English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1531-1541 DOI: 10.7536/PC150531 前一篇   后一篇

• 综述与评论 •

高密度航空航天燃料合成化学

潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军*   

  1. 天津大学化工学院 先进燃料与化学推进剂教育部重点实验室 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2015-05-01 修回日期:2015-07-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 邹吉军 E-mail:jj_zou@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21222607,U1462119,20906069,21476168),教育部新世纪优秀人才资助项目(No.NCET-09-0594),教育部全国优博论文获得者项目(No.200955),国防基础科研项目(No.B1420110127),装备预研重点项目(No.625010304)和天津市自然科学基金重点项目(No.15JCZDJC37300)资助

Synthesis Chemistry of High-Density Fuels for Aviation and Aerospace Propulsion

Pan Lun, Deng Qiang, E Xiutianfeng, Nie Genkuo, Zhang Xiangwen, Zou Jijun*   

  1. Key Laboratory for Advanced Fuel and Chemical Propellant of Ministry of Education, Collaborative Innovative Center of Chemical Science and Engineering(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2015-05-01 Revised:2015-07-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21222607, U1462119, 20906069, 21476168), the Program for New Century Excellent Talents in University(No.NCET-09-0594), the Foundation for the Author of National Excellent Doctoral Dissertation(No.200955), the National Defense Basic Scientific Research Program(No.B1420110127), the Weaponry and Equipment Pre-Research Program(No.625010304), and the Tianjin Municipal Natural Science Foundation(No.15JCZDJC37300).
高密度液体碳氢燃料是为提高航空航天飞行器性能(航程、载荷、速度)而人工合成的燃料,与常规燃料(例如航空煤油和火箭煤油)相比,具有高密度和高体积热值等优点,具有重要的应用价值。本文首先从分子结构的角度阐述高密度燃料的特征及合成策略,然后综述了几类典型燃料的合成进展,包括通过加成、加氢、异构等反应合成多环烃类燃料和烷基金刚烃类燃料,通过环丙烷化和光化学等反应合成高张力燃料(环丙烷燃料、四环庚烷燃料和五环十一烷燃料),通过聚合、缩合、烷基化等反应合成高密度生物质燃料,通过纳米颗粒表面改性制备含有硼、铝、碳等固体颗粒的纳米悬浮燃料。同时,也总结了一些重要反应涉及的催化剂和量子化学机理,以及代表性燃料的性能参数等。最后,在此基础上对高密度燃料合成化学的发展趋势进行了展望。
There has been a consistent drive to improve the volumetric energy content of liquid fuels to extend the flight distance, flight speed and loading capacity of aerospace vehicles. Compared with conventional jet fuels like aviation kerosene and rocket kerosene, high-density liquid hydrocarbon fuels can provide more propulsion energy and thus are specifically important to promote the performance of volume-limited aerospace vehicles. In this review, the molecular characteristics of high-density fuels and the strategy to synthesize them are first discussed. Then the important progress in synthesis of several typical fuels is summarized, including multi-cyclic and alkyl-diamondoid fuels synthesized by cycloaddition, hydrogenation and isomerization reactions, highly-strained fuels such as cyclopropanated hydrocarbons, quadricyclane and pentacyclo[5.4.0.02,6.03,10.05,9]undecane synthesized via cyclopropanation and photoisomerization, high-density biofuels synthesized from cyclic biomass-derived compounds via polymerization, condensation and alkylation reactions, and nano-suspension fuels prepared by surface-modification and stabilization of nanoparticles(aluminum, boron and carbon) in liquid fuels. Specifically, the catalysts and reaction mechanism involved in these processes are highlighted for better controlling the reactions towards higher synthesis efficiency. Also the parameters of typical fuels synthesized using the above-mentioned processes are listed to show the potential for practical application. Finally, an outlook for the synthesis of high-density fuel is given.

Contents
1 Introduction
2 Molecular characteristic of high-density fuels
3 Synthesis of polycyclic hydrocarbon fuels
3.1 Oligomerization reaction
3.2 Hydrogenation reaction
3.3 Isomerization reaction
4 Synthesis of highly strained fuels
4.1 Cyclopropanated hydrocarbons
4.2 Quadricyclane
4.3 Pentacyclo[5.4.0.02,6.03,10.05,9]undecane and dimer
5 Synthesis of high-density biofuels
5.1 Pinene-derived fuels
5.2 Lignocellulose-derived fuels
6 Synthesis of nano-fluid fuels
7 Conclusion

中图分类号: 

()
[1] Chung H S, Chen C S H, Kremer R A, Boulton J R. Energy Fuels, 1999, 13:641.
[2] 邹吉军(Zou J J), 郭成(Guo C), 张香文(Zhang X W), 王莅(Wang L), 米镇涛(Mi Z T). 推进技术(Journal of Propulsion Technology), 2014, 35:1419.
[3] 邹吉军(Zou J J), 张香文(Zhang X W), 王莅(Wang L), 米镇涛(Mi Z T). 含能材料(Chinese Journal of Energetic Materials), 2007, 15:411.
[4] Zhang X, Jiang Q, Xiong Z Q, Zou J J, Wang L, Mi Z. Chem. Res. Chinese Univ., 2008, 24:175.
[5] Li Y, Zou J J, Zhang X, Wang L, Mi Z. Fuel, 2010, 89:2522.
[6] 张香文(Zhang X W), 姜凯(Jiang K), 邹吉军(Zou J J), 王莅(Wang L), 米镇涛(Mi Z T). 化工学报(CIESC Journal), 2007, 58:2658.
[7] Han H, Zou J J, Zhang X, Wang L. Appl. Catal. A, 2009, 367:84.
[8] Zou J J, Xu Y, Zhang X, Wang L. Appl. Catal. A, 2012, 421/422:79.
[9] Deng Q, Zhang X, Wang L, Zou J J. Chem. Eng. Sci., 2015, 135:540.
[10] Kim S, Han J, Kwon T S, Park Y K, Jeon J K. Catal. Today, 2014, 232:69.
[11] Kwak K Y, Kim M S, Lee D W, Cho Y H, Han J, Kwon T S, Lee K Y. Fuel, 2014, 137:230.
[12] Wang W, Cong Y, Chen S, Sun C, Wang X, Zhang T. Top. Catal., 2015, 58:350.
[13] Zou J J, Zhang X, Kong J, Wang L. Fuel, 2008, 87:3655.
[14] 王磊(Wang L), 邹吉军(Zou J J), 孔京(Kong J), 张香文(Zhang X W), 王莅(Wang L), 米镇涛(Mi Z T). 化工学报(CIESC Journal), 2009, 60:912.
[15] Zou J J, Xiong Z, Wang L, Zhang X, Mi Z. J. Mol. Catal. A:Chem., 2007, 271:209.
[16] Zou J J, Xiong Z, Zhang X, Liu G, Wang L, Mi Z. Ind. Eng. Chem. Res., 2007, 46:4415.
[17] Zhang X, Jiang K, Jiang Q, Zou J J, Wang L, Mi Z. Chinese Chem. Lett., 2007, 18:673.
[18] Sibi M G, Singh B, Kumar R, Pendem C, Sinha A K. Green Chem., 2012, 14:976.
[19] Wang L, Zhang X, Zou J J, Han H, Li Y, Wang L. Energy Fuels, 2009, 23:2383.
[20] 张香文(Zhang X W), 苗谦(Miao Q), 邹吉军(Zou J J), 邢恩会(Xing E H), 王莅(Wang L), 米镇涛(Mi Z T). 化工学报(CIESC Journal), 2007, 58:3059.
[21] Xing E, Zhang X, Wang L, Mi Z. Green Chem., 2007, 9:589.
[22] Sun C M, Li G. Appl. Catal. A, 2011, 402:196.
[23] Huang M Y, Wu J C, Shieu F S, Lin J J. Catal. Commun., 2009, 10:1747.
[24] Huang M Y, Wu J C, Shieu F S, Lin J J. Fuel, 2010, 90:1012.
[25] Wang L, Zou J J, Zhang X, Wang L. Fuel, 2012, 91:164.
[26] Wang L, Zou J J, Zhang X, Wang L. Energy Fuels, 2011, 25:1342.
[27] Ma T, Feng R, Zou J J, Zhang X, Wang L. Ind. Eng. Chem. Res., 2013, 52:2486.
[28] Oh C H, Park D I, Ryu J H, Cho J H, Han J S. Bull. Korean Chem. Soc., 2007, 28:322.
[29] Zou J J, Zhu B, Wang L, Zhang X, Mi Z. J. Mole. Catal. A, 2008, 286:63.
[30] Zou J J, Zhang M Y, Zhu B, Wang L, Zhang X, Mi Z. Catal. Lett., 2008, 124:139.
[31] Zou J J, Liu Y, Pan L, Wang L, Zhang X. Appl. Catal. B, 2010, 95:439.
[32] 王文涛(Wang W T), 丛昱(Cong Y), 王晓东(Wang X D), 张涛(Zhang T). 含能材料(Chinese Journal of Energetic Materials), 2014, 22:141.
[33] Feng R, Zou J J, Zhang X, Wang L, Zhao H. J. Org. Chem., 2012, 77:10065.
[34] Simmons H E, Blanchard E P, Smith R D. J. Am. Chem. Soc., 1964, 86:1347.
[35] Pan L, Feng R, Peng H, E X T F, Zou J J, Wang L, Zhang X. RSC Adv., 2014, 4:50998.
[36] Pan L, Zou J J, Zhang X, Wang L. Ind. Eng. Chem. Res., 2010, 49:8526.
[37] Pan L, Wang S, Zou J J, Huang Z F, Wang L, Zhang X. Chem. Commun., 2014, 50:988.
[38] Zou J J, Pan L, Wang L, Zhang X. Molecular Photochemistry-Various Aspects, InTech, 2012, 41.
[39] Pan L, Zou J J, Wang S, Huang Z F, Yu A, Wang L, Zhang X. Chem. Commun., 2013, 49:6593.
[40] Pan L, Wang S, Zou J J, Huang Z F, Wang L, Zhang X. Chem. Commun., 2014, 50:988.
[41] Wang S, Pan L, Song J J, Mi W, Zou J J, Wang L, Zhang X. J. Am. Chem. Soc., 2015, 137:2975.
[42] Pan L, Zou J J, Wang S, Huang Z, Zhang X, Wang L. Appl. Surf. Sci., 2013, 268:252.
[43] Huang Z F, Zou J J, Pan L, Wang S, Zhang X, Wang L. Appl. Catal. B, 2014, 147:167.
[44] Pan L, Wang S, Mi W, Song J, Zou J J, Wang L, Zhang X. Nano Energy, 2014, 9:71.
[45] Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L. Nano Energy, 2015, 12:646.
[46] Huang Z F, Song J, Pan L, Jia X, Li Z, Zou J J, Zhang X, Wang L. Nanoscale, 2014, 6:8865.
[47] Huang Z F, Pan L, Zou J J, Zhang X, Wang L. Nanoscale, 2014, 6:14044.
[48] Huang Z F, Song J, Pan L, Lv F, Wang Q, Zou J J, Zhang X, Wang L. Chem.Commun., 2014, 50:10959.
[49] 邱贤平(Qiu X P),韦伟(Wei W),王亚(Wang Y),陈克海(Chen K H),鲁统洁(Lu T J),金凤(Jin F),叶丹阳(Ye D Y). 含能材料(Chinese Journal of Energetic Materials), 2015, 23, 33.
[50] 史盛斌(Shi S B),范桂娟(Fan G J),杨世源(Yang S Y),廖龙渝(Liao L Y),张红梨(Zhang H L),李金山(Li J S). 含能材料(Chinese Journal of Energetic Materials), 2015, 23:120.
[51] Alan P M, Deshpande N, Madhusudhan R G. American Chemical Society Division of Fuel Chemistry, 1989, 34:946.
[52] 王希迪(Wang X D).大连理工大学硕士论文(Master Dissertation of Dalian University of Technology), 2014.
[53] 赵庆华(Zhao Q H),刘济威(Liu J W).火炸药学报(Chinese Journal of Explosives & Propellants), 2008, 31:82.
[54] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106:4044.
[55] Liu G, Yan B, Chen G. Renew. Sustain. Energy Rev., 2013, 25:59.
[56] Harvey B G, Wright M E, Quintana R L. Energy Fuels, 2010, 24:267.
[57] Meylemans H A, Baldwin L C, Harvey B G. Energy Fuels, 2013, 27:883.
[58] Zou J J, Chang N, Zhang X, Wang L. ChemCatChem, 2012, 4:1289.
[59] Meylemans H A, Quintana R L, Harvey B G. Fuel, 2012, 97:560.
[60] Nie G, Zou J J, Feng R, Zhang X, Wang L. Catal. Today, 2014, 234:271.
[61] Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T. Chem. Commun., 2014, 50:2572.
[62] Sheng X, Li N, Li G, Wang W, Yang J, Cong Y, Wang A, Wang X, Zhang T. Sci. Rep., 2014, 5:9565.
[63] Yang Y, Du Z, Huang Y, Lu F, Wang F, Gao J, Xu J. Green Chem., 2013, 15:1932.
[64] Li G, Li N, Wang X, Sheng X, Li S, Wang A, Cong Y, Wang X, Zhang T. Energy Fuels, 2014, 28:5112.
[65] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12:1493.
[66] Lorenzo D, Santos A, Simón E, Romero A. Ind. Eng. Chem. Res., 2013, 52:2257.
[67] Mahajan Y S, Kamath R S, Kumbhar P S, Mahajani S M. Ind. Eng. Chem. Res., 2008, 47:25.
[68] Deng Q, Nie G, Pan L, Zou J J, Zhang X, Wang L. Green Chem., 2015,17:4473
[69] E X T F, Zhang Y, Zou J J, Zhang X, Wang L. Mater. Lett., 2014, 118:196.
[70] E X T F, Zhang Y, Zou J J, Wang L, Zhang X. Ind. Eng. Chem. Res., 2014, 53:12312.
[71] Yue L, Lu X, Chi H, Guo Y, Xu L, Fang W, Li Y, Hu S. Fuel, 2014, 121:149.
[72] Guo Y, Yang Y, Fang W, Hu S. Appl. Catal. A, 2014, 469:213.
[73] Guo Y, Yang Y, Xiao J, Fang W. Fuel, 2014, 117:932.
[74] E X T F, Zhi X, Zhang Y, Li C, Zou J J, Zhang X, Wang L. Chem. Eng. Sci., 2015, 129:9.
[1] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424-1433.
阅读次数
全文


摘要

高密度航空航天燃料合成化学