English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

金属-有机骨架材料及其在催化反应中的应用

李庆远, 季生福*, 郝志谋   

  1. 北京化工大学 化工资源有效利用国家重点实验室 北京100029
  • 收稿日期:2011-10-01 修回日期:2011-12-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 季生福 E-mail:jisf@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(No.21136001)资助

Metal-Organic Framework Materials and Their Applications in Catalysis

Li Qingyuan, Ji Shengfu, Hao Zhimou   

  1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2011-10-01 Revised:2011-12-01 Online:2012-08-24 Published:2012-08-06
金属-有机骨架(metal-organic frameworks, MOFs)材料是由金属离子和有机配体通过自组装而成的具有多孔结构的特殊晶体材料。由于其种类的多样性、孔道的可调性和结构的易功能化,已在气体的吸附和分离、催化、磁学、生物医学等领域表现出了诱人的应用前景。本文介绍了MOFs材料的类型和常用的合成方法,综述了近年来MOFs材料在催化领域的应用,特别是以MOFs材料中骨架金属作为活性中心、骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFs材料的催化应用趋势做了展望,以期对MOFs材料的催化性能有比较全面的认识。
Metal-organic Framework (MOF) materials, which are synthesized by self-assembling of the metal ions and the organic ligands, are the special crystal materials with porous structure. Because of their diverse structures, tunable cavity and easy functionalization, MOFs have exhibited the attractive prospects in many fields, such as the gas adsorption and separation, the catalysts, the magnetism and the bio-medicine. In order to get comprehensive understanding of the MOFs’ catalytic properties, in this paper, the categories and common synthesis methods of MOF materials are introduced. The catalysis of the MOF materials, especially, the catalysis of the metal active sites and the active organic ligands in the frameworks of the MOF, and the catalytic active components supported in MOFs, are summarized and reviewed. The development trends of MOF materials in the catalytic applications are also prospected. Contents 1 Introduction
2 Categories and syntheses of MOFs materials
2.1 Categories of MOF materials
2.2 Syntheses of MOF materials
3 Applications of MOFs in catalysis
3.1 Catalytic reactions of MOFs with metal active sites
3.2 Catalytic reactions of MOFs with active organic ligands
3.3 Catalytic reactions of MOFs with loading active guests
4 Conclusion and outlook

中图分类号: 

()
[1] Hoskins B F, Robson R. J. Am. Chem. Soc., 1989, 111: 5962-5964
[2] Yaghi O M, Li G, Li H. Nature, 1995, 378: 703-706
[3] Corma A, Garcia H, Llabrés I, Xamena F X. Chem. Rev., 2010, 110: 4606-4655
[4] Czaja A U, Trukhan N, Müller U. Chem. Soc. Rev., 2009, 38: 1284-1293
[5] Lee J Y, Farha O K, Roberts J, Scheidt K A. Chem. Soc. Rev., 2009, 38: 1450-1459
[6] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009, 38: 1248-1256
[7] Wang Z, Chen G, Ding K. Chem. Rev., 2009, 109: 322-359
[8] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196-1231
[9] Jiang H L, Xu Q. Chem. Commun., 2011, 3351-3370
[10] Morris R E, Wheatley P S. Angew. Chem. Int. Ed., 2008, 47: 4966-4981
[11] Kurmoo M. Chem. Soc. Rev., 2009, 38: 1353-1379
[12] Keskin S, Kzlel S. Ind. Eng. Chem. Res., 2011, 50: 1799-1812
[13] Allendorf M D, Bauer C A, Bhaktaa R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330-1352
[14] Ranocchiari M, van Bokhoven J A. Phys. Chem. Chem. Phys., 2011, 13: 6388-6396
[15] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A O, Snurr R Q, O’Keeffe M, Kim J, Yaghi O M. Science, 2005, 329: 424-428
[16] Hu A, Ngo H L, Lin W. Angew. Chem. Int. Ed., 2003, 42: 6000-6003
[17] Batten S R, Robson R. Angew. Chem. Int. Ed., 1998, 37: 1460-1494
[18] Barthelet K, Marrot J, Riou D, Férey G. Angew. Chem. Int. Ed., 2002, 41: 281-284
[19] 金钊 (Jin Z). 吉林大学博士论文 (Doctoral Dissertation of Jilin University), 2010
[20] 许青 (Xu Q). 北京化工大学博士论文 (Doctoral Dissertation of Beijing University of Chemical Technology), 2010
[21] Ma S, Zhou H C. J. Am. Chem. Soc., 2006, 128: 11734-11735
[22] Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423: 705-714
[23] Li H, Eddaoudi M, O’keeffe M, Yaghi O M. Nature, 1999, 402: 276-279
[24] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295: 469-472
[25] Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. PNAS, 2006, 103: 10186-10191
[26] Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I. Angew. Chem. Int. Ed., 2004, 43: 6296-6301
[27] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040-2043
[28] Mellot-Draznieks C, Girard S, Férey G. J. Am. Chem. Soc., 2002, 124: 15326-15335
[29] Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283: 1148-1150
[30] Qi Y, Luo F, Che Y X, Zheng J. Cryst. Growth Des., 2008, 8(2): 606-611
[31] Wang C, Xie Z G, de Krafft K E, Lin W L. J. Am. Chem. Soc., 2011, 133: 13445-13454
[32] Chen X Y, Zhao B, Shi W, Xia J, Cheng P, Liao D Z, Yan S P, Jiang Z H. Chem. Mater., 2005, 17(11): 2866-2874
[33] Chen B L, Ockwig N W, Fronczek F R, Contreras D S, Yaghi O M. Inorg. Chem., 2005, 44(2): 181-183
[34] Polshettiwar V, Varma R S. Chem. Soc. Rev., 2008, 37(8): 1546-1557
[35] Jin K, Huang X Y, Pang L, Li J, Appel A, Wherland S. Chem. Commun., 2002, 2872-2873
[36] Hwang Y K, Hong D Y, Chang J S, Seo H, Yoon M, Kim J, Jhung S H, Serre C, Férey G. Applied Catalysis A: General, 2009, 358(2): 249-253
[37] Wang Z Q, Cohen S M. Chem. Soc. Rev., 2009, 38: 1315-1329
[38] Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M. Science, 2008, 319 (5865): 939-943
[39] Meilikhov M, Yusenko K, Esken D, Turner S, van Tendeloo G, Fischer R A. Eur. J. Inorg. Chem., 2010, 24: 3701-3704
[40] Kalidindi S B, Esken D, Fischer R A. Chem. Eur. J., 2011, 17: 6594--6597
[41] Pan Y, Yuan B, Li Y, He D. Chem. Commun., 2010, 2280-2282
[42] Li H, Zhu Z, Zhang F, Xie S, Li H, Li P, Zhou X. ACS. Catal., 2011, 1: 1604-1612
[43] Schelichte K, Kratzke T, Kaskel S. Microporous and Mesoporous Mater., 2004, 73(1/2): 81-88
[44] Horike S, Dinca M, Tamaki K, Long J R. J. Am. Chem. Soc., 2008, 130: 5854-5855
[45] Dhakshinamoorthy A, Alvaro M, Garcia H. J. Catal., 2009, 267: 1-4
[46] Llabrés I, Xamena F X, Casanova O, Tailleur R G, Garcia H, Corma A. J. Catal., 2008, 255: 220-227
[47] Jiang D, Mallat T, Meier D M, Urakawa A, Baiker A. J. Catal., 2010, 270: 26-33
[48] Lu Y, Tonigold M, Bredenkötter B, Volkmer D, Hitzbleck J, Langstein G. Z. Anorg. Allg. Chem., 2008, 2411-2417
[49] Wang X, Shi L, Li M, Ding K. Angew. Chem. Int. Ed., 2005, 44: 6362-6366
[50] Cho S H, Ma B, Nguyen S T, Hupp J T, Albrecht-Schmitt T E. Chem. Commun., 2006, 2563-2565
[51] Navarro J A R, Barea E, Salas J M, Masciocchi M, Galli S, Sironi A, Ania C O, Parra J B. Inorg. Chem., 2006, 45: 2397-2399
[52] Llabrés I, Xamena F X, Abad A, Corma A, Garcia H. J. Catal., 2007, 250: 294-298
[53] Chang J S, Wang H J S, Jhung S H, Park S E, Feréy G, Cheetham A K. Angew. Chem. Int. Ed., 2004, 43: 2819-2822
[54] Zhang X, Llabrés I, Xamena F X, Corma A. J. Catal., 2009, 265: 155-160
[55] Horcajada P, Surble S, Serre C, Hong D Y, Seo Y K, Chang J S, Greneche J M, Margiolaki I, Feréy G. Chem. Commun., 2007, 2820-2822
[56] Ravon U, Domine M E, Gaudillère C, Desmartin-Chomel A, Farrusseng D. New J. Chem., 2008, 32: 937-940
[57] Phan N T S, Le K K A, Phan T D. Appl. Catal. A: General, 2010, 382: 246-253
[58] Bernini M C, Gandara F, Glesias I M, Nejko S N, Gutierrez-Puebla E, Brusau E V, Arda N G E, Monge M A. Chem. A Eur. J., 2009, 15: 4896-4905
[59] Gandara F, Puebla E G R, Iglesias M, Proserpio D M, Snejko N, Monge M A. Chem. Mater., 2009, 21: 655-661
[60] Yu Z T, Liao Z L, Jiang Y S, Li G H, Chen J S. Chem. Eur. J., 2005, 11: 2642-2650
[61] Mahata P, Madras G, Natarajan S. J. Phys. Chem. B, 2006, 110: 13759-13768
[62] Llabrés I, Xamena F X, Corma A, Garcia H. J. Phys. Chem. C, 2007, 111: 80-85
[63] Shultz A M, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 4204-4205
[64] Han J W, Hill L. J. Am. Chem. Soc., 2007, 129: 15094-15095
[65] Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, Monge M A, Cuiz-Valero R, Snejko N. Inorg. Chem., 2002, 41: 2429-2432
[66] Gandara F, de Andres A, Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Cryst. Growth Des., 2008, 8: 378-380
[67] Neogi S, Sharma M K, Bharadwaj P K. J. Mol. Catal. A, 2009, 299: 1-4
[68] Tran U P N, Le K K A, Phan N T S. ACS Catal., 2011, 1: 120-127
[69] Dewa T, Saiki T, Aoyama Y. J. Am. Chem. Soc., 2001, 123: 502-503
[70] Gándara F, Gomez-lor B, Gutiérrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Chem. Mater., 2008, 20: 72-76
[71] Zhou Y, Song J, Liang S, Hu S, Liu H, Jiang T, Han B. Journal of Molecular Catalysis A: Chemical, 2009, 308: 68-72
[72] Jian L, Chen C, Lan F, Deng S, Xiao W, Zhang N. Solid State Science, 2011, 13: 1127-1131
[73] Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J, Kim K. Nature, 2000, 404: 982-986
[74] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. J. Am. Chem. Soc., 2007, 129: 2607-2614
[75] Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew. Chem. Int. Ed., 2008, 47: 4144-4148
[76] Gascon J, Aktay U, Hernandez-Alonso M D, van Klink G P M, Kapteijn F. J. Catal., 2009, 261: 75-87
[77] Esken D, Turner S, Lebedev O I, Van Tendeloo G, Fischer R A. Chem. Mater., 2010, 22: 6393-6401
[78] Schröder F, Esken D, Cokoja M, van den Berg M W E, Lebedev O I, van Tendeloo G, Walaszek B, Buntkovsky G, Limbach H H, Chaudret B, Fischer R A. J. Am. Chem. Soc., 2008, 130: 6119-6130
[79] Greathouse J A, Allendorf M D. J. Am. Chem. Soc., 2006, 128: 10678-10679
[80] Ishida T, Nagaoka M, Akita T, Haruta M. Chem. Eur. J., 2008, 14: 8456-8460
[81] Liu H, Liu Y, Li Y, Tang Z, Jiang H. J. Phys. Chem. C, 2010, 114: 13362-13369
[82] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. J. Catal., 2008, 257: 315-323
[83] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J. Am. Chem. Soc., 2009, 131: 11302-11303
[84] El-Shall M S, Abdelsayed V, Khder A E R S, Hassan H M A, El-Kaderi H M, Reich T E. J. Mater. Chem., 2009, 19: 7625-7631
[85] Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E. Catal. Commun., 2008, 9: 1286-1290
[86] Henschel A, Gedrich K, Krachner R, Kaskel S. Chem. Commun., 2008, 4192-4194
[87] Sabo M, Henschel A, Fröde H, Klemm E, Kaskel S. J. Mater. Chem., 2007, 17: 3827-3832
[88] Juan-Alcaňiz J, Ramos-Fernandez E V, Lafont U, Gascon J, Kapteijn F. J. Catal., 2010, 269: 229-241
[89] Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 1883-1888
[90] Moulton B, Zaworotko M J. Chem. Rev., 2001, 101: 1629-1658
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[3] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[4] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[7] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[8] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[9] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[10] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[11] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[12] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[13] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[14] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[15] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.