English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 192-208 DOI: 10.7536/PC120849 前一篇   后一篇

• 综述与评论 •

油脂和木质纤维素催化转化制备生物液体燃料

张家仁, 邓甜音, 刘海超*   

  1. 北京大学化学与分子工程学院 分子动态与稳态国家重点实验室 北京分子科学国家实验室 北京 100871
  • 收稿日期:2012-08-01 修回日期:2012-10-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 刘海超 E-mail:hcliu@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20825310, 21173008)和国家重点基础研究发展计划(973)项目(No.2011CB201400,2011CB808700)资助

Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose

Zhang Jiaren, Deng Tianyin, Liu Haichao*   

  1. Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2012-08-01 Revised:2012-10-01 Online:2013-02-24 Published:2012-12-28

世界范围能源短缺和环境恶化的双重压力促使可再生生物质资源的能源化利用成为当前研究的一个重要方向。生物质种类多样,但考虑到粮食安全等因素,其中油脂和木质纤维素适合替代化石资源用于制备液体燃料。本文概述了油脂和木质纤维素通过不同催化转化途径制备液体燃料的一些研究进展。油脂可以通过催化热裂解、加氢和酯交换方法制备生物液体燃料,而木质纤维素制备液体燃料的可行途径包括气化-费托合成、液化-精炼和经历平台化合物的选择性合成。在介绍这些催化途径的同时,特别讨论了其中所使用的催化剂和工艺等方面的研究进展,分析了存在的问题和可能的解决措施,以期能为生物质能源化利用的研究提供参考。

Dual pressures currently arising from energy shortage and environmental degradation worldwide make it critically important to utilize renewable biomass resources for energy. But due to the requirement for the safety of food and feed, triglyceride feedstocks (currently derived mainly from vegetable oils and animal fats) and lignocellulose among the various kinds of naturally-occurring biomass are practical sources for production of liquid biofuels instead of fossil fuels. In this respect, we review the recent progress in the transformation of triglyceride feedstocks and lignocellulose into liquid biofuels by different catalytic routes. These routes include thermal cracking, hydrogenation and transesterification for oils and fats, and gasification-Fischer-Tropsch synthesis, liquefaction-upgrading and selective synthesis via platform chemicals for lignocellulose. The catalysts and processes involved in these catalytic routes are intensively discussed, and their existing problems and possible solutions are addressed, which may provide insights helpful for further studies on the more efficient utilization of biomass for energy. Contents
1 Introduction
2 Conversion of oils and fats
2.1 Thermal cracking
2.2 Catalytic hydrogenation
2.3 Transesterification
3 Conversion of lignocellulose
3.1 Gasification-Fischer-Tropsch synthesis
3.2 Liquefaction-upgrading
3.3 Selective synthesis via platform chemicals
4 Outlook

中图分类号: 

()

[1] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12(9): 1493-1513
[2] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9): 4044-4098
[3] 沈宜泓(Shen Y H), 王帅(Wang S), 罗琛(Luo C), 刘海超(Liu H C). 化学进展(Progress in Chemistry), 2007, 19(2): 431-436
[4] 袁振宏(Yuan Z H), 吴创之(Wu C Z), 马隆龙(Ma L L). 生物质能利用原理与技术(Principle and Technology of Biomass Energy Utilization). 北京: 化学工业出版社(Beijing: Chemical Industrial Press), 2005
[5] Mata T M, Martins A A, Caetano N S. Renew. Sust. Energ. Rev., 2010, 14(1): 217-232
[6] Quintero J, Montoya M, Sánchez O, Giraldo O, Cardona C. Energy, 2008, 33(3): 385-399
[7] Junming X, Jianchun J, Yanju L, Jie C. Bioresource Technol., 2009, 100(20): 4867-4870
[8] Knothe G. Prog. Energ. Combust., 2010, 36(3): 364-373
[9] Maher K, Bressler D. Bioresource Technol., 2007, 98(12): 2351-2368
[10] Twaiq F A A, Mohamad A, Bhatia S. Fuel Process Technol., 2004, 85(11): 1283-1300
[11] Heo H S, Kim S G, Jeong K E, Jeon J K, Park S H, Kim J M, Kim S S, Park Y K. Bioresource Technol., 2011, 102(4): 3952-3957
[12] Ngo T A, Kim J, Kim S K, Kim S S. Energy, 2010, 35(6): 2723-2728
[13] Twaiq F A, Mohamed A R, Bhatia S. Micropor. Mesopor. Mater., 2003, 64: 95-107
[14] Ooi Y S, Zakaria R, Mohamed A R, Bhatia S. Appl. Catal. A Gen., 2004, 274(1): 15-23
[15] Twaiq F A, Zabidi N A M, Mohamed A R, Bhatia S. Fuel Process Technol., 2003, 84(1): 105-120
[16] Ramya G, Sudhakar R, Joice J A I, Ramakrishnan R, Sivakumar T. Appl. Catal. A Gen., 2012, 433/434: 170-178
[17] Wiggers V, Meier H, Wisniewski A, Chivanga B A, Wolf M M. Bioresource Technol., 2009, 100(24): 6570-6577
[18] Da Rocha F G, Brodzki D, Djega-Mariadassou G. Fuel, 1993, 72(4): 543-549
[19] Jakkula J, Niemi V, Nikkonen J, Purola V M, Myllyoja J, Aalto P, Lehtonen J, Alopaeus V. US7232935, 2007
[20] Peng B, Yao Y, Zhao C, Lercher J A. Angew. Chem. Int. Ed., 2012, 124(9): 2114-2117
[21] Barron C A, Melo-Banda J, Dominguez E J, Hernandez M E, Silva R R, Reyes T A, Meraz M M. Catal. Today, 2011, 166(1): 102-110
[22] Herskowitz M, Landau M, Reizner I, Kaliya M. WO100584, 2006
[23] Guzman A, Torres J E, Prada L P, Nunez M L. Catal. Today, 2010, 156(1): 38-43
[24] Simacek P, Kubicka D, Sebor G, Pospísil M. Fuel, 2009, 88(3): 456-460
[25] Huber G W, O’Connor P, Corma A. Appl. Catal. A Gen., 2007, 329: 120-129
[26] Laurent E, Delmon B. Appl. Catal. A Gen., 1994, 109(1): 97-115
[27] Senol O I, Viljava T R, Krause A. Appl. Catal. A Gen., 2007, 326(2): 236-244
[28] Simacek P, Kubicka D. Fuel, 2010, 89(7): 1508-1513
[29] 赵阳(Zhao Y), 吴佳(Wu J), 王宣(Wang X), 张晓昕(Zhang X X), 孟祥堃(Meng X K). 化工进展(Chemical Industry and Engineering Progress), 2007, 26(10): 1391-1394
[30] Bacovsky D, Korbitz W, Mittelbach M, Worgetter M. IEA Task 39 Report T39-B6, 2007
[31] Meher L, Vidya S D, Naik S. Renew. Sust. Energ. Rev., 2006, 10(3): 248-268
[32] Atadashi I, Aroua M, Aziz A A. Renew. Energ., 2011, 36(2): 437-443
[33] Di Serio M, Tesser R, Pengmei L, Santacesaria E. Energy. Fuel, 2007, 22(1): 207-217
[34] Ilgen O, Akin A N. Turk. J. Chem., 2009. 33(2): 281-287
[35] Arzamendi G, Campo I, Arguinarena E, Sanchez M, Montes M, Gandia L. Chem. Eng. J., 2007, 134: 123-130
[36] Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S. Renew. Energ., 2009, 34(4): 1145-1150
[37] Shibasaki-Kitakawa N, Honda H, Kuribayashi H, Toda T, Fukumura T, Yonemoto T. Bioresource Technol., 2007, 98(2): 416-421
[38] Co C E T, Tan M C, Diamante J A R, Yan L R C, Tan R R, Razon L F. Catal. Today, 2011, 174(1): 54-58
[39] Cantrell D G, Gillie L J, Lee A F, Wilson K. Appl. Catal. A Gen., 2005, 287(2): 183-190
[40] Liu H, Min E. Green Chem., 2006, 8(7): 657-662
[41] 王帅(Wang S), 李洋(Li Y), 刘海超(Liu H C). 化学学报(Acta. Chim. Sin. ), 2012, doi: 10.6023/A12050249
[42] Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E. Ind. Eng. Chem. Res., 2006, 45(9): 3009-3014
[43] Kouzu M, Hidaka J S. Fuel, 2012, 93: 1-12
[44] Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J. Fuel, 2008, 87(12): 2798-2806
[45] Kouzu M, Hidaka J S. Fuel, 2012, doi: 10.1016/j. fuel. 2012.06.019
[46] Liu C, Lv P, Yuan Z, Yan F, Luo W. Renew. Energ., 2010, 35(7): 1531-1536
[47] Stern R, Hillion G, Rouxel J J, Leporq S. US5908946, 1999
[48] Bournay L, Casanave D, Delfort B, Hillion G, Chodorge J. Catal. Today, 2005, 106: 190-192
[49] Lopez D E, Goodwin J G, Bruce D A, Lotero E. Appl. Catal. A Gen., 2005, 295(2): 97-105
[50] Lopez D E, Goodwin J G Jr, Bruce D A. J. Catal., 2007, 245(2): 381-391
[51] Guerreiro L, Castanheiro J, Fonseca I, Martin-Aranda R, Ramos A, Vital J. Catal. Today, 2006, 118: 166-171
[52] Toda M, Takagaki A, Okamura M, Kondo J N, Hayashi S, Domen K, Hara M. Nature, 2005, 438: 178-178
[53] Mo X, Lopez D E, Suwannakarn K, Liu Y, Lotero E, Goodwin J G, Lu C. J. Catal., 2008, 254(2): 332-338
[54] Alsalme A, Kozhevnikova E F, Kozhevnikov I V. Appl. Catal. A Gen., 2008, 349: 170-176
[55] Chai F, Cao F, Zhai F, Chen Y, Wang X, Su Z. Adv. Synth. Catal., 2007, 349(7): 1057-1065
[56] Sreeprasanth P S, Srivastava R, Srinivas D, Ratnasamy P. Appl. Catal. A Gen., 2006, 314(2): 148-159
[57] Srinivas D, Srivastava R, Ratnasamy P. US7482480, 2009
[58] Wang Y, Ou S, Liu P, Zhang Z. Energ. Convers. Manag., 2007, 48(1): 184-188
[59] Leung D Y C, Wu X, Leung M. Appl. Energ., 2010, 87(4): 1083-1095
[60] Boocock D. US0083514A1, 2003
[61] Hayyan A, Alam M Z, Mirghani M E S, Kabbashi N A, Hakimi N I N M, Siran Y M, Tahiruddin S. Fuel Process Technol., 2011, 92(5): 920-924
[62] Gao Y. Am. Chem. Soc. Div. Fuel Chem., 2007, 52(2): 304
[63] Tang Z, Du Z, Min E, Gao L, Jiang T, Han B. Fluid Phase Equilibr., 2006, 239(1): 8-11
[64] Hegel P, Andreatta A, Pereda S, Bottini S, Brignole E A. Fluid. Phase. Equilibr., 2008, 266(1): 31-37
[65] Saka S, Kusdiana D. Fuel, 2001, 80(2): 225-231
[66] 王海京(Wang H J), 杜泽学(Du Z X), 闵恩泽(Min E Z), 江雨生(Jiang Y S), 李蓓(Li B), 高国强(Gao G Q). CN101070480A, 2007
[67] Dry M E. J. Chem. Technol. Biot., 2002, 77(1): 43-50
[68] Bridgwater A V. Biomass Bioenerg., 2012, 38: 68-94
[69] Zhang Q, Chang J, Wang T J, Xu Y. Energ. Convers. Manger., 2007, 48(1): 87-92
[70] Chheda J N, Huber G W, Dumesic J A. Angew. Chem. Int. Ed., 2007, 46(38): 7164-7183
[71] Leibold H, Hornung A, Seifert H. Powder Technol., 2008, 180(1/2): 265-270
[72] Sims R E H, Mabee W, Saddler J N, Taylor M. Bioresource Technol., 2010, 101(6): 1570-1580
[73] Huber G W, Corma A. Angew. Chem. Int. Ed., 2007, 46(38): 7184-7201
[74] Stevens D, Worgetter M, Saddler J. IEA Bioenergy Task 39, 2004
[75] 吴春来(Wu C L). 煤化工(Coal Chemical Industry), 2003, 2(4): 3-6
[76] McKendry P. Bioresource Technol., 2002, 83(1): 55-63
[77] Skoulou V, Zabaniotou A, Stavropoulos G, Sakelaropoulos G. Int. J. Hydrogen. Energy, 2008, 33(4): 1185-1194
[78] 解庆龙(Jie Q L), 孔丝纺(Kong S F), 刘阳生(Liu Y S),曾辉(Zeng H). 现代化工(Modern Chemical Industry), 2011, 31(7): 16-20
[79] Guo Y, Wang S, Xu D, Gong Y, Ma H, Tang X. Renew. Sust. Energ. Rev., 2010, 14(1): 334-343
[80] Matsumura Y, Minowa T, Potic B, Kersten S R A, Prins W, van Swaaij W P M, van de Beld B, Elliott D C, Neuenschwander G G, Kruse A. Biomass Bioenergy, 2005, 29(4): 269-292
[81] Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S. Energ. Convers. Manage., 2005, 46(4): 615-631
[82] Peterson A A, Vogel F, Lachance R P, Fröling M, Antal M J Jr, Tester J W. Energ. Environ. Sci., 2008, 1(1): 32-65
[83] Mohan D, Pittman C U Jr, Steele P H. Energ. Fuel., 2006, 20(3): 848-889
[84] Lede J, Blanchard F, Boutin O. Fuel, 2002, 81(10): 1269-1279
[85] Salge J, Dreyer B, Dauenhauer P, Schmidt L. Science, 2006, 314(5800): 801-804
[86] Dauenhauer P J, Dreyer B J, Degenstein N J, Schmidt L D. Angew. Chem. Int. Ed., 2007, 46(31): 5864-5867
[87] Colby J L, Dauenhauer P J, Schmidt L D. Green Chem., 2008, 10(7): 773-783
[88] Bartholomew C H. Appl. Catal. A Gen., 2001, 212(1): 17-60
[89] Kulkarni P, Subia R, Cui Z, Gillette G, Fletcher K. Coal-Energy, Environment and Sustainable Development. 2007
[90] Dietenberger M A, Anderson M. Ind. Eng. Chem. Res., 2007, 46(26): 8863-8874
[91] Eatwell-Hall R, Sharifi V, Swithenbank J. Int. J. Hydrogen Energ., 2010, 35(24): 13168-13178
[92] Richardson Y, Blin J, Julbe A. Prog. Energ. Combust., 2012, doi: 10.1016/j.pecs.2011.12.001
[93] Adinberg R, Epstein M, Karni J. J. Sol. Energ-T. Asme., 2004, 126(3): 850-857
[94] Chen J, Lu Y, Guo L, Zhang X, Xiao P. Int. J. Hydrogen Energ., 2010, 35(13): 7134-7141
[95] Lu Y, Zhao L, Guo L. Int. J. Hydrogen Energ., 2011, 36(22): 14349-14359
[96] Damartzis T, Zabaniotou A. Renew. Sust. Energ. Rev., 2011, 15(1): 366-378
[97] Sharma S D, Dolan M, Park D, Morpeth L, Ilyushechkin A, McLennan K, Harris D, Thambimuthu K. Powder Technol., 2008, 180(1): 115-121
[98] Xu C C, Donald J, Byambajav E, Ohtsuka Y. Fuel, 2010, 89(8): 1784-1795
[99] Devi L, Ptasinski K J, Janssen F J J G. Biomass Bioenerg., 2003, 24(2): 125-140
[100] Li C, Suzuki K. Renew. Sust. Energ. Rev., 2009, 13(3): 594-604
[101] El-Rub Z A, Bramer E, Brem G. Ind. Eng. Chem. Res., 2004, 43(22): 6911-6919
[102] Yu Q Z, Brage C, Nordgreen T, Sjostrom K. Fuel, 2009, 88(10): 1922-1926
[103] Hu G, Xu S, Li S, Xiao C, Liu S. Fuel Process Technol., 2006, 87(5): 375-382
[104] Delgado J, Aznar M P, Corella J. Ind. Eng. Chem. Res., 1997, 36(5): 1535-1543
[105] Kobayashi J, Kawamoto K, Fukushima R, Tanaka S. Chemosphere, 2011, 83: 1273-1278
[106] Yanik J, Ebale S, Kruse A, Saglam M, Yüksel M. Int. J. Hydrogen Energ., 2008, 33(17): 4520-4526
[107] Muangrat R, Onwudili J A, Williams P T. Appl. Catal. B-Environ., 2010, 100(3/4): 440-449
[108] Sutton D, Kelleher B, Ross J R H. Fuel Process Technol., 2001, 73(3): 155-173
[109] Guo J, Lou H, Zhao H, Chai D, Zheng X. Appl. Catal. A Gen., 2004, 273: 75-82
[110] Qiu M, Li Y, Wang T, Zhang Q, Wang C, Zhang X, Wu C, Ma L, Li K. Appl. Energ., 2011, 90: 3-10
[111] Tomishige K, Asadullah M, Kunimori K. Catal. Today, 2004, 89(4): 389-403
[112] Ronkkonen H, Simell P, Niemela M, Krause O. Fuel Process Technol., 2011, 92(10): 1881-1889
[113] Ronkkonen H, Simell P, Reinikainen M, Niemela M, Krause O. Fuel Process Technol., 2011, 92(8): 1457-1465
[114] Hao X, Guo L, Zhang X, Guan Y. Chem. Eng. J., 2005, 110(1): 57-65
[115] Elliott D, Beckman D, Bridgwater A, Diebold J, Gevert S, Solantausta Y. Energy Fuel, 1991, 5(3): 399-410
[116] Czernik S, Bridgwater A. Energy Fuel, 2004, 18(2): 590-598
[117] Bridgwater A, Peacocke G. Renew. Sust. Energ. Rev., 2000, 4(1): 1-73
[118] Chen N Y, Degnan T, Koenig L R. Chemtech., 1986, 16(506): 11
[119] Carlson T R, Vispute T P, Huber G W. ChemSusChem, 2008, 1(5): 397-400
[120] Carlson T R, Tompsett G A, Conner W C, Huber G W. Top. Catal., 2009, 52(3): 241-252
[121] Jae J, Tompsett G A, Foster A J, Hammond K D, Auerbach S M, Lobo R F, Huber G W. J. Catal., 2011, 279: 257-268
[122] Akhtar J, Amin N A S. Renew. Sust. Energy Rev., 2011, 15(3): 1615-1624
[123] Xu C, Lad N. Energy Fuel, 2007, 22(1): 635-642
[124] Kleinert M, Barth T. Energy Fuel, 2008, 22(2): 1371-1379
[125] Bridgwater A V. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2011. 157-199
[126] Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater A, Grimm H, Soldaini I, Webster A, Baglioni P. Biomass Bioenergy, 2003, 25(1): 85-99
[127] Zhang Q, Chang J, Wang T J, Xu Y. Energy Fuel, 2006, 20(6): 2717-2720
[128] Deng L, Fu Y, Guo Q X. Energy Fuel, 2008, 23(1): 564-568
[129] Furimsky E. Appl. Catal. A Gen., 2000, 199(2): 147-190
[130] Laurent E, Delmon B. Appl. Catal. A Gen., 1994, 109(1): 77-96
[131] Mortensen P, Grunwaldt J D, Jensen P, Knudsen K, Jensen A. Appl. Catal. A Gen., 2011, 407: 1-19
[132] Zhao C, Kou Y, Lemonidou A A, Li X, Lercher J A. Angew. Chem. Int. Ed., 2009, 121(22): 4047-4050
[133] Wang Y, He T, Liu K, Wu J, Fang Y. Bioresource Technol., 2012, 108: 280-284
[134] Wildschut J, Mahfud F H, Venderbosch R H, Heeres H J. Ind. Eng. Chem. Res., 2009, 48(23): 10324-10334
[135] Venderbosch R, Ardiyanti A, Wildschut J, Oasmaa A, Heeres H. J. Chem. Technol. Biot., 2010, 85(5): 674-686
[136] Ardiyanti A, Khromova S, Venderbosch R, Yakovlev V, Heeres H. Appl. Catal. B Environ., 2012, 117: 105-117
[137] Elliott D C, Hart T R, Neuenschwander G G, Rotness L J, Olarte M V, Zacher A H, Solantausta Y. Energy Fuel, 2012, 26: 3891-3896
[138] Bridgwater A V. Catal. Today, 1996, 29(1): 285-295
[139] Davda R, Shabaker J, Huber G, Cortright R, Dumesic J. Appl. Catal. B Environ., 2005, 56(1): 171-186
[140] Huber G W, Cortright R D, Dumesic J A. Angew. Chem. Int. Ed., 2004, 43(12): 1549-1551
[141] Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gärtner C A, Dumesic J A. Science, 2008, 322(5900): 417-421
[142] Kuster B. Starch-Stärke, 1990, 42(8): 314-321
[143] Rackemann D W, Doherty W O S. Bioprod. Bioref., 2011, 5(2): 198-214
[144] Rosatella A A, Simeonov S P, Frade R F M, Afonso C A M. Green Chem., 2011, 13(4): 754-793
[145] Mamman A S, Lee J M, Kim Y C, Hwang I T, Park N J, Hwang Y K, Chang J S, Hwang J S. Bioprod. Bioref., 2008, 2(5): 438-454
[146] Li C, Zhang Z, Zhao Z K. Tetrahedron Lett., 2009, 50(38): 5403-5405
[147] Jadhav H, Pedersen C M, Solling T, Bols M. ChemSusChem, 2011, 4(8): 1049-1051
[148] Perez L C, Yaylayan V A. J. Agr. Food Chem., 2008, 56(15): 6717-6723
[149] Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew. Chem. Int. Ed., 2009, 48(35): 6529-6532
[150] Hu S, Zhang Z, Song J, Zhou Y, Han B. Green Chem., 2009, 11(11): 1746-1749
[151] Hu L, Sun Y, Lin L, Liu S. J. Taiwan. Inst. Chem. E., 2012, doi: 10.1016/j. jtice. 2012.04.001
[152] Yong G, Zhang Y, Ying J Y. Angew. Chem. Int. Ed., 2008, 120(48): 9485-9488
[153] Moreau C, Finiels A, Vanoye L. J. Mol. Catal. A-Chem., 2006, 253: 165-169
[154] Li C, Zhao Z K, Wang A, Zheng M, Zhang T. Carbohyd. Res., 2010, 345(13): 1846-1850
[155] Roman-Leshkov Y, Chheda J N, Dumesic J A. Science, 2006, 312(5782): 1933-1937
[156] Shimizu K, Uozumi R, Satsuma A. Catal. Comm., 2009, 10(14): 1849-1853
[157] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131(5): 1979-1985
[158] Pinkert A, Marsh K N, Pang S, Staiger M P. Chem. Rev., 2009, 109(12): 6712-6728
[159] Wang P, Yu H, Zhan S, Wang S. Bioresource Technol., 2010, 102: 4179-4183
[160] Chalid M, Broekhuis A, Heeres H. J. Mol. Catal. A-Chem., 2011, 341: 14-21
[161] Yan Z, Lin L, Liu S. Energy Fuel, 2009, 23(8): 3853-3858
[162] Heeres H, Handana R, Chunai D, Rasrendra C B, Girisuta B, Heeres H J. Green Chem., 2009, 11(8): 1247-1255
[163] Mehdi H, Fabos V, Tuba R, Bodor A, Mika L T, Horvath I T. Top. Catal., 2008, 48(1): 49-54
[164] Braden D J, Henao C A, Heltzel J, Maravelias C C, Dumesic J A. Green Chem., 2011, 13(7): 1755-1765
[165] Tong X, Ma Y, Li Y. Appl. Catal. A Gen., 2010, 385(1): 1-13
[166] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447(7147): 982-985
[167] Agirrezabal-Telleria I, Requies J, Güemez M B, Arias P L. Appl. Catal. B Environ., 2012, 115: 169-178
[168] Zheng H Y, Zhu Y L, Teng B T, Bai Z Q, Zhang C H, Xiang H W, Li Y W. J. Mol. Catal. A-Chem., 2006, 246(1): 18-23
[169] Elliott D C, Frye J G. US5883266, 1999
[170] Chheda J N, Dumesic J A. Catal. Today, 2007, 123(1): 59-70
[171] Huber G W, Chheda J N, Barrett C J, Dumesic J A. Science, 2005, 308(5727): 1446-1450
[172] Serrano-Ruiz J C, Wang D, Dumesic J A. Green Chem., 2010, 12(4): 574-577
[173] Alonso D M, Bond J Q, Serrano-Ruiz J C, Dumesic J A. Green Chem., 2010, 12(6): 992-999
[174] Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327(5969): 1110-1114
[175] Serrano-Ruiz J C, Pineda A, Balu A M, Luque R, Campelo J M, Romero A A, Ramos-Fernandez J M. Catal. Today, 2012, doi: 10.1016/j. cattod. 2012.01.009
[176] Serrano-Ruiz J C, Braden D J, West R M, Dumesic J A. Appl. Catal. B Environ., 2010, 100(1): 184-189
[177] Serrano-Ruiz J C, Dumesic J A. Green Chem., 2009, 11(8): 1101-1104
[178] Serrano-Ruiz J C, Dumesic J A. ChemSusChem, 2009, 2(6): 581-586
[179] Fukuoka A, Dhepe P L. Angew. Chem. Int. Ed., 2006, 45(31): 5161-5163
[180] Yan N, Zhao C, Luo C, Dyson P J, Liu H, Kou Y. J. Am. Chem. Soc., 2006, 128(27): 8714-8715
[181] Luo C, Wang S, Liu H. Angew. Chem. Int. Ed., 2007, 46(40): 7636-7639
[182] Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen J G. Angew. Chem. Int. Ed., 2008, 47(44): 8510-8513
[183] Deng W, Tan X, Fang W, Zhang Q, Wang Y. Catal. Lett., 2009, 133(1): 167-174
[184] Liu Y, Luo C, Liu H. Angew. Chem. Int. Ed., 2012, 51 (13): 3249-3253

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.