: 1657—1667
[95] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 44: 4632 —4634
[96] Manzer L E, Hutchenson K W. US 2004254384, 2004
[97] Heeres H, Handana R, Chunai D, Rasrendra C B, Girisuta B, Heeres H J. Green Chem., 2009, 11: 1247—1255
[98] Horvath I T, Mehdi H, Fabos V, Boda L, Mika L T. Green Chem., 2008, 10: 238—242
[99] Hengne A M, Chandrashekhar V R. Green Chem., 2012, 14: 1064—1072
[100] Manzer L E. Appl. Catal. A, 2004, 272: 249—256
[101] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 44: 4632—4634
[102] Zhi Y P, Lin L, Liu S. Energy Fuels, 2009, 23: 3853—3858
[103] Wettstein S G, Bond J Q, Alonso D M, Pham A N, Datye A K, Dumesic J A. Appl. Catal. B: Environ., 2012, 117/118: 321—329
[104] Galletti A M R, Antonetti C, De Luise V, Martinelli M. Green Chem., 2012, 14: 688—694

[1] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[2] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[3] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[4] 王新之, 王红利, 石峰. 基于多相催化体系构建的醇胺化合成N-烷基胺[J]. 化学进展, 2020, 32(2/3): 162-178.
[5] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[6] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[7] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[8] 乔颖, 腾娜, 翟承凯, 那海宁, 朱锦. 化学法催化纤维素高效水解成糖[J]. 化学进展, 2018, 30(9): 1415-1423.
[9] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[10] 付先彪, 喻桂朋. 共价有机框架材料催化剂[J]. 化学进展, 2016, 28(7): 1006-1015.
[11] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[12] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[13] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[14] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[15] 龚劲松, 李恒, 陆震鸣, 史劲松, 许正宏. 腈水解酶在医药中间体生物催化研究中的最新进展[J]. 化学进展, 2015, 27(4): 448-458.
阅读次数
全文


摘要

生物质衍生糖多相催化转化