English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1263-1274 DOI: 10.7536/PC211231 前一篇   后一篇

• 综述与评论 •

糠醛氧化合成糠酸

李兴龙, 傅尧*()   

  1. 中国科学技术大学 化学与材料科学学院 合肥 230026
  • 收稿日期:2021-12-27 修回日期:2022-03-17 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 傅尧
  • 基金资助:
    安徽省重大专项项目(18030701157); 安徽省自然科学基金项目(2008085QB63)

Preparation of Furoic Acid by Oxidation of Furfural

Xinglong Li, Yao Fu()   

  1. School of Chemistry and Materials Science, University of Science and Technology of China,Hefei 230026, China
  • Received:2021-12-27 Revised:2022-03-17 Online:2022-04-01 Published:2022-04-01
  • Contact: Yao Fu
  • Supported by:
    Major Science and Technology Projects of Anhui Province(18030701157); Anhui Natural Science Foundation Project(2008085QB63)

糠酸作为糠醛的重要下游产品,在食品制造、材料制备、光学技术、药物合成中具有重要的应用,可用于合成防腐剂、增塑剂、热固性树脂、香料以及多种药物。目前,关于糠醛的制备以及催化氢化制备下游产物的综述报道相对较多,但是还没有系统地整理评述糠醛氧化合成糠酸的相关工作。本文综述了近年来以糠醛为主要原料制备糠酸的研究进展情况,讨论了不同催化体系及在不同氧源存在下对糠酸选择性的影响,重点突出了非均相催化剂在糠酸的工业化制备中的应用前景,对糠酸制备的未来发展方向进行了展望。

As an important downstream product of furfural, furoic acid has important applications in food manufacturing, material preparation, optical technology and drug synthesis. It can be used to synthesize preservatives, plasticizers, thermosetting resins, spices and a variety of drugs. At present, there are many reviews on the preparation of furfural and the preparation of downstream compounds by hydrogenation. However, there is no systematic review on the oxidation of furfural to furoic acid. This paper reviews the progress in preparation of furoic acid from furfural in recent years. The effects of different catalytic systems and different oxygen sources on the selectivity of furoic acid are discussed. The application prospect of heterogeneous catalysts in the preparation of furoic acid is highlighted, and the future development direction of furoic acid preparation is prospected.

Contents

1 Introduction

2 Catalytic oxidation system

2.1 Homogeneous oxidation system

2.2 Heterogeneous oxidation system

2.3 Biological oxidation system

3 Conclusion and outlook

()
图1 糠醛(左)和糠酸(右)相关论文近年来历年发表数量
Fig. 1 Number of publications on furfural (left) and furoic acid (right) annually in recent years. Source:Web of Science (keyword: furfural)
图2 糠醛转化制备多种重要的下游化合物
Fig. 2 Several important downstream compounds prepared by furfural
图3 糠酸到下游产品的转化
Fig. 3 Conversion of furoic acid to downstream products
表1 均相催化体系催化转化糠醛到糠酸反应汇总
Table 1 Summary of catalytic conversion of furfural to furoic acid by homogeneous catalytic system
图4 [Cu(acac)2]/SIMes催化剂催化氧化醛到羧酸[13]
Fig. 4 Oxidation of aldehyde to acid by [Cu(acac)2]/SIMes catalysts[13]
图5 三唑钅翁-NHC催化剂催化氧化醛到羧酸[15]
Fig. 5 Oxidation of aldehyde to acid by Triazolium NHC catalyst[15]
图6 铱络合物催化剂催化氧化醛到羧酸[16]
Fig. 6 Oxidation of aldehyde to acid by iridium complex catalysts[16]
图7 NHC催化剂催化氧化醛到羧酸[17]
Fig. 7 Oxidation of aldehyde to acid by NHC catalysts[17]
图8 氯化亚铜-过氧叔丁醇氧化体系氧化醛到羧酸[18]
Fig. 8 Oxidation of aldehyde to acid by CuCl and t-BuOOH oxidation system[18]
图9 溴化铜-过氧叔丁醇催化体系氧化醛到羧酸[19]
Fig. 9 Oxidation of aldehydes to carboxylic acids by CuBr2 and t-BuOOH catalytic system[19]
图10 Mohr’s salt-过氧叔丁醇催化体系氧化醛到羧酸[21]
Fig. 10 Oxidation of aldehydes to carboxylic acids by Mohr’s salt and t-BuOOH catalytic system[21]
图11 碘-过氧叔丁醇催化体系氧化醇/醛到羧酸[22]
Fig. 11 Oxidation of alcohols or aldehydes to carboxylic acids by I2 and t-BuOOH catalytic system[22]
图12 PCC无溶剂条件下氧化醛到羧酸[23]
Fig. 12 Oxidation of aldehydes to carboxylic acids by PCC under solvent-free conditions[23]
图13 均相Ni催化剂氧化醛到酸和酯[25]
Fig. 13 Oxidation of aldehyde to acid and ester using Ni catalysts[25]
图14 二氧化碳介导的NHC催化醛到酸的反应及其机理图[26]
Fig. 14 Catalytic conversion of aldehyde to acid using carbon dioxide mediated NHC catalyst and its reaction mechanism[26]
图15 (六甲基苯)RuⅡ络合物催化剂氧化醛到羧酸[27]
Fig. 15 Catalytic conversion of aldehyde to acid using Hexamethyl-benzene-supported ruthenium complexes[27]
表2 非均相催化体系催化转化糠醛到糠酸反应汇总
Table 2 Summary of catalytic conversion of furfural to furoic acid by heterogeneous catalytic system
图16 Co4HP2Mo15V3O62/H2O2催化体系转化糠醛到糠酸[31]
Fig. 16 Conversion of furfural to furoic acid by using Co4HP2Mo15V3O62/H2O2 catalytic system[31]
图17 铁(Ⅱ)酞菁与非均相三唑钅翁催化体系转化醛到羧酸[38]
Fig. 17 Conversion of aldehydes to acids catalyzed by iron (Ⅱ) phthalocyanine and heterogeneous triazolium catalytic system[38]
图18 二氧化锰催化转化糠醇或是糠醛到糠酸[39]
Fig. 18 Conversion of furfuryl alcohol or furfural to furoic acid by using MnO2 as catalysts[39]
图19 MOF-TEMPO催化氧化糠醇到糠酸[44]
Fig. 19 Conversion of furfuryl alcohol to furoic acid by using MOF-TEMPO as catalysts[44]
图20 NOX辅酶循环ALDHs催化醛的氧化[48]
Fig. 20 Oxidation of aldehydes by ALDHs using NOX for coenzyme recycling[48]
图21 GOase和ADHs双酶级联系统催化氧化醛到羧酸[50]
Fig. 21 A dual-enzyme cascade system of GOase and ADHs for catalytic oxidation of aldehydes to carboxylic acids[50]
[1]
Martinez J G. Angew. Chem., Int. Ed., 2021, 60: 4956.

doi: 10.1002/anie.202014779     URL    
[2]
Bender T A, Dabrowski J A, GagnÉ M R. Nat. Rev. Chem., 2018, 2(5): 35.

doi: 10.1038/s41570-018-0005-y     URL    
[3]
Sajid M, Farooq U, Bary G, Azim M M, Zhao X B. Green Chem., 2021, 23(23): 9198.

doi: 10.1039/D1GC02919C     URL    
[4]
Döbereiner J W. Ann. Pharm., 1832, 3(2): 141.

doi: 10.1002/jlac.18320030206     URL    
[5]
Shen G F, Andrioletti B, Queneau Y. Curr. Opin. Green Sustain. Chem., 2020, 26: 100384.
[6]
Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, LÓpez Granados M. Energy Environ. Sci., 2016, 9(4): 1144.

doi: 10.1039/C5EE02666K     URL    
[7]
Li X D, Jia P, Wang T F. ACS Catal., 2016, 6(11): 7621.

doi: 10.1021/acscatal.6b01838     URL    
[8]
Lange J P, van der Heide E, Van Buijtenen J, Price R. ChemSusChem, 2012, 5(1): 150.

doi: 10.1002/cssc.201100648     URL    
[9]
Douthwaite M, Huang X Y, Iqbal S, Miedziak P J, Brett G L, Kondrat S A, Edwards J K, Sankar M, Knight D W, Bethell D, Hutchings G J. Catal. Sci. Technol., 2017, 7(22): 5284.

doi: 10.1039/C7CY01025G     URL    
[10]
Drault F, Snoussi Y, Paul S, Itabaiana I, Wojcieszak R. ChemSusChem, 2020, 13(19): 5164.

doi: 10.1002/cssc.202001393     URL    
[11]
Uma B, Das S J, Krishnan S, Boaz B M. Phys. B Condens. Matter, 2011, 406(14): 2834.

doi: 10.1016/j.physb.2011.04.038     URL    
[12]
ChacÓn-Huete F, Messina C, Chen F, Cuccia L, Ottenwaelder X, Forgione P. Green Chem., 2018, 20(23): 5261.

doi: 10.1039/C8GC02481B     URL    
[13]
Liu M X, Li C J. Angew. Chem. Int. Ed., 2016, 55, 10806.

doi: 10.1002/anie.201604847     URL    
[14]
Enders D, Niemeier O, Henseler A. Chem. Rev., 2007, 107(12): 5606.

doi: 10.1021/cr068372z     URL    
[15]
Khatana A K, Singh V, Gupta M K, Tiwari B. Synthesis, 2018. 4290.
[16]
Yang Z H, Luo R S, Zhu Z P, Yang X R, Tang W P. Organometallics, 2017, 36(21): 4095.

doi: 10.1021/acs.organomet.7b00634     URL    
[17]
Zhao J F, Mück-Lichtenfeld C, Studer A. Adv. Synth. Catal., 2013, 355(6): 1098.

doi: 10.1002/adsc.201300034     URL    
[18]
Sreedevi M, Sekar G. Tetrahedron Lett., 2008, 49: 1083.

doi: 10.1016/j.tetlet.2007.11.198     URL    
[19]
Das R, Chakraborty D. Appl. Organometal. Chem., 2011, 25(6): 437.

doi: 10.1002/aoc.1783     URL    
[20]
Malik P, Chakraborty D. Tetrahedron Lett., 2010, 51(27): 3521.
[21]
Chakraborty D, Majumder C, Malik P. Appl. Organometal. Chem., 2011, 25(7): 487.

doi: 10.1002/aoc.1787     URL    
[22]
Hazra S, Deb M, Elias A J. Green Chem., 2017, 19(23): 5548.

doi: 10.1039/C7GC02802D     URL    
[23]
Salehi P, Firouzabadi H, Farrokhi A, Gholizadeh M. Synthesis, 2001, 2001(15): 2273.

doi: 10.1055/s-2001-18443     URL    
[24]
Babu B R, Balasubramaniam K K. Org. Prep. Proced. Int., 1994, 26(1): 123.

doi: 10.1080/00304949409458021     URL    
[25]
Esfandiari H, Jameh-bozorghi S, Esmaielzadeh S, Shafiee M R M, Ghashang M. Res. Chem. Intermed., 2013, 39(7): 3319.

doi: 10.1007/s11164-012-0844-y     URL    
[26]
Nair V, Varghese V, Paul R R, Jose A, Sinu C R, Menon R S. Org. Lett., 2010, 12(11): 2653.

doi: 10.1021/ol1008697     URL    
[27]
Phearman A S, Moore J M, Bhagwandin D D, Goldberg J M, Heinekey D M, Goldberg K I. Green Chem., 2021, 23(4): 1609.

doi: 10.1039/D0GC03809A     URL    
[28]
Papanikolaou G, Lanzafame P, Perathoner S, Centi G, Cozza D, Giorgianni G, Migliori M, Giordano G. Catal. Commun., 2021, 149: 106234.

doi: 10.1016/j.catcom.2020.106234     URL    
[29]
Zhou B W, Song J L, Zhang Z R, Jiang Z W, Zhang P, Han B X. Green Chem., 2017, 19(4): 1075.

doi: 10.1039/C6GC03022J     URL    
[30]
Ferraz C P, Navarro-JaÉn S, Rossi L M, Dumeignil F, Ghazzal M N, Wojcieszak R. Green Chem., 2021, 23(21): 8453.

doi: 10.1039/D1GC02889H     URL    
[31]
Hu Y L, Li D J, Li D S. RSC Adv., 2015, 5(32): 24936.

doi: 10.1039/C5RA02234G     URL    
[32]
Liu X, Luo Y, Ma H, Zhang S J, Che P H, Zhang M Y, Gao J, Xu J. Angew. Chem. Int. Ed., 2021, 60(33): 18103.

doi: 10.1002/anie.202103604     URL    
[33]
Sodhi R K, Paul S, Clark J H. Green Chem., 2012, 14(6): 1649.

doi: 10.1039/c2gc35289c     URL    
[34]
Yu H, Ru S, Zhai Y Y, Dai G Y, Han S, Wei Y G. ChemCatChem, 2018, 10(6): 1253.

doi: 10.1002/cctc.201701599     URL    
[35]
Tian Q Y, Shi D X, Sha Y W. Molecules, 2008, 13(4): 948.

doi: 10.3390/molecules13040948     URL    
[36]
Zhang C M, Xu X L. Ind. Catal., 2010, 18(11): 69.
( 张成明, 徐贤伦. 工业催化, 2010, 18(11): 69.)
[37]
Yu H, Ru S, Dai G Y, Zhai Y Y, Lin H L, Han S, Wei Y G. Angew. Chem. Int. Ed., 2017, 56(14): 3867.

doi: 10.1002/anie.201612225     pmid: 28252238
[38]
Brandolese A, Ragno D, di Carmine G, Bernardi T, Bortolini O, Giovannini P P, Pandoli O G, Altomare A, Massi A. Org. Biomol. Chem., 2018, 16(46): 8955.

doi: 10.1039/c8ob02425a     pmid: 30403257
[39]
Hayashi E, Komanoya T, Kamata K, Hara M. ChemSusChem, 2017, 10(4): 654.

doi: 10.1002/cssc.201601443     pmid: 27925403
[40]
Lim M, Yoon C M, An G, Rhee H. Tetrahedron Lett., 2007, 48(22): 3835.
[41]
Gowda R R, Chakraborty D. Chin. J. Chem., 2011, 29(11): 2379.

doi: 10.1002/cjoc.201180406     URL    
[42]
Shen J R, Lei Z L, Lu J J, Ding Z G. Chem. Res. Appl., 1998, 10(5): 543.
( 沈静茹, 雷灼霖, 陆俭洁, 丁志刚. 化学研究与应用, 1998, 10(5): 543.)
[43]
Talukdar D, Sharma K, Bharadwaj S K, Thakur A. Synlett., 2013, 24: 963.

doi: 10.1055/s-0032-1316914     URL    
[44]
Kim S, Lee H E, Suh J M, Lim M H, Kim M. Inorg. Chem., 2020, 59(23): 17573.

doi: 10.1021/acs.inorgchem.0c02809     URL    
[45]
Zhang X Y, Zong M H, Li N. Green Chem., 2017, 19(19): 4544.

doi: 10.1039/C7GC01751K     URL    
[46]
Perez H I, Manjarrez N, Solis A, Luna H, Ramirez M A, Cassani J. Afr. J. Biotechnol., 2009, 8, 2279.
[47]
Krystof M, PÉrez-Sánchez M, de María P D. ChemSusChem, 2013, 6, 826.

doi: 10.1002/cssc.201200954     pmid: 23576295
[48]
Knaus T, Tseliou V, Humphreys L D, Scrutton N S, Mutti F G. Green Chem., 2018, 20(17): 3931.

doi: 10.1039/C8GC01381K     URL    
[49]
Shi S S, Zhang X Y, Zong M H, Wang C F, Li N. Mol. Catal., 2019, 469: 68.
[50]
Jia H Y, Zong M H, Zheng G W, Li N. ChemSusChem, 2019, 12(21): 4764.

doi: 10.1002/cssc.201902199     URL    
[51]
Zhang X Y, Wang X, Li N W, Guo Z W, Zong M H, Li N. ChemCatChem, 2020, 12(12): 3257.

doi: 10.1002/cctc.202000259     URL    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[3] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[6] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[7] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[10] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[11] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[12] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[13] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[14] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[15] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
阅读次数
全文


摘要

糠醛氧化合成糠酸