English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 547-556 DOI: 10.7536/PC210322 前一篇   后一篇

• 综述 •

表界面调控电催化析氧反应

卢明龙, 张晓云, 杨帆, 王 练王育乔*()   

  1. 东南大学化学化工学院 纳米光电化学与器件研究中心 南京 211189
  • 收稿日期:2021-03-15 修回日期:2021-05-19 出版日期:2022-03-24 发布日期:2021-07-29
  • 通讯作者: 王育乔
  • 基金资助:
    国家自然科学基金项目(61774033)

Surface/Interface Modulation in Oxygen Evolution Reaction

Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang()   

  1. Research Center for Nano Photoelectrochemistry and Device, School of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
  • Received:2021-03-15 Revised:2021-05-19 Online:2022-03-24 Published:2021-07-29
  • Contact: Yuqiao Wang
  • Supported by:
    National Natural Science Foundation of China(61774033)

开发高效绿色清洁能源已引起研究者们的广泛关注。电解水是一种大规模且可持续生产高纯氢能源技术。然而,阳极析氧反应电催化剂的高过电位和不稳定性制约了电解水技术的大规模应用,合理设计电催化剂的结构可显著优化其反应热力学和动力学,提高电解水技术的能量转换效率。表界面是电催化反应发生的主要场所,通过调控电催化剂表面的本征结构或构筑异质界面等系列表界面化学工程对电催化剂进行改性,可以有效改善材料的催化活性和稳定性。本文概述了当前表界面调控策略在电催化析氧反应中的研究进展,重点介绍了表界面调控层状双金属氢氧化物、钙钛矿型氧化物、尖晶石型化合物及合金材料的研究现状,阐述了高效稳定析氧反应电催化剂的设计思路。讨论了表界面调控策对催化剂表界面微结构和电子态的影响以及设计新型析氧反应电催化剂中面临的问题。最后,展望了表界面调控应用于析氧反应电催化剂的前景。

The increasing clean energy demands have promoted extensive attention on the development of alternative energy conversion technologies with high efficiency. Water splitting is a large-scale and sustainable technology for high-purity hydrogen production. However, the substantial overpotential and unsatisfied stability of oxygen evolution reaction (OER) electrocatalysts are great challenges for the widespread application of water splitting technology. Rational design of the structure of the OER electrocatalyst can significantly optimize its reaction thermodynamics and kinetics, thus improving the energy conversion efficiency of water splitting technology. The surface/interface is regarded as the main place where the electrocatalytic reaction occurs. The electrocatalysts, modified by surface/interface engineering, such as regulating intrinsic properties or designing synergistic interface, can improve their electrocatalytic efficiency and stability effectively. This review summarizes the application of surface/interface modulation strategies in OER, especially focusing on the research progress of layered double hydroxides, perovskite oxides, spinel compounds and alloy based materials. The design principles of high-efficient and stable electrocatalysts for OER are described. Based on the recent progress of surface/interface modulation applied in catalysts for OER,the effects of surface/interface modulation on the microstructure and electronic states of the catalysts are discussed. In addition, the challenges about modifications of above electrocatalysts are discussed. Finally, the opportunities of OER electrocatalysts via surface/interface modulation are prospected.

Contents

1 Introduction

2 Surface/interface modification of electrocatalyst

2.1 Modification based on layered double hydroxides

2.2 Modification based on perovskite oxides

2.3 Modification based on spinel compound

2.4 Modification based on alloy

3 Conclusion and outlook

()
图1 (a)ZnCo LDH纳米片的SEM图;(b)和(c)分别为Zn和Co元素的EDX图[21]
Fig.1 (a) SEM image of ZnCo LDH nanosheets, (b) and (c) EDX mapping of Zn and Co elements[21]. Copyright 2015, the Royal Society of Chemistry
表1 不同LDH基催化剂OER性能总结
Table 1 Summary of OER performance of LDH based catalysts
图2 (a)一锅法合成,其中(1)预先形成LDH花状中间体,随后在其上沉积FeOOH纳米颗粒以形成(2)FeOOH2 nm/LDH复合物;(b)逐步合成,其中(3)将预先形成的LDH用作优先沉积具有不同平均尺寸的FeOOH纳米颗粒的基底,以得到(4)FeOOH/LDH;(c)通过形成具有相对短键长的FeOOH纳米颗粒与NiFe LDH间的氧桥(如Fe(3 +δ)+ -O-Ni2+)形成界面相互作用的示意图[28]
Fig.2 (a) One-Pot Synthesis where (1) the intermediate LDH flower is formed in the early stage, on which later FeOOH NPs are deposited to form (2) the FeOOH2 nm/LDH Composite; (b) The stepwise synthesis where (3) the preformed LDH is used as a support for preferential deposition of FeOOH NPs with various average sizes to give (4) the FeOOH/LDH; and (c) Schematic depiction of the interfacial interaction via the formation of oxygen bridges (e.g., Fe(3+δ)+-O-Ni2+) with relative short bond length between the FeOOH NPs with Ni-Fe LDH[28]. Copyright 2018, the American Chemical Society
图3 NiFe LDH/Co、NiFe LDH/Au、Ni-Fe-Co三元氢氧化物和裸露的Co箔在1 mol·L-1 KOH中以10 mV/s扫速得到的CV曲线,插图表明NiFe LDH和Co箔之间的界面对提高OER活性至关重要[29]
Fig.3 CVs of NiFe LDH on Co, NiFe LDH on Au, Ni-Fe-Co ternary hydroxides and bare Co foil in 1 mol·L-1 KOH at a sweeping rate of 10 mV/s, showing the interface between NiFe LDH and Co foil is crucial to enhance OER. Inset shows the schematic illustration highlighting the importance of the catalyst/support interface[29]. Copyright 2020, the American Chemical Society
图4 MoSe2和LSC之间的潜在相互作用机制;(a)LSC&MoSe2的HR-TEM图像,表明同时存在2H和1T相MoSe2;(b)选中的2H-MoSe2区域放大的晶格结构示意图,说明了六方晶格中Mo-Mo原子间距离为0.28 nm;(c)1T-MoSe2的扩大区域以示意晶格结构显示,表明了Mo-Mo(0.563 nm)和Se-Se(0.324 nm)的原子间距离;(d)MoSe2局部相变时从Co到Mo的电子转移示意图;(e)MoSe2和LSC之间可能的电荷转移过程示意图[38]
Fig.4 Proposed mechanism describing potential interaction between MoSe2 and LSC. (a) HR-TEM image of LSC&MoSe2, indicating the presence of both 2H- and 1T-Phase MoSe2. (b) Enlarged region of 2H-MoSe2 shown with schematic lattice structure, illustrating the hexagonal crystal structure with Mo-Mo inter-atomic distance of 0.28nm. (c) Enlarged region of 1T-MoSe2 shown with schematic lattice structure, indicating the Mo-Mo (0.563nm) and Se-Se (0.324 nm) inter-atomic distances. (d) Schematic description of local phase transition in MoSe2 via electron transfer from Co to Mo. (e) Schematic diagram of proposed charge transfer processes between MoSe2 and LSC[38]. Copyright 2019, the Springer Nature
图5 p区金属调节钙钛矿型电催化剂OER活性示意图[39]
Fig.5 Schematic of p-block metal regulation of perovskite electrocatalysts for OER[39]. Copyright 2017, the Springer Nature
表2 不同钙钛矿催化剂OER性能总结
Table 2 Summary of OER performance of perovskite based catalysts
图6 具有不同对称性的Co3O4和Fe-Co3O4形成示意图[47]
Fig.6 Schematic illustration of Co3O4 and Fe-Co3O4 replica formation with diverse symmetries[47]. Copyright 2014, the American Chemical Society
表3 不同合金催化剂OER性能总结
Table 3 Summary of OER performance of alloy based catalysts
[1]
Chu S, Majumdar A. Nature, 2012, 488(7411): 294.

doi: 10.1038/nature11475     URL    
[2]
Ager J W, Lapkin A A. Science, 2018, 360(6390): 707.

doi: 10.1126/science.aat7918     URL    
[3]
Gernaat D E H J, Bogaart P W, Vuuren D P V, Biemans H, Niessink R. Nat. Energy, 2017, 2(10): 821.

doi: 10.1038/s41560-017-0006-y     URL    
[4]
Kibsgaard J, Chorkendorff I. Nat. Energy, 2019, 4(6): 430.

doi: 10.1038/s41560-019-0407-1    
[5]
Chang J F, Xiao Y, Luo Z Y, Ge J J, Liu C P, Xing W. Acta Phys. Chimica Sin., 2016, 32(7): 1556.
(常进法, 肖瑶, 罗兆艳, 葛君杰, 刘长鹏, 邢巍. 物理化学学报, 2016, 32(7): 1556.).
[6]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.

doi: 10.1039/C6CS00328A     URL    
[7]
Tahir M, Pan L, Idrees F, Zhang X W, Wang L, Zou J J, Wang Z L. Nano Energy, 2017, 37: 136.

doi: 10.1016/j.nanoen.2017.05.022     URL    
[8]
Spöri C, Kwan J T H, Bonakdarpour A, Wilkinson D P, Strasser P. Angew. Chem. Int. Ed., 2017, 56(22): 5994.

doi: 10.1002/anie.201608601     URL    
[9]
Zeradjanin A R. Curr. Opin. Electrochem., 2018, 9: 214.
[10]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.

doi: 10.1039/C6CS00328A     URL    
[11]
Görlin M, Chernev P, Ferreira de Araújo J, Reier T, Dresp S, Paul B, Krähnert R, Dau H, Strasser P. J. Am. Chem. Soc., 2016, 138(17): 5603.

doi: 10.1021/jacs.6b00332     URL    
[12]
Mefford J T, Akbashev A R, Kang M, Bentley C L, Gent W E, Deng H D, Alsem D H, Yu Y S, Salmon N J, Shapiro D A, Unwin P R, Chueh W C. Nature, 2021, 593(7857): 67.

doi: 10.1038/s41586-021-03454-x     URL    
[13]
Zhou L L, Xie R G, Wang L J. Progress in Chemistry, 2019, 31(2/3): 275.
(周伶俐, 谢瑞刚, 王林江. 化学进展, 2019, 31(2/3): 275.).

doi: 10.7536/PC180730    
[14]
Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z J. Chem. Soc. Rev., 2020, 49(7): 2196.

doi: 10.1039/C9CS00607A     URL    
[15]
Shi Q R, Zhu C Z, Du D, Lin Y H. Chem. Soc. Rev., 2019, 48(12): 3181.

doi: 10.1039/C8CS00671G     URL    
[16]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998.

doi: 10.1126/science.aad4998     URL    
[17]
Song J. ACS Energy Lett., 2017, 2(8): 1937.

doi: 10.1021/acsenergylett.7b00679     URL    
[18]
Yuan Y, Adimi S, Guo X Y, Thomas T, Zhu Y, Guo H C, Priyanga G S, Yoo P, Wang J C, Chen J, Liao P L, Attfield J P, Yang M H. Angew. Chem. Int. Ed., 2020, 59(41): 18036.

doi: 10.1002/anie.202008116     URL    
[19]
Wang Y, Zhu Y L, Zhao S L, She S X, Zhang F F, Chen Y, Williams T, Gengenbach T, Zu L H, Mao H Y, Zhou W, Shao Z P, Wang H T, Tang J, Zhao D Y, Selomulya C. Matter, 2020, 3(6): 2124.

doi: 10.1016/j.matt.2020.09.016     URL    
[20]
Song F, Hu X L. J. Am. Chem. Soc., 2014, 136(47): 16481.

doi: 10.1021/ja5096733     URL    
[21]
Qiao C, Zhang Y, Zhao B T, Chen H J, Liu X, Zhao R, Wang X W, Liu J, Chen Y, Zhu Y Q, Cao C B, Bao X H, Xu J Q. J. Mater. Chem. A, 2015, 3: 6878.

doi: 10.1039/C4TA06634K     URL    
[22]
Chen R, Hung S F, Zhou D J, Gao J J, Yang C J, Tao H B, Yang H B, Zhang L P, Zhang L L, Xiong Q H, Chen H M, Liu B. Adv. Mater., 2019, 31(41): 1903909.

doi: 10.1002/adma.201903909     URL    
[23]
Dionigi F, Zeng Z H, Sinev I, Merzdorf T, Deshpande S, Lopez M B, Kunze S, Zegkinoglou I, Sarodnik H, Fan D X, Bergmann A, Drnec J, Araujo J F D, Gliech M, Teschner D, Zhu J, Li W X, Greeley J, Cuenya B R, Strasser P. Nat. Commun., 2020, 11(1): 2522.

doi: 10.1038/s41467-020-16237-1     pmid: 32433529
[24]
Jiao S L, Yao Z Y, Li M F, Mu C, Liang H W, Zeng Y J, Huang H W. Nanoscale, 2019, 11(40): 18894.

doi: 10.1039/C9NR07465A     URL    
[25]
Xie J F, Xin J P, Wang R X, Zhang X D, Lei F C, Qu H C, Hao P, Cui G W, Tang B, Xie Y. Nano Energy, 2018, 53: 74.

doi: 10.1016/j.nanoen.2018.08.045     URL    
[26]
Sun H, Chen L, Lian Y B, Yang W J, Lin L, Chen Y F, Xu J B, Wang D, Yang X Q, Rümmerli M H, Guo J, Zhong J, Deng Z, Jiao Y, Peng Y, Qiao S Z. Adv. Mater., 2020, 32(52): 2006784.

doi: 10.1002/adma.202006784     URL    
[27]
Yu M Z, Zhou S, Wang Z Y, Zhao J J, Qiu J S. Nano Energy, 2018, 44: 181.

doi: 10.1016/j.nanoen.2017.12.003     URL    
[28]
Chen J D, Zheng F, Zhang S J, Fisher A, Zhou Y, Wang Z Y, Li Y Y, Xu B B, Li J T, Sun S G. ACS Catal., 2018, 8(12): 11342.

doi: 10.1021/acscatal.8b03489     URL    
[29]
Gu H Y, Shi G S, Chen H C, Xie S H, Li Y Z, Tong H N, Yang C L, Zhu C Y, Mefford J T, Xia H Y, Chueh W C, Chen H M, Zhang L M. ACS Energy Lett., 2020, 5(10): 3185.

doi: 10.1021/acsenergylett.0c01584     URL    
[30]
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334(6061): 1383.

doi: 10.1126/science.1212858     pmid: 22033519
[31]
Zhou S M, Miao X B, Zhao X, Ma C, Qiu Y H, Hu Z P, Zhao J Y, Shi L, Zeng J. Nat. Commun., 2016, 7(1): 11510.

doi: 10.1038/ncomms11510     URL    
[32]
Li B Q, Tang C, Wang H F, Zhu X L, Zhang Q. Sci. Adv., 2016, 2(10): e1600495.

doi: 10.1126/sciadv.1600495     URL    
[33]
Wang H P, Wang J, Pi Y C, Shao Q, Tan Y M, Huang X Q. Angew. Chem. Int. Ed., 2019, 58(8): 2316.

doi: 10.1002/anie.201812545     URL    
[34]
Elumeeva K, Masa J, Sierau J, Tietz F, Muhler M, Schuhmann W. Electrochim. Acta, 2016, 208: 25.

doi: 10.1016/j.electacta.2016.05.010     URL    
[35]
Zhu Y M, Zhang L, Zhao B T, Chen H J, Liu X, Zhao R, Wang X W, Liu J, Chen Y, Liu M L. Adv. Funct. Mater., 2019, 29(34): 1901783.

doi: 10.1002/adfm.201901783     URL    
[36]
Chen G, Zhou W, Guan D Q, Sunarso J, Zhu Y P, Hu X F, Zhang W, Shao Z P. Sci. Adv., 2017, 3(6): e1603206.

doi: 10.1126/sciadv.1603206     URL    
[37]
Kim N I, Sa Y J, Yoo T S, Choi S R, Afzal R A, Choi T, Seo Y S, Lee K S, Hwang J Y, Choi W S, Joo S H, Park J Y. Sci. Adv., 2018, 4(6): eaap9360.

doi: 10.1126/sciadv.aap9360     URL    
[38]
Oh N K, Kim C, Lee J, Kwon O, Choi Y, Jung G Y, Lim H Y, Kwak S K, Kim G, Park H. Nat. Commun., 2019, 10(1): 1723.

doi: 10.1038/s41467-019-09339-y     URL    
[39]
Li B Q, Xia Z J, Zhang B S, Tang C, Wang H F, Zhang Q. Nat. Commun., 2017, 8(1): 934.

doi: 10.1038/s41467-017-01053-x     URL    
[40]
Zhou Y, Sun S N, Wei C, Sun Y M, Xi P X, Feng Z X, Xu Z J. Adv. Mater., 2019, 31(41): 1902509.

doi: 10.1002/adma.201902509     URL    
[41]
Sun S N, Sun Y M, Zhou Y, Shen J J, Mandler D, Neumann R, Xu Z J. Chem. Mater., 2019, 31(19): 8106.

doi: 10.1021/acs.chemmater.9b02737     URL    
[42]
Ma L, Hung S F, Zhang L P, Cai W Z, Yang H B, Chen H M, Liu B. Ind. Eng. Chem. Res., 2018, 57(5): 1441.

doi: 10.1021/acs.iecr.7b04812     URL    
[43]
Hsu S H, Hung S F, Wang H Y, Xiao F X, Zhang L P, Yang H B, Chen H M, Lee J M, Liu B. Small Methods, 2018, 2(5): 1800001.

doi: 10.1002/smtd.201800001     URL    
[44]
Xu Q Z, Su Y Z, Wu H, Cheng H, Guo Y P, Li N, Liu Z Q. Curr. Nanosci., 2014, 11(1): 107.

doi: 10.2174/1573413710666140925200938     URL    
[45]
Liu Q F, Chen Z P, Yan Z, Wang Y, Wang E D, Wang S, Wang S D, Sun G Q. ChemElectroChem, 2018, 5(7): 1080.

doi: 10.1002/celc.201701302     URL    
[46]
Li Y, Shen W J. Chem. Soc. Rev., 2014, 43(5): 1543.

doi: 10.1039/C3CS60296F     URL    
[47]
Grewe T, Deng X H, Tüysüz H. Chem. Mater., 2014, 26(10): 3162.

doi: 10.1021/cm5005888     URL    
[48]
Wang H Y, Hung S F, Chen H Y, Chan T S, Chen H M, Liu B. J. Am. Chem. Soc., 2016, 138(1): 36.

doi: 10.1021/jacs.5b10525     URL    
[49]
Du G J, Liu X G, Zong Y, Hor T S A, Yu A S, Liu Z L. Nanoscale, 2013, 5(11): 4657.

doi: 10.1039/c3nr00300k     URL    
[50]
Wang Y C, Zhou T, Jiang K, Da P M, Peng Z, Tang J, Kong B, Cai W B, Yang Z Q, Zheng G F. Adv. Energy Mater., 2014, 4(16): 1400696.

doi: 10.1002/aenm.201400696     URL    
[51]
Liu Y W, Xiao C, Lyu M J, Lin Y, Cai W Z, Huang P C, Tong W, Zou Y M, Xie Y. Angew. Chem., 2015, 127(38): 11383.

doi: 10.1002/ange.201505320     URL    
[52]
Wang X F, Sun P F, Lu H L, Tang K, Li Q, Wang C, Mao Z Y, Ali T, Yan C L. Small, 2019, 15(11): 1804886.

doi: 10.1002/smll.201804886     URL    
[53]
Luo M C, Zhao Z L, Zhang Y L, Sun Y J, Xing Y, Lv F, Yang Y, Zhang X, Hwang S, Qin Y N, Ma J Y, Lin F, Su D, Lu G, Guo S J. Nature, 2019, 574(7776): 81.

doi: 10.1038/s41586-019-1603-7     URL    
[54]
Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y E, Li Y D. Nat. Catal., 2019, 2(4): 304.

doi: 10.1038/s41929-019-0246-2     URL    
[55]
Sun Y J, Zhang X, Luo M C, Chen X, Wang L, Li Y J, Li M Q, Qin Y N, Li C J, Xu N Y, Lu G, Gao P, Guo S J. Adv. Mater., 2018, 30(38): 1802136.

doi: 10.1002/adma.201802136     URL    
[56]
Fu Y, Yu H Y, Jiang C, Zhang T H, Zhan R, Li X W, Li J F, Tian J H, Yang R Z. Adv. Funct. Mater., 2018, 28(9): 1705094.

doi: 10.1002/adfm.201705094     URL    
[57]
Wang C H, Yang H C, Zhang Y J, Wang Q B. Angew. Chem. Int. Ed., 2019, 58(18): 6099.

doi: 10.1002/anie.201902446     URL    
[58]
Dai W J, Lu T, Pan Y. J. Power Sources, 2019, 430: 104.

doi: 10.1016/j.jpowsour.2019.05.030     URL    
[59]
Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. Nat. Commun., 2019, 10(1): 3115.

doi: 10.1038/s41467-019-11219-4     pmid: 31292450
[60]
Ban J J, Wen X H, Xu H J, Wang Z, Liu X H, Cao G Q, Shao G S, Hu J H. Adv. Funct. Mater., 2021, 31(19): 2010472.

doi: 10.1002/adfm.202010472     URL    
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[4] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[5] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[6] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[7] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[8] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[9] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[12] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[13] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[14] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[15] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
阅读次数
全文


摘要

表界面调控电催化析氧反应