English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1661-1677 DOI: 10.7536/PC210934 前一篇   后一篇

• 综述 •

电催化氧化制备2,5-呋喃二甲酸

夏博文1,2, 朱斌1, 刘静1,3, 谌春林1,2,*(), 张建1,2,*()   

  1. 1 中国科学院宁波材料技术与工程研究所 宁波 315201
    2 中国科学院大学 北京 100049
    3 中国科学技术大学纳米学院 苏州 215123
  • 收稿日期:2021-09-29 修回日期:2022-01-06 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 谌春林, 张建
  • 基金资助:
    国家自然科学基金面上项目(22072170); 浙江省自然科学基金一般项目(LY19B030003); 宁波市2025重大专项(2018B10056); 宁波市2025重大专项(2019B10096); 中国科学院前沿科学重点研究项目(QYZDB-SSW-JSC037)

Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation

Bowen Xia1,2, Bin Zhu1, Jing Liu1,3, Chunlin Chen1,2(), Jian Zhang1,2()   

  1. 1 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences,Ningbo 315201, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
    3 Nano Science and Technology Institute, University of Science and Technology of China,Suzhou 215123, China
  • Received:2021-09-29 Revised:2022-01-06 Online:2022-04-01 Published:2022-04-01
  • Contact: Chunlin Chen, Jian Zhang
  • About author:
    †These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22072170); Zhejiang Provincial Natural Science Foundation of China(LY19B030003); Ningbo Science and Technology Bureau(2018B10056); Ningbo Science and Technology Bureau(2019B10096); Chinese Academy of Sciences(QYZDB-SSW-JSC037)

在第75届联合国大会上,我国承诺力争在2030年前实现碳达峰、2060年前实现碳中和。主要由光合作用产生的生物质将在双碳目标中扮演重要角色,通过高效转化可衍生出一系列替代化石产品的高值化学品。其中,2,5-呋喃二甲酸(FDCA)由于具有与石油基对苯二甲酸(TPA)相似的共轭碳环和二酸结构,可替代TPA用于合成热稳定性能、气体阻隔性能更优的生物基呋喃聚酯,大幅降低聚酯行业对化石资源的严重依赖。此外,FDCA在医药、香料、金属配位化学方面也有广泛应用,从而被认为是12种最具潜力的生物基平台化合物之一。FDCA通常可由5-羟甲基糠醛(HMF)通过催化氧化进行合成。相比于需要贵金属催化剂、高温和高压条件、以化学势作为驱动力的传统热催化方法,电催化氧化采用电极电势作为主要驱动力,是更为绿色和高效的新颖合成方法。本综述对电催化氧化制备FDCA反应所用的贵金属、过渡金属和非金属催化剂进行了总结与分析,梳理了催化剂设计和反应机理的研究脉络,并指出了该领域发展所面临的挑战与机遇。

At the 75th session of the United Nations General Assembly, China made a solemn commitment to strive to achieve carbon peaking by 2030 and carbon neutrality by 2060. Biomass, mainly produced by photosynthesis, will play an important role in the dual carbon targets. The efficient conversion of biomass can yield a range of high-value chemicals to replace fossil-derived products. Among these biomasses, 2,5-furandicarboxylic acid (FDCA) can be used to replace petroleum-based terephthalic acid (TPA) in the synthesis of bio-based furan polyesters with better thermal stability and gas barrier properties due to its similar conjugated carbon ring and diacid structure to TPA, significantly reducing the heavy reliance on fossil resources in polyester industry. In addition, FDCA is widely applied to pharmaceuticals, fragrances and metal coordination chemistry, making it one of the twelve most promising bio-based platform compounds. FDCA is typically synthesized by catalytic oxidation of 5-hydroxymethyl furfural (HMF). Compared to conventional thermocatalytic methods that require precious metal catalysts, high temperature and pressure conditions, and chemical potential as the driving force, electrocatalytic oxidation uses electrode potential as the main driving force and is a novel synthesis method that is greener and more efficient. This review summarises and analyzes the noble metal, transition metal and non-metal catalysts used in the preparation of FDCA reactions by electrocatalytic oxidation, outlines the research on catalyst design and reaction mechanisms, and points out the challenges and opportunities for the development of this field.

Contents

1 Introduction

2 Noble metal catalysts

3 Transition metal catalysts

3.1 Mono metal catalysts

3.2 Binary metal catalysts

3.3 Multiple metal catalysts

4 Non-metal catalysts

5 Mechanism

6 Conclusion and outlook

()
图1 FDCA的应用
Fig. 1 Application of FDCA
图2 近10年关于电催化氧化制备FDCA的文献
Fig. 2 Publications on the synthesis of 2,5-furandicarboxylic acid by electrocatalytic oxidation in the last 10 years
图3 (a)HMF氧化为FDCA的反应路径;(b)不同电极上FDCA收率随时间变化曲线;(c)反应120 min后不同电极上HMFCA与FDCA的收率[24]
Fig. 3 (a) Reaction pathways for HMF oxidation into to FDCA. (b) Time-course of FDCA yield over different electrodes. (c) Yields of HMFCA and FDCA over different electrodes after 120 min reaction[24]. Copyright 2020, American Chemical Society
表1 贵金属催化剂
Table 1 Noble metal catalysts
图4 CoNW/NF催化剂的结构和形貌[50]
Fig. 4 Structural and morphological features of CoNW/NF[50]. Copyright 2019, The Royal Society of Chemistry
图5 原料稳定性能及连续流电解比较图:(a) BHMF和HMF的热和化学稳定性,(b) 流动反应器示意图和连续流动反应体系的照片[55]
Fig. 5 Continuous flow elestrolysis. (a) Thermal and chemical stability of BHMF and HMF. (b) Schematic illustration of flow reactor and photograph of continuous flow reaction system[55].Copyright 2021, Elsevier
图6 (a) HMF的ECO和ECH耦合[61]。(b) HMF与p-NP成对电解[64]
Fig. 6 (a) Integration of ECO and ECH of HMF[61]. (b) Paired electrolysis of HMF and p-NP[64]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
表2 一元过渡金属催化剂
Table 2 Mono-transition metal catalysts
图7 (a) 四面体(Zn2+)或八面体(Al3+)的几何位置示意图;(b) Co R-space的EXAFS光谱;(c) 电化学性能对比;(d) CuCo2O4上HMF电化学氧化过程的产物分析[81]
Fig. 7 (a) Geometric sites of the tetrahedron (Zn2+) or octahedron (Al3+). (b) The EXAFS spectrum of the Co R-space. (c) The electrochemical performance for CuCo2O4 in comparison to Co3O4. (d) The concentration of HMF and its oxidation products during the electrochemical oxidation of HMF on CuCo2O4[81]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
表3 二元过渡金属催化剂
Table 3 Binary transition metal catalysts
表4 多元过渡金属催化剂
Table 4 Multiple transition metal catalysts
表5 非金属催化剂
Table 5 Non-metal catalysts
图8 HMF电催化氧化到FDCA可能的反应路径。
Fig. 8 Reaction pathways for the electrochemical oxidation of HMF to FDCA
图9 在1 mol/L KOH和20 mmol/L HMF中的原位SFG光谱结果:(a)在不同电压下电解90 min以及(b)1.45 VRHE的恒电位电解[38]
Fig. 9 In-situ SFG spectra recorded (a) at various voltages for 90 min electrolysis and (b) at different times at a constant 1.45 VRHE in 1 mol/L KOH with 20 mmol/L HMF[38]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图10 (a) 具有SERS响应催化剂的构建;(b) 催化剂和 (c)表面呋喃分子的原位SERS光谱;(d) 1 mol/L KOH中的HMF氧化反应机理[109,111]
Fig. 10 (a) Construction of catalysts with SERS response. In situ SERS spectra of (b) catalyst and (c) surface furans. (d) Reaction mechanism of HMF oxidation in 1 mol/L KOH[109,111]. Copyrights 2020, The Royal Society of Chemistry
图11 活性电催化剂的研究趋势(TEMPO归为碳基催化剂)
Fig. 11 Research trends in active electrocatalysts (TEMPO is classified as a carbon based catalyst)
图12 全球电催化氧化制备FDCA的研究强度
Fig. 12 Global research intensity in the synthesis of FDCA by electrocatalytic oxidation
[1]
Liang T, Chen C L, Li X, Zhang J. Langmuir, 2016, 32(32): 8042.

doi: 10.1021/acs.langmuir.6b01953     pmid: 27455183
[2]
Chen C L, Li X T, Wang L C, Liang T, Wang L, Zhang Y J, Zhang J. ACS Sustainable Chem. Eng., 2017, 5: 11300.
[3]
Du J, Yu Y F, Lv H J, Chen C L, Zhang J, Chen A B. J. Nanoparticle Res., 2018, 20(1): 12.

doi: 10.1007/s11051-017-4116-z     URL    
[4]
Du J, Yu Y F, Zhang Y, Liu L, Chen C L, Chen A B. Phys. Status Solidi A, 2019, 216(6): 1800798.
[5]
Vuyyuru K R, Strasser P. Catal. Today, 2012, 195(1): 144.

doi: 10.1016/j.cattod.2012.05.008     URL    
[6]
Davis S E, Zope B N, Davis R J. Green Chem., 2012, 14(1): 143.

doi: 10.1039/C1GC16074E     URL    
[7]
Shen H Y, Shan H Z, Liu L. ChemSusChem, 2020, 13(3): 513.

doi: 10.1002/cssc.201902799     URL    
[8]
Sun Q H, Wang S, Liu H C. ACS Catal., 2019, 9(12): 11413.
[9]
Guan W, Zhang Y L, Chen Y, Wu J C, Cao Y, Wei Y N, Huo P W. J. Catal., 2021, 396: 40.

doi: 10.1016/j.jcat.2021.02.012     URL    
[10]
An J H, Sun G H, Xia H A. ACS Sustainable Chem. Eng., 2019, 7(7): 6696.

doi: 10.1021/acssuschemeng.8b05916     URL    
[11]
Xia H A, An J H, Hong M, Xu S Q, Zhang L, Zuo S L. Catal. Today, 2019, 319: 113.

doi: 10.1016/j.cattod.2018.05.050     URL    
[12]
Chen C L, Wang L C, Zhu B, Zhou Z Q, El-Hout S I, Yang J, Zhang J. J. Energy Chem., 2021, 54: 528.

doi: 10.1016/j.jechem.2020.05.068     URL    
[13]
Du L, Shao Y Y, Sun J M, Yin G P, Du C Y, Wang Y. Catal. Sci. Technol., 2018, 8(13): 3216.

doi: 10.1039/C8CY00533H     URL    
[14]
Liu W J, Dang L N, Xu Z R, Yu H Q, Jin S, Huber G W. ACS Catal., 2018, 8(6): 5533.

doi: 10.1021/acscatal.8b01017     URL    
[15]
Francke R, Little R D. Chem. Soc. Rev., 2014, 43(8): 2492.

doi: 10.1039/c3cs60464k     pmid: 24500279
[16]
Awad H S, Galwa N A. Chemosphere, 2005, 61(9): 1327.

pmid: 15878189
[17]
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2015, 44(8): 2060.

doi: 10.1039/c4cs00470a     pmid: 25672249
[18]
Kawana O, Nakamura Y, Yoshihiro Y. NIPPON KAGAKU KAISHI, 1983(12): 1747.
[19]
Grabowski G, Lewkowski J, Skowroński R. Electrochimica Acta, 1991, 36(13): 1995.

doi: 10.1016/0013-4686(91)85084-K     URL    
[20]
Skowroński R, Cottier L, Descotes G, Lewkowski J. Synthesis, 1996, 1996(11): 1291.

doi: 10.1055/s-1996-4397     URL    
[21]
Cha H G, Choi K S. Nat. Chem., 2015, 7(4): 328.

doi: 10.1038/nchem.2194     URL    
[22]
Zhou C M, Shi W R, Wan X Y, Meng Y, Yao Y, Guo Z, Dai Y H, Wang C, Yang Y H. Catal. Today, 2019, 330: 92.

doi: 10.1016/j.cattod.2018.05.037     URL    
[23]
Chadderdon D J, Xin L, Qi J, Qiu Y, Krishna P, More K L, Li W Z. Green Chem., 2014, 16(8): 3778.

doi: 10.1039/C4GC00401A     URL    
[24]
Park M, Gu M S, Kim B S. ACS Nano, 2020, 14(6): 6812.

doi: 10.1021/acsnano.0c00581     URL    
[25]
Xu G R, Batmunkh M, Donne S, Jin H N, Jiang J X, Chen Y, Ma T Y. J. Mater. Chem. A, 2019, 7(44): 25433.
[26]
Lu Y X, Liu T Y, Dong C L, Huang Y C, Li Y F, Chen J, Zou Y Q, Wang S Y. Adv. Mater., 2021, 33(8): 2007056.
[27]
Zhou B, Li Y Y, Zou Y Q, Chen W, Zhou W, Song M L, Wu Y J, Lu Y X, Liu J L, Wang Y Y, Wang S Y. Angew. Chem. Int. Ed., 2021, 60(42): 22908.
[28]
Wang J L, Zhang X, Wang G Z, Zhang Y X, Zhang H M. Chem. Commun., 2020, 56(88): 13611.
[29]
Cao T, Wu M J, Ordomsky V V, Xin X, Wang H, MÉtivier P, Pera-Titus M. ChemSusChem, 2017, 10(24): 4851.

doi: 10.1002/cssc.201702119     URL    
[30]
Wang T C, Song Y, Zhao W N, Zhou C M, Jin Y G, Wan X Y, Dai Y H, Yang Y H. New J. Chem., 2021, 45(45): 21285.
[31]
Jiang N, You B, Boonstra R, Terrero Rodriguez I M, Sun Y J. ACS Energy Lett., 2016, 1(2): 386.

doi: 10.1021/acsenergylett.6b00214     URL    
[32]
You B, Jiang N, Liu X, Sun Y J. Angew. Chem. Int. Ed., 2016, 55(34): 9913.

doi: 10.1002/anie.201603798     pmid: 27417546
[33]
You B, Liu X, Jiang N, Sun Y J. J. Am. Chem. Soc., 2016, 138(41): 13639.
[34]
Choi S, Balamurugan M, Lee K G, Cho K H, Park S, Seo H, Nam K T. J. Phys. Chem. Lett., 2020, 11(8): 2941.

doi: 10.1021/acs.jpclett.0c00425     URL    
[35]
Wang J M, Zhao Z, Shen C, Liu H P, Pang X Y, Gao M Q, Mu J, Cao F, Li G Q. Catal. Sci. Technol., 2021, 11(7): 2480.

doi: 10.1039/D0CY02333G     URL    
[36]
Zhang J F, Gong W B, Yin H J, Wang D D, Zhang Y X, Zhang H M, Wang G Z, Zhao H J. ChemSusChem, 2021, 14(14): 2935.

doi: 10.1002/cssc.202100811     URL    
[37]
Barwe S, Weidner J, Cychy S, Morales D M, Dieckhöfer S, Hiltrop D, Masa J, Muhler M, Schuhmann W. Angew. Chem. Int. Ed., 2018, 57(35): 11460.
[38]
Zhang N N, Zou Y Q, Tao L, Chen W, Zhou L, Liu Z J, Zhou B, Huang G, Lin H Z, Wang S Y. Angew. Chem. Int. Ed., 2019, 58(44): 15895.
[39]
Zhou B, Dong C L, Huang Y C, Zhang N N, Wu Y D, Lu Y X, Yue X, Xiao Z H, Zou Y Q, Wang S Y. J. Energy Chem., 2021, 61: 179.

doi: 10.1016/j.jechem.2021.02.026     URL    
[40]
Kong F H, Wang M. ACS Appl. Energy Mater., 2021, 4(2): 1182.

doi: 10.1021/acsaem.0c02418     URL    
[41]
Wang W, Wang M. Catal. Sci. Technol., 2021, 11(22): 7326.

doi: 10.1039/D1CY00786F     URL    
[42]
Wang W, Kong F H, Zhang Z, Yang L, Wang M. Dalton Trans., 2021, 50(31): 10922.
[43]
Gao L F, Liu Z B, Ma J L, Zhong L J, Song Z Q, Xu J N, Gan S Y, Han D X, Niu L. Appl. Catal. B Environ., 2020, 261: 118235.
[44]
Lu X Y, Wu K H, Zhang B S, Chen J N, Li F, Su B J, Yan P Q, Chen J M, Qi W. Angew. Chem. Int. Ed., 2021, 60(26): 14528.
[45]
Song X J, Liu X H, Wang H F, Guo Y, Wang Y Q. Ind. Eng. Chem. Res., 2020, 59(39): 17348.
[46]
Poerwoprajitno A R, Gloag L, Watt J, Cychy S, Cheong S, Kumar P V, Benedetti T M, Deng C, Wu K H, Marjo C E, Huber D L, Muhler M, Gooding J J, Schuhmann W, Wang D W, Tilley R D. Angew. Chem. Int. Ed., 2020, 59(36): 15487.
[47]
Holzhäuser F J, Janke T, Öztas F, Broicher C, Palkovits R. Adv. Sustainable Syst., 2020, 4(10): 1900151.
[48]
Cai M, Ding S, Gibbons B, Yang X Z, Kessinger M C, Morris A J. Chem. Commun., 2020, 56(92): 14361.
[49]
Heidary N, Chartrand D, Guiet A, Kornienko N. Chem. Sci., 2021, 12: 7324.

doi: 10.1039/d1sc00573a     pmid: 34163822
[50]
Zhou Z Q, Chen C L, Gao M R, Xia B W, Zhang J. Green Chem., 2019, 21(24): 6699.

doi: 10.1039/C9GC02880C     URL    
[51]
Wang C L, Bongard H J, Yu M Q, Schüth F. ChemSusChem, 2021, 14(23): 5199.

doi: 10.1002/cssc.202002762     URL    
[52]
Huang X, Song J L, Hua M L, Xie Z B, Liu S S, Wu T B, Yang G Y, Han B X. Green Chem., 2020, 22(3): 843.

doi: 10.1039/C9GC03698A     URL    
[53]
Weidner J, Barwe S, Sliozberg K, Piontek S, Masa J, Apfel U P, Schuhmann W. Beilstein J. Org. Chem., 2018, 14: 1436.

doi: 10.3762/bjoc.14.121     pmid: 29977407
[54]
Kang M J, Yu H J, Kim H S, Cha H G. New J. Chem., 2020, 44(33): 14239.
[55]
Zhu B, Chen C L, Huai L Y, Zhou Z Q, Wang L, Zhang J. Appl. Catal. B Environ., 2021, 297: 120396.
[56]
Zhang R Y, Jiang S H, Rao Y, Chen S, Yue Q, Kang Y J. Green Chem., 2021, 23(6): 2525.

doi: 10.1039/D0GC04157B     URL    
[57]
Taitt B J, Nam D H, Choi K S. ACS Catal., 2019, 9(1): 660.

doi: 10.1021/acscatal.8b04003     URL    
[58]
Nam D H, Taitt B J, Choi K S. ACS Catal., 2018, 8(2): 1197.

doi: 10.1021/acscatal.7b03152     URL    
[59]
Pham H M, Kang M J, Kim K A, Im C G, Hwang S Y, Cha H G. Korean J. Chem. Eng., 2020, 37(3): 556.

doi: 10.1007/s11814-020-0474-9     URL    
[60]
Hu K, Zhang M, Liu B Y, Yang Z Y, Li R Q, Yan K. Mol. Catal., 2021, 504: 111459.
[61]
Li S Q, Sun X, Yao Z H, Zhong X, Cao Y Y, Liang Y L, Wei Z Z, Deng S W, Zhuang G L, Li X N, Wang J G. Adv. Funct. Mater., 2019, 29(42): 1904780.
[62]
Kubota S R, Choi K S. ChemSusChem, 2018, 11(13): 2138.

doi: 10.1002/cssc.201800532     URL    
[63]
Latsuzbaia R, Bisselink R, Anastasopol A, Meer H, Heck R, Yagüe M S, Zijlstra M, Roelands M, Crockatt M, Goetheer E, Giling E. J. Appl. Electrochem., 2018, 48(6): 611.

doi: 10.1007/s10800-018-1157-7     URL    
[64]
Zhang P L, Sheng X, Chen X Y, Fang Z Y, Jiang J, Wang M, Li F S, Fan L Z, Ren Y S, Zhang B B, Timmer B J J, Ahlquist M S G, Sun L C. Angew. Chem. Int. Ed., 2019, 58(27): 9155.

doi: 10.1002/anie.201903936     URL    
[65]
You B, Liu X, Liu X, Sun Y J. ACS Catal., 2017, 7(7): 4564.

doi: 10.1021/acscatal.7b00876     URL    
[66]
Li W, Jiang N, Hu B, Liu X, Song F Z, Han G Q, Jordan T J, Hanson T B, Liu T L, Sun Y J. Chem, 2018, 4(3): 637.

doi: 10.1016/j.chempr.2017.12.019     URL    
[67]
Liu X, Leong D C Y, Sun Y J. Green Chem., 2020, 22(19): 6531.

doi: 10.1039/D0GC02315A     URL    
[68]
Trotochaud L, Young S L, Ranney J K, Boettcher S W. J. Am. Chem. Soc., 2014, 136(18): 6744.

doi: 10.1021/ja502379c     pmid: 24779732
[69]
Chakraborty B, Beltrán-Suito R, Hausmann J N, Garai S, Driess M, Menezes P W. Adv. Energy Mater., 2020, 10(30): 2001377.
[70]
Hausmann J N, Beltrán-Suito R, Mebs S, Hlukhyy V, Fässler T F, Dau H, Driess M, Menezes P W. Adv. Mater., 2021, 33(27): 2008823.
[71]
Gao L F, Bao Y, Gan S Y, Sun Z H, Song Z Q, Han D X, Li F H, Niu L. ChemSusChem, 2018, 11(15): 2547.

doi: 10.1002/cssc.201800695     URL    
[72]
Kang M J, Park H, Jegal J, Hwang S Y, Kang Y S, Cha H G. Appl. Catal. B Environ., 2019, 242: 85.

doi: 10.1016/j.apcatb.2018.09.087     URL    
[73]
Deng X H, Li M, Fan Y, Wang L, Fu X Z, Luo J L. Appl. Catal. B Environ., 2020, 278: 119339.
[74]
Cai M K, Zhang Y W, Zhao Y Y, Liu Q L, Li Y L, Li G Q. J. Mater. Chem. A, 2020, 8(39): 20386.
[75]
Chen H, Wang J T, Yao Y, Zhang Z H, Yang Z Z, Li J, Chen K Q, Lu X Y, Ouyang P K, Fu J. ChemElectroChem, 2019, 6(23): 5797.

doi: 10.1002/celc.201901366    
[76]
Zhang J W, Yu P L, Zeng G M, Bao F X, Yuan Y L, Huang H W. J. Mater. Chem. A, 2021, 9(15): 9685.

doi: 10.1039/D0TA11678E     URL    
[77]
Wang L, Cao J H, Lei C J, Dai Q Z, Yang B, Li Z J, Zhang X W, Yuan C, Lei L C, Hou Y. ACS Appl. Mater. Interfaces, 2019, 11(31): 27743.
[78]
Liang S Q, Pan L H, Thomas T, Zhu B, Chen C L, Zhang J, Shen H J, Liu J, Yang M H. Chem. Eng. J., 2021, 415: 128864.
[79]
Li M Y, Chen L F, Ye S T, Fan G L, Yang L, Zhang X, Li F. J. Mater. Chem. A, 2019, 7(22): 13695.
[80]
Yang G C, Jiao Y Q, Yan H J, Xie Y, Wu A P, Dong X, Guo D Z, Tian C G, Fu H G. Adv. Mater., 2020, 32(17): 2000455.
[81]
Lu Y X, Dong C L, Huang Y C, Zou Y Q, Liu Z J, Liu Y B, Li Y Y, He N H, Shi J Q, Wang S Y. Angew. Chem. Int. Ed., 2020, 59(43): 19215.
[82]
Lu Y X, Dong C L, Huang Y C, Zou Y Q, Liu Y B, Li Y Y, Zhang N N, Chen W, Zhou L, Lin H Z, Wang S Y. Sci. China Chem., 2020, 63(7): 980.

doi: 10.1007/s11426-020-9749-8     URL    
[83]
Lemoine K, Inaguma Y, Heidary N, Kornienko N. Chem. Commun., 2020, 56(65): 9276.

doi: 10.1039/D0CC02815K     URL    
[84]
Song Y J, Li Z H, Fan K, Ren Z, Xie W F, Yang Y S, Shao M F, Wei M. Appl. Catal. B Environ., 2021, 299: 120669.
[85]
Zhong Y, Ren R Q, Qin L, Wang J B, Peng Y Y, Li Q, Fan Y M. New J. Chem., 2021, 45(25): 11213.
[86]
Gao L F, Gan S Y, Ma J L, Sun Z H, Liu Z B, Zhong L J, Zhou K, Han F J, Wang W, Han D X, Niu L. ChemElectroChem, 2020, 7(20): 4251.

doi: 10.1002/celc.202001117     URL    
[87]
Zhu B, Qin Y, Du J W, Zhang F Z, Lei X D. ACS Sustainable Chem. Eng., 2021, 9(35): 11790.
[88]
Mondal B, Karjule N, Singh C, Shimoni R, Volokh M, Hod I, Shalom M. Adv. Energy Mater., 2021, 11(37): 2101858.
[89]
Zhang M, Liu Y Q, Liu B Y, Chen Z, Xu H, Yan K. ACS Catal., 2020, 10(9): 5179.

doi: 10.1021/acscatal.0c00007     URL    
[90]
Liu B Y, Xu S J, Zhang M, Li X, Decarolis D, Liu Y Q, Wang Y C, Gibson E K, Catlow C R A, Yan K. Green Chem., 2021, 23(11): 4034.

doi: 10.1039/D1GC00901J     URL    
[91]
Bai X J, He W X, Lu X Y, Fu Y, Qi W. J. Mater. Chem. A, 2021, 9(25): 14270.
[92]
Xie Y N, Zhou Z Y, Yang N J, Zhao G H. Adv. Funct. Mater., 2021, 31(34): 2102886.
[93]
Xie C, Yan D F, Li H, Du S Q, Chen W, Wang Y Y, Zou Y Q, Chen R, Wang S Y. ACS Catal., 2020, 10(19): 11082.
[94]
Gu K Z, Wang D D, Xie C, Wang T H, Huang G, Liu Y B, Zou Y Q, Tao L, Wang S Y. Angew. Chem. Int. Ed., 2021, 60(37): 20253.
[95]
Deng X H, Kang X M, Li M, Xiang K, Wang C, Guo Z P, Zhang J J, Fu X Z, Luo J L. J. Mater. Chem. A, 2020, 8(3): 1138.

doi: 10.1039/C9TA06917H     URL    
[96]
Qin Q, Heil T, Schmidt J, Schmallegger M, Gescheidt G, Antonietti M, Oschatz M. ACS Appl. Energy Mater., 2019, 2(11): 8359.

doi: 10.1021/acsaem.9b01852    
[97]
Chadderdon X H, Chadderdon D J, Pfennig T, Shanks B H, Li W Z. Green Chem., 2019, 21(22): 6210.

doi: 10.1039/c9gc02264c    
[98]
Cardiel A C, Taitt B J, Choi K S. ACS Sustainable Chem. Eng., 2019, 7(13): 11138.
[99]
Kashparova V P, Klushin V A, Leontyeva D V, Smirnova N V, Chernyshev V M, Ananikov V P. Chem. Asian J., 2016, 11(18): 2578.

doi: 10.1002/asia.201600801     URL    
[100]
Chadderdon D J, Wu L P, McGraw Z A, Panthani M, Li W Z. ChemElectroChem, 2019, 6(13): 3387.

doi: 10.1002/celc.201900482    
[101]
Liu H Z, Lee T H, Chen Y F, Cochran E W, Li W Z. ChemElectroChem, 2021, 8(15): 2817.

doi: 10.1002/celc.202100662     URL    
[102]
Siankevich S, Savoglidis G, Fei Z F, Laurenczy G, Alexander D T L, Yan N, Dyson P J. J. Catal., 2014, 315: 67.

doi: 10.1016/j.jcat.2014.04.011     URL    
[103]
Ferreira A D D, de Mello M D, da Silva M A P. Ind. Eng. Chem. Res., 2019, 58: 128.

doi: 10.1021/acs.iecr.8b05602     URL    
[104]
Ait Rass H, Essayem N, Besson M. ChemSusChem, 2015, 8(7): 1206.

doi: 10.1002/cssc.201403390     URL    
[105]
Chen W, Xie C, Wang Y Y, Zou Y Q, Dong C L, Huang Y C, Xiao Z H, Wei Z X, Du S Q, Chen C, Zhou B, Ma J M, Wang S Y. Chem, 2020, 6(11): 2974.

doi: 10.1016/j.chempr.2020.07.022     URL    
[106]
Yang Y C, Mu T C. Green Chem., 2021, 23(12): 4228.

doi: 10.1039/D1GC00914A     URL    
[107]
Deng X H, Xu G Y, Zhang Y J, Wang L, Zhang J J, Li J F, Fu X Z, Luo J L. Angew. Chem. Int. Ed., 2021, 60(37): 20535.
[108]
Hou Q D, Qi X H, Zhen M N, Qian H L, Nie Y F, Bai C, Zhang S Q, Bai X Y, Ju M T. Green Chem., 2021, 23(1): 119.

doi: 10.1039/D0GC02770G     URL    
[109]
Heidary N, Kornienko N. Chem. Sci., 2020, 11(7): 1798.

doi: 10.1039/d0sc00136h     pmid: 32180924
[110]
Heidary N, Kornienko N. Chem. Commun., 2019, 55(80): 11996.
[111]
Heidary N, Kornienko N. Chem. Commun., 2020, 56(62): 8726.

doi: 10.1039/D0CC03084H     URL    
[112]
Hu Y G, Zhan F, Wang Q, Sun Y J, Yu C, Zhao X, Wang H, Long R, Zhang G Z, Gao C, Zhang W K, Jiang J, Tao Y, Xiong Y J. J. Am. Chem. Soc., 2020, 142(12): 5618.

doi: 10.1021/jacs.9b12443     URL    
[113]
Wöllner S, Nowak T, Zhang G R, Rockstroh N, Ghanem H, Rosiwal S, Brückner A, Etzold B J M. ChemistryOpen, 2021, 10(5): 600.

doi: 10.1002/open.202100072     URL    
[114]
Zhang T T, Hu Y P, Huai L Y, Gao Z J, Zhang J. Green Chem., 2021, 23(9): 3241.

doi: 10.1039/D1GC00302J     URL    
[115]
Hu Y, Li M, Gao Z, Wang L, Zhang J. Mater. Today Chem., 2021, 20: 100423.
[116]
[2021-09-01]http://www.nimte.ac.cn/news/progress/201901/t20190107_5225680.html
[117]
[2021-09-01] http://www.nimte.ac.cn/news/progress/202105/t20210531_6050324.html
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[3] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[7] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[8] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[11] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[12] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[13] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[14] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[15] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
阅读次数
全文


摘要

电催化氧化制备2,5-呋喃二甲酸