English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1618-1626 前一篇   后一篇

• 综述与评论 •

有机涂层/金属界面腐蚀的微区电化学

卢琳*, 李晓刚, 高瑾   

  1. 北京科技大学腐蚀与防护中心 北京 100083
  • 收稿日期:2010-10-01 修回日期:2011-03-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 卢琳 E-mail:lulin315@yahoo.com.cn
  • 基金资助:

    国家自然科学基金青年基金项目(No.51001012)资助

Localized Electrochemical Study on the Interface Corrosion Between Organic Coating/Metal Substrate

Lu Lin*, Li Xiaogang, Gao Jin   

  1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2010-10-01 Revised:2011-03-01 Online:2011-08-24 Published:2011-07-25

以扫描开尔文探针,局部交流阻抗和扫描电化学显微镜为代表的微区电化学技术以其高精度、高空间解析度的定域分析优势被广泛应用。本文简要介绍了这三种技术的测量原理和关键问题,并着重归纳了这些技术应用于有机涂层/金属界面腐蚀行为的研究成果,包括界面微区表观形貌的获取,不同界面腐蚀机制的推理验证及其影响因素的作用机理等,并对三种技术的重要测量参数进行了解析。研究表明与宏观电化学相比,对于涂层/金属界面腐蚀的研究,微区电化学研究成果具有很好的补充作用,这对于建立有机涂层/金属界面腐蚀的微区电化学理论具有深远的意义。文中最后还对微区电化学技术的局限性和未来发展的方向进行了论述和展望。

Localized electrochemical techniques such as scanning Kelvin probe (SKP), localized electrochemical impedance (LEIS) and scanning electrochemical microscopy (SECM) have been applied to many fields due to their high accuracy and high space resolution in local area. This paper briefly introduces the measuring principle of localized electrochemical techniques and their key problems, such as the measurement of corrosion potential with SKP, the selection of redox mediator for SECM and the determination of scanning frequency for LEIS. The emphasis is put on the application of above mentioned three techniques to the study of corrosion behavior at the interface between organic coating and metal substrate. In light of it, the unique advantages of three techniques are elucidated, including on interface morphology acquiring, the deduction and verification of corrosion mechanisms for the interface corrosion and their affecting factors. Meanwhile, the representation of parameters, like interface potential, interface resistance/capacitance and interface current that involved in characterizing processes, is discussed. It is proved that in respect of the interface corrosion, localized electrochemical study complements general electrochemistry well, which is fundamental to the establishment of local electrochemistry for the interface corrosion between organic coating and metal substrate. Also, it has to be recognized that in order to enlarge the applicability of these techniques, they must be further improved in the aspect of ultromicroelectrode size and used jointly with other advanced techniques.

Contents
1 Introduction
2 Measuring principle of localized electrochemical techniques and their key problems
2.1 Measuring principle
2.2 Key problems
3 Study on corrosion behaviors at the interface between organic coating and metal substrate
3.1 Corrosion morphology at the interface
3.2 Corrosion mechanisms at the interface
3.3 Influence of medias
4 Characterization of interface electrochemistry
4.1 Interface potential
4.2 Interface resistance/capacitance
4.3 Shift of ion concentrations
5 Conclusions

中图分类号: 

()

[1] Floyd F L, Avudaiappan S, Gibson J, Meht B, Smith P, Provder T, Escarsega J. Progress in Organic Coatings, 2009, 66(1): 8-34
[2] Katayama H, Yagi K, Nishikata A, Tsuru T. Electrochimico Acta, 1996, 41: 1093-1097
[3] 张鉴清(Zhang J Q), 孙国庆(Sun G Q), 曹楚南(Cao C N). 腐蚀科学与防护技术(Corrosion Science and Protection Technology), 1994, 6(4): 318-325
[4] 张金涛(Zhang J T), 胡吉明(Hu J M), 张鉴清(Zhang J Q). 材料科学与工程学报(Journal of Materials Science & Engineering), 2003, 21(5): 763-767
[5] 卢小泉(Lu X Q), 王晓强(Wang X Q),胡丽娜(Hu L N). 化学通报(Chemistry), 2004, 67(9): 763-768
[6] Stratmann M, Streckel H. Corrosion Science, 1990, 30 (6 /7): 681-696
[7] Stratmann M, Bohnenkamp K, Ramchandran T. Corrosion Science, 1987, 27(9): 905-926
[8] Annergren I, Zou F, Thierry D. Electrochimica Acta, 1999, 44 (24): 4383-4493
[9] Grundmeier G, Schmidt W, Stratmann M. Electrochimica Acta, 2000, 45 (15/16): 2515-2533
[10] González-García Y, Santana J J, González-Guzmán J, Izquierdo J, González S, Souto R M. Progress in Organic Coatings, 2010, 69(2): 110-117
[11] Jorcin J B, Aragon E, Merlatti C, Pébeère N. Corrosion Science, 2006, 48(7): 1779-1790
[12] Souto R M, González-García Y, Izquierdo J, González S. Corrosion Science, 2010, 52(3): 748-753
[13] Souto R M, González-García Y, González S. Corrosion Science, 2008, 50(6): 1637-1643
[14] Souto R M, González-García Y, González S. Progress in Organic Coatings, 2009, 65(4): 435-439
[15] Schneider O, Kelly R G. Corrosion Science, 2007, 49(2): 594-619
[16] de la Fuente D, Rohwerder M. Progress in Organic Coatings, 2008, 61(2/4): 233-239
[17] Dornbusch M. Progress in Organic Coatings, 2008, 61(2/4): 240-244
[18] Leng A, Streckel H, Stratmann M. Corrosion Science, 1998, 41(3): 547-578
[19] Leng A, Streckel H, Stratmann M. Corrosion Science, 1998, 41(3): 579-599
[20] Leng A, Streckel H, Stratmann M. Corrosion Science, 1998, 41(3): 599-620
[21] 王佳(Wang J), 水流彻 (Shui L C). 中国腐蚀与防护学报(Journal of Chinese Society for Corrosion and Protection), 1995, 15(3): 173-179
[22] Grundmeier G, Schmidt W, Stratmann M. Electrochimica Acta, 2000, 45(15/16): 2515-2533
[23] Fürbeth W, Stratmann M. Fresenius Janal Chem., 1995, 353: 337-341
[24] Fürbeth W, Stratmann M. Corrosion Science, 2001, 43(2): 207-254
[25] Doherty M, Sykes J M. Corrosion Science, 2004, 46(5): 1265-1289
[26] Bautista A. Progress on Organic Coating, 1996, 28(1): 49-58
[27] Posnera R, Wapner K, Stratmannb M, Grundmeier G. Electrochimica Acta, 2009, 54(3): 891-899
[28] Wapner K, Stratmann M, Grundmeier G. Electrochimica Acta, 2006, 51(16): 3303-3315
[29] Schneider O, Kelly R G. Corrosion Science, 2007, 49(2): 594-619
[30] Souto R M, González-García Y, González S, Burstein G T. Corrosion Science, 2004, 46(11): 2621-2628
[31] Souto R M, González-García Y, Izquierdo J, González S. Corrosion Science, 2010, 52(3): 748-753
[32] Deflorian F, Rossi S. Electrochimica Acta, 2006, 51(27): 1736-1744
[33] 邹峰(Zou F), 韩薇 (Han W). 腐蚀科学与防护技术(Corrosion Science and Protection Technology), 1995, 7(3): 192-195
[34] Zhang X, Sloof W G, Hovestad A. Surface & Coatings Technology, 2005, 197 (2/3): 168-176
[35] 孙志华(Sun Z H), 刘明辉(Liu M H), 邹礼明(Zou L M). 腐蚀科学与防护技术(Corrosion Science and Protection Technology), 2006, 18(2): 87-91
[36] Macedo M C S S, Margarit-Mattos I C P, Fragata F L, Jorcin J B, Pébère N, Mattos O R. Corrosion Science, 2009, 51(6): 1322-1327
[37] Zou F, Thierry D. Electrochimica Acta, 1997, 42(20/22): 3293-3301
[38] Zhong C, Tang X, Cheng Y F. Electrochimica Acta, 2008, 53(14): 4740-4747
[39] Dong C F, Fu A Q, Li X G. Electrochimica Acta, 2008, 54(2): 628-633
[40] Souto R M, González-García Y, González S. Corrosion Science, 2005, 47(12): 3312-3323
[41] Bastos A C, Simöes A M, González S, González-García Y, Souto R M. Electrochemistry Communications, 2004, 6(11): 1212-1215
[42] Bastos A C, Simöes A M, González S, González-García Y, Souto R M. Progress in Organic Coatings, 2005, 53(3): 177-182

[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[5] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[6] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[7] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[10] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[13] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[14] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[15] 袁思成, 林丹, 张曦光, 汪怀远. SLIPS功能表面的制备及应用[J]. 化学进展, 2021, 33(1): 87-96.