English
新闻公告
More
化学进展 2017, Vol. 29 Issue (10): 1273-1284 DOI: 10.7536/PC170403 前一篇   

• 综述 •

基于木质生物质分级利用的组分优先分离策略

蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*   

  1. 厦门大学能源学院 厦门 361102
  • 收稿日期:2017-04-05 修回日期:2017-06-21 出版日期:2017-10-15 发布日期:2017-08-29
  • 通讯作者: 孙勇,e-mail:sunyong@xmu.edu.cn;林鹿,e-mail:lulin@xmu.edu.cn E-mail:sunyong@xmu.edu.cn;lulin@xmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21676223,21506177)、福建省发改委重大产业化投资项目(No.2015489)、厦门大学校长基金(No.20720160087,20720160077,20720170062)、福建省自然科学基金项目(No.2016J01077,2015J05034)及福建省高校青年自然基金重点项目(No.JZ160398)资助

Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose

Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*   

  1. College of Energy, Xiamen University, Xiamen 361102, China
  • Received:2017-04-05 Revised:2017-06-21 Online:2017-10-15 Published:2017-08-29
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21676223, 21506177), the Fujian Provincial Development and Reform Commission, China (No. 2015489), the Fundamental Research Funds for the Central Universities (No. 20720160087, 20720160077, 20720170062), the Natural Science Foundation of Fujian Province of China (No. 2016J01077, 2015J05034), and the Education Department of Fujian Province (No. JZ160398).
木质生物质是地球上最丰富的一类生物质资源,主要由碳水化合物高分子(纤维素、半纤维素)和芳族聚合物(木质素)组成。木质纤维组分的清洁高效分离,是实现多元化、高值化生物精炼的重要基础。本文首先讨论了基于分级利用的组分分离技术与基于制备纤维素乙醇的预处理技术的不同之处;其次,梳理归纳了五种木质纤维组分优先分级分离策略:纤维素优先分离,木质素优先分离,半纤维素优先分离,木质素和半纤维素优先分离以及纤维素和半纤维素优先分离;再次,基于半纤维素优先分离策略,对国内相关的产业化应用进行了评述;最后,对木质生物质组分分离技术的当下定位和发展前景进行了总结与展望,以期对木质生物质的三大组分有较全面的价值观念和利用思路,并对木质生物质精炼技术的发展提供借鉴与参考。
Lignocellulosic materials contributing the large proportion to the biomass resource are mainly composed of carbohydrate polymers (cellulose, hemicellulose), and aromatic macromolecules (lignin). Pre-fractionating lignocellulose is considered as the foundational step to establish an economical and sustainable lignocellulosic biorefinery. Firstly, the distinction between lignocellulose fractionation technologies and pretreatment methods for cellulosic ethanol production is discussed. Afterwards, five prior-fractionating strategies of lignocellulose for the biorefinery process are elaborated, including cellulose-first processing, lignin-first processing, hemicellulose-first processing, lignin & hemicellulose-first processing, and cellulose & hemicellulose-first processing. And then industrial applications of hemicellulose-first processing in our country are reviewed. Ultimately, the future perspective on lignocellulose fractionation technologies are given. The aim of this review is to provide new insights into the lignocellulosic biorefinery based on the fractionating of lignocellulose.
Contents
1 Introduction
2 The similarity and difference between lignocellulose pretreatment and fractionation
3 Prior-fractionating strategies of lignocellulose for biorefinery
3.1 Cellulose-first processing
3.2 Lignin-first processing
3.3 Hemicellulose-first processing
3.4 Lignin&hemicellulose-first processing
3.5 Cellulose&hemicellulose-first processing
4 Industrial cases of hemicellulose-first strategy
4.1 Co-production of dissolving pulp and xylitol/furfural
4.2 Co-production of citric acid and xylitol/arabinose
4.3 Co-production of xylooligosaccharide and lignocellulosic ethanol
4.4 Co-production of furfural and ethanol
4.5 Co-production of vehicle fuels and chemicals
5 Conclusion

中图分类号: 

()
[1] Cherubini F. Energy Convers. Manage., 2010, 51(7):1412.
[2] Menon V, Rao M L. Prog. Energy Combust. Sci., 2012, 38(4):522.
[3] Isikgor F, Becer C R. Polym. Chem., 2015, 6(25):4497.
[4] Biermann C J. Handbook of Pulping and Papermaking. 2nd ed. Oxford:Academic Press, 1996. 1.
[5] Lee J. J. Biotechnol., 1997, 56(1):1.
[6] Zhang Y H P. J. Ind. Microbiol. Biotechnol., 2008, 35(5):367.
[7] Christopher L, Clark J H, Kraus G A. Integrated Forest Biorefineries. Cambridge:Royal Society of Chemistry, 2012. 1.
[8] Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M. Bioresour. Technol., 2005, 96(6):673.
[9] Yang B, Wyman C E. Biofuels, Bioprod. Biorefin., 2008, 2(1):26.
[10] Kumar P, Barrett D M, Delwiche M J, Stroeve P. Ind. Eng. Chem. Res., 2009, 48(8):3713.
[11] Gregg D, Saddler J N. A Techno-Economic Assessment of the Pretreatment and Fractionation Steps of a Biomass-to-Ethanol Process. Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Springer. 1996. 711.
[12] Zhang W, Sathitsuksanoh N, Barone J R, Renneckar S. Bioresour. Technol., 2016, 199:148.
[13] Rollin J A, Zhu Z G, Sathitsuksanoh N, Zhang Y H P. Biotechnol. Bioeng., 2011, 108(1):22.
[14] FitzPatrick M, Champagne P, Cunningham M F, Whitney R A. Bioresour. Technol., 2010, 101(23):8915.
[15] Van Heiningen A. Pulp Pap. Can., 2006, 107(6):38.
[16] Yoon S H, Van Heiningen A. Tappi J., 2008, 7(7):22.
[17] Chundawat S P, Beckham G T, Himmel M E, Dale B E. Annu. Rev. Chem. Biomol., 2011, 2:121.
[18] da Costa Lopes A M, João K G, Morais A R C, Bogel-?ukasik E, Bogel-?ukasik R. Sustain. Chem. Processes, 2013, 1(1):1.
[19] Smith E L, Abbott A P, Ryder K S. Chem. Rev., 2014, 114(21):11060.
[20] Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola J P. Ind. Crops Prod., 2010, 32(3):175.
[21] Mora-Pale M, Meli L, Doherty T V, Linhardt R J, Dordick J S. Biotechnol. Bioeng., 2011, 108(6):1229.
[22] Brandt A, Gräsvik J, Hallett J P, Welton T. Green Chem., 2013, 15(3):550.
[23] Vancov T, Alston A S, Brown T, McIntosh S. Renewable Energy, 2012, 45:1.
[24] Zakrzewska M E, Bogel-?ukasik E, Bogel-?ukasik R. Chem. Rev., 2010, 111(2):397.
[25] Yang D, Zhong L X, Yuan T Q, Peng X W, Sun R C. Ind. Crops Prod., 2013, 43:141.
[26] da Silva S P M, da Costa Lopes A M, Roseiro L B, Bogel-?ukasik R. RSC Adv., 2013, 3(36):16040.
[27] da Costa Lopes A M, João K G, Rubik D F, Bogel-?ukasik E, Duarte L C, Andreaus J, Bogel-?ukasik R. Bioresour. Technol., 2013, 142:198.
[28] Lan W, Liu C F, Sun R C. J. Agric. Food. Chem., 2011, 59(16):8691.
[29] Zhang P, Dong S J, Ma H H, Zhang B X, Wang Y F, Hu X M. Ind. Crops Prod., 2015, 76:688.
[30] Leskinen T, King A W, Kilpeläinen I, Argyropoulos D S. Ind. Eng. Chem. Res., 2011, 50(22):12349.
[31] Leskinen T, King A W, Kilpeläinen I, Argyropoulos D S. Ind. Eng. Chem. Res., 2013, 52(11):3958.
[32] Verdía P, Brandt A, Hallett J P, Ray M J, Welton T. Green Chem., 2014, 16(3):1617.
[33] Morais A R C, Pinto J V, Nunes D, Roseiro L B, Oliveira M C, Fortunato E, Bogel-?ukasik R. ACS Sustain. Chem. Eng., 2016, 4(3):1643.
[34] da Costa Lopes A M, Brenner M, Falé P, Roseiro L B, Bogel-?ukasik R. ACS Sustain. Chem. Eng., 2016, 4(6):3357.
[35] Barakat A, Rouau X. Biotechnol. Biofuels, 2014, 7(1):138.
[36] Chuetor S, Luque R, Barron C, Solhy A, Rouau X, Barakat A. Green Chem., 2015, 17(2):926.
[37] Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn S F, Renders T, De Meester B, Huijgen W, Dehaen W, Courtin C. Energy Environ. Sci., 2015, 8(6):1748.
[38] Schutyser W, Van den Bosch S, Renders T, De Boe T, Koelewijn S F, Dewaele A, Ennaert T, Verkinderen O, Goderis B, Courtin C. Green Chem., 2015, 17(11):5035.
[39] Van den Bosch S, Schutyser W, Koelewijn S F, Renders T, Courtin C, Sels B. Chem. Commun., 2015, 51(67):13158.
[40] Anderson E M, Katahira R, Reed M, Resch M G, Karp E M, Beckham G T, Román-Leshkov Y. ACS Sustain. Chem. Eng., 2016, 4(12):6940.
[41] Huang X M, Gonzalez O M M, Zhu J D, Korányi T I, Boot M D, Hensen E J. Green Chem., 2017, 19(1):175.
[42] Renders T, Schutyser W, Van den Bosch S, Koelewijn S F, Vangeel T, Courtin C M, Sels B F. ACS Catal., 2016, 6(3):2055.
[43] Shuai L, Amiri M T, Questell-Santiago Y M, Héroguel F, Li Y D, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher J S. Science, 2016, 354(6310):329.
[44] Motagamwala A H, Won W, Maravelias C T, Dumesic J A. Green Chem., 2016, 18(21):5756.
[45] Lee S H, Doherty T V, Linhardt R J, Dordick J S. Biotechnol. Bioeng., 2009, 102(5):1368.
[46] Fu D B, Mazza G, Tamaki Y. J. Agric. Food. Chem., 2010, 58(5):2915.
[47] Tan S S, MacFarlane D R, Upfal J, Edye L A, Doherty W O, Patti A F, Pringle J M, Scott J L. Green Chem., 2009, 11(3):339.
[48] Pinkert A, Goeke D F, Marsh K N, Pang S S. Green Chem., 2011, 13(11):3124.
[49] Achinivu E C, Howard R M, Li G Q, Gracz H, Henderson W A. Green Chem., 2014, 16(3):1114.
[50] Castro M C, Arce A, Soto A, Rodríguez H. Ind. Eng. Chem. Res., 2015, 54(39):9605.
[51] Phan L, Chiu D, Heldebrant D J, Huttenhower H, John E, Li X W, Pollet P, Wang R Y, Eckert C A, Liotta C L, Jessop P G. Ind. Eng. Chem. Res., 2008, 47(3):539.
[52] Blasucci V, Dilek C, Huttenhower H, John E, Llopis-Mestre V, Pollet P, Eckert C A, Liotta C L. Chem. Commun., 2009, (1):116.
[53] Domínguez de María P. J. Chem. Technol. Biotechnol., 2014, 89(1):11.
[54] Anugwom I, Mäki-Arvela P, Virtanen P, Willför S, Sjöholm R, Mikkola J P. Carbohydr. Polym., 2012, 87(3):2005.
[55] Anugwom I, Eta V, Virtanen P, Mäki-Arvela P, Hedenström M, Hummel M, Sixta H, Mikkola J P. ChemSusChem, 2014, 7(4):1170.
[56] Hou X D, Smith T J, Li N, Zong M H. Biotechnol. Bioeng., 2012, 109(10):2484.
[57] Zhang C W, Xia S Q, Ma P S. Bioresour. Technol., 2016, 219:1.
[58] Zhang Y H P, Ding S Y, Mielenz J R, Cui J B, Elander R T, Laser M, Himmel M E, McMillan J R, Lynd L R. Biotechnol. Bioeng., 2007, 97(2):214.
[59] Zhang Y H P, Zhu Z, Rollin J, Sathitsuksanoh N. Advances in Cellulose Solvent-and Organic Solvent-Based Lignocellulose Fractionation (COSLIF). Cellulose Solvents:For Analysis, Shaping and Chemical Modification.Chapter 20, 2010. 365.DOI:10.1021/bk-2010-1033.ch020.
[60] Li M F, Fan Y M, Xu F, Sun R C, Zhang X L. Ind. Crops Prod., 2010, 32(3):551.
[61] Papatheofanous M, Billa E, Koullas D, Monties B, Koukios E. Bioresour. Technol., 1995, 54(3):305.
[62] Jung Y H, Kim I J, Kim H K, Kim K H. Bioresour. Technol., 2013, 132:109.
[63] Shuai L, Yang Q, Zhu J Y, Lu F C, Weimer P, Ralph J, Pan X J. Bioresour. Technol., 2010, 101(9):3106.
[64] Cai C M, Zhang T, Kumar R, Wyman C E. J. Chem. Technol. Biotechnol., 2014, 89(1):2.
[65] Tunc M S, Chheda J, van der Heide E, Morris J, van Heiningen A. Ind. Eng. Chem. Res., 2013, 52(36):13209.
[66] Kim D Y, Kim Y S, Kim T H, Oh K K. Bioresour. Technol., 2016, 199:121.
[67] Kim D Y, Um B H, Oh K K. Appl. Biochem. Biotechnol., 2015, 176(5):1445.
[68] Sun S N, Cao X F, Sun S L, Xu F, Song X L, Sun R C, Jones G L. Biotechnol. Biofuels, 2014, 7(1):116.
[69] Vallejos M E, Zambon M D, Area M C, da Silva Curvelo A A. Ind. Crops Prod., 2015, 65:349.
[70] Cabeza A, Piqueras C, Sobrón F, García-Serna J. Bioresour. Technol., 2016, 200:90.
[71] Chen H Z, Liu L Y. Bioresour. Technol., 2007, 98(3):666.
[72] Nguyen T Y, Cai C M, Kumar R, Wyman C E. ChemSusChem, 2015, 8(10):1716.
[73] Klamrassamee T, Champreda V, Reunglek V, Laosiripojana N. Bioresour. Technol., 2013, 147:276.
[74] Klamrassamee T, Champreda V, Wiyaratn W, Laosiripojana N. Int. J. Chem. Eng. Appl., 2015, 6(2):134.
[75] vom Stein T, Grande P M, Kayser H, Sibilla F, Leitner W, de María P D. Green Chem., 2011, 13(7):1772.
[76] Grande P M, Viell J, Theyssen N, Marquardt W, de María P D, Leitner W. Green Chem., 2015, 17(6):3533.
[77] Grande P M. Doctorial Dissertation of Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen. 2014.
[78] Zhang M J, Qi W, Liu R, Su R X, Wu S M, He Z M. Biomass Bioenergy, 2010, 34(4):525.
[79] Zhu J Y, Pan X J, Wang G S, Gleisner R. Bioresour. Technol., 2009, 100(8):2411.
[80] Iakovlev M, van Heiningen A. ChemSusChem, 2012, 5(8):1625.
[81] Morales L O, Iakovlev M, Martin-Sampedro R, Rahikainen J L, Laine J, van Heiningen A, Rojas O J. Bioresour. Technol., 2014, 161:55.
[82] Yawalata D, Paszner L. Holzforschung, 2004, 58(1):7.
[83] Hundt M, Engel N, Schnitzlein K, Schnitzlein M G. Bioresour. Technol., 2014, 166:411.
[84] Hundt M, Engel N, Schnitzlein K, Schnitzlein M G. Chem. Eng. Res. Des., 2016, 107:13.
[85] Zhu J J, Zhu Y Y, Jiang F X, Xu Y, Ouyang J, Yu S Y. Carbohydr. Res., 2013, 382:52.
[86] Gould J M. Biotechnol. Bioeng., 1985, 27(6):893.
[87] Su Y, Du R, Guo H, Cao M, Wu Q, Su R, Qi W, He Z. Food Bioprod. Process., 2015, 94:322.
[88] Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. NREL Technical Report, 2011.
[89] Wijaya Y P, Putra R D D, Widyaya V T, Ha J M, Suh D J, Kim C S. Bioresour. Technol., 2014, 164:221.
[90] Käldström M, Meine N, Farès C, Rinaldi R, Schüth F. Green Chem., 2014, 16(5):2454.
[91] Hayes D J, Fitzpatrick S, Hayes M H, Ross J R. Biorefineries-Industrial Processes and Product, 2006, 139.
[92] 蒋建新(Jiang J X). 木糖型生物质炼制原理与技术(The principle an technology of the biorefinery of xylose-type biomass). 北京:科学出版社(Beijing:Science Press), 2013.
[93] 沈爱民(Shen A M). 生物质精炼技术与传统制浆造纸工业(Biorefinery technologies and the traditional pulp and papermaking industry). 北京:中国科学技术出版社(Beijing:Scientific Technology Press of China), 2013. 1.
[1] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[2] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[3] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[4] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[5] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[6] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[7] 钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛. 生物质基分子水相催化加氢反应及多相催化剂[J]. 化学进展, 2019, 31(8): 1075-1085.
[8] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[9] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[10] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424-1433.
[11] 魏珺楠, 唐兴, 孙勇, 曾宪海, 林鹿. 新型生物质基平台分子γ-戊内酯的应用[J]. 化学进展, 2016, 28(11): 1672-1681.
[12] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[13] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[14] 周妍, 赵雪冰, 刘德华. 非离子型表面活性剂对木质纤维素酶催化水解的影响及机理[J]. 化学进展, 2015, 27(11): 1555-1565.
[15] 潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541.