English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 988-997 DOI: 10.7536/PC200733 前一篇   后一篇

• 综述 •

锂二次电池中的原位聚合电解质

李文涛(), 钟海*(), 麦耀华*   

  1. 暨南大学新能源技术研究院 广州 510632
  • 收稿日期:2020-07-14 修回日期:2020-11-20 出版日期:2021-06-20 发布日期:2020-12-28
  • 通讯作者: 钟海, 麦耀华
  • 基金资助:
    国家自然科学(21805113); 广东省自然科学(2019A1515011656)

In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries

Wentao Li(), Hai Zhong*(), Yaohua Mai*   

  1. Institute of new energy technology, Guangzhou 510632, China
  • Received:2020-07-14 Revised:2020-11-20 Online:2021-06-20 Published:2020-12-28
  • Contact: Hai Zhong, Yaohua Mai
  • About author:
    * Corresponding author e-mail: (Hai Zhong);
  • Supported by:
    National Natural Science Foundation of China(21805113); Guangdong Basic and Applied Basic Research Foundation(2019A1515011656)

聚合物电解质主要分为凝胶聚合物电解质和固态聚合物电解质两种类型,均能够提升锂二次电池的性能。其中,凝胶聚合物电解质是利用增塑剂实现聚合物基质的凝胶化,将有机液态电解液固定在三维网络结构中,因此同时具备液态的离子扩散速率和固态材料的机械性能;而固态聚合物电解质是一种完全没有液态电解质的体系,利用聚合物基体的极性实现锂盐的解离,以聚合物分子链的运动实现离子传输。相对于传统的非原位法制备的聚合物电解质而言,原位聚合反应制备的聚合电解质能够有效改善电解质与电极的界面相容性、简化电池组装工艺、降低制造成本。本文综述了当前原位聚合电解质在锂二次电池中应用的研究进展,并展望了原位聚合电解质的应用前景和未来挑战。

The polymer electrolytes are mainly divided into gel polymer electrolytes and solid polymer electrolytes, and both of them can improve the performance of Li rechargeable batteries. Gel polymer electrolytes include a plasticized or gelled polymer matrix, wherein the addition of plasticizer results in a 3D polymer matrix swollen in a liquid electrolyte, which can incorporate both diffusive property of liquids and the mechanical property of solids. Solid polymer electrolytes are solvent-free systems where the polymer host is used as solid solvent to dissolve the lithium salts, and the ions are transported by the polymer chain dynamics. Compared with the traditional ex-situ prepared polymer electrolyte, the polymer electrolytes synthesized by in-situ reaction can effectively improve the interface compatibility of electrolyte and electrode, simplify the assembly process and reduce cost. Therefore, this paper reviews the state-of-art of in-situ polymerization electrolytes in view of their electrochemical and physical properties for the applications in lithium batteries. The prospects and challenges toward the practical applications of in-situ polymerization polymer electrolyte for lithium rechargeable batteries are further summarized.

Contents

1 Introduction

2 In situ preparation of gel polymer electrolyte

2.1 PEO-based GPE

2.2 PMMA-based GPE

2.3 PVDF-HPF-based GPE

2.4 Others GPE

3 In situ preparation of solid polymer electrolyte

3.1 Ether-based SPE

3.2 Ester group SPE

3.3 Polyionic liquid SPE

4 Conclusion and outlook

()
表1 原位聚合物电解质中常用聚合物基质的性质
Table 1 Properties of mostly used polymer host in in-situ polymer electrolytes
图1 GPE膜的制备方法及应用实例[29]
Fig.1 The preparation process and the illustration of the GPE membrane[29]. Copyright 2017, Royal Society of Chemistry
图2 交联聚合物PAMM基电解质的制备过程[33]
Fig.2 Preparation procedure for cross-linking PAMM-based electrolyte with multi-advantages of individual polymer[33]. Copyright 2017, American Chemical Society
图3 (a)PHPG聚合物中PVDF-HFP、PEO和GO之间的分子间氢结合作用示意图;(b)PHPG分子间氢结合作用形成的三维多孔聚合物网络示意图[40]
Fig.3 (a) Schematic of the intermolecular hydrogen binding effect between PVDF-HFP, PEO, and GO in the PHPG polymer;(b) Schematic of the 3D porous polymer network of PHPG formed by the intermolecular hydrogen binding effect[40]. Copyright 2018, Wiley Online Library
图4 原位水解作用过程制备MUSiO2以及PEO链与MUSiO2之间的相互作用的机制原理示意图[48]
Fig.4 Schematic figures showing the procedure of in situ hydrolysis and interaction mechanisms among PEO chains and MUSiO2[48]. Copyright 2016, American Chemical Society
图5 (a)安全电池设计说明示意图:用热敏聚合物抑制电极之间的离子传导以防止LMB的热失控;(b)TSPE(PDOL和PLAS)的组成示意图;(c)TSPE薄膜的实物图[23]
Fig.5 (a) Illustration of the safe battery design: inhibition of the ionic conduction between electrodes with thermoresponsive polymer for preventing the thermal runaway of LMBs;(b) The schematic illustration of the composition of TSPE(PDOL and PLAS);(c) An optical image of the obtained TSPE film[23]. Copyright 2019, American Chemical Society
图6 交联xPTHF和xPEO的合成路径[24]]
Fig.6 Synthesis route to create xPTHF and xPEO SPEs[24]. Copyright 2018, Wiley Online Library
图7 (a)LFMP/PVCA-LSnPS/Li电池在0.1、0.3、0.5、1 C电流密度下的倍率性能以及在0.5 C电流密度下的室温循环性能;(b)PVCA-LSnPS复合材料循环后的元素映射分析;(c)基于元素映射分析和DFT计算结果,循环后PVCA-LSnP复合材料中可能存在的复杂结构[56]
Fig.7 (a) Rate performance of LFMP/PVCA-LSnPS/Li cell at the rates of 0.1, 0.3, 0.5, and 1 C, and cycle performance at the rate of 0.5 C at room temperature;(b) Element mapping analysis of PVCA-LSnPS composite after cycling;(c) Possible complex structures in PVCA-LSnPS composite after cycling based on element mapping analysis and the DFT calculation results[56]. Copyright 2018, American Chemical Society
图8 (a)用于合成交联聚合物的前驱体;(b)M-S-PEGDA的合成步骤及结构示意图[58]
Fig.8 (a) Main chemicals for the synthesis of cross-linked polymers;(b) Synthetic strategy and structure illustration of M-S-PEGDA[58]. Copyright 2020, Wiley Online Library
图9 制备P(IL-PEGDA) 基SPE的过程示意图[62]
Fig.9 Schematic diagram of the P(IL-PEGDA) SPE copolymerization reaction and preparation process[62]. Copyright 2020, American Chemical Society
[1]
Scrosati B, Hassoun J, Sun Y K. Energy Environ. Sci., 2011, 4:3287.

doi: 10.1039/c1ee01388b     URL    
[2]
Liu T T, Zhang J J, Yu J, Wu H, Zhang J N, Tang B, Cui G L. Acta Polym. Sin., 2020,51, 7:710.
(刘亭亭, 张建军, 于喆, 吴瀚, 张津宁, 唐犇, 崔光磊. 高分子学报, 2020,51, 7:710.).
[3]
Eshetu G G, Bertrand J P, Lecocq A, Grugeon S, Laruelle S, Armand M, Marlair G. J. Power Sources, 2014, 269:804.

doi: 10.1016/j.jpowsour.2014.07.065     URL    
[4]
Aricò A S, Bruce P, Scrosati B, Tarascon J M, Van Schalkwijk W. Nat. Mater., 2005, 4:366.

doi: 10.1038/nmat1368     URL    
[5]
Zhao F, Qian X M, Wang E K, Dong S J. Prog. Chem., 2002, 14(05):374.
(赵峰, 钱新民, 汪尔康, 董邵俊. 化学进展, 2002, 14(05): 374.)
[6]
Zhou W D, Wang Z X, Pu Y, Li Y T, Xin S, Li X F, Chen J F, Goodenough J B. Adv. Mater., 2019, 31:1805574.

doi: 10.1002/adma.v31.4     URL    
[7]
Chi S S, Liu Y C, Zhao N, Guo X X, Nan C W, Fan L Z. Energy Storage Mater., 2019, 17:309.
[8]
Fenton D E, Parker J M, Wright P V. Polymer, 1973, 14:589.
[9]
Armand M B, Chabagno J M, Duclot M J. Electrod. Electrolyt., 1979: 131.
[10]
Yarmolenko O V, Yudina A V, Khatmullina K G. Russ. J. Electrochem., 2018, 54:325.

doi: 10.1134/S1023193518040092     URL    
[11]
Zhang J F, Ma C, Liu J T, Chen L B, Pan A Q, Wei W F. J. Membr. Sci., 2016, 509:138.

doi: 10.1016/j.memsci.2016.02.049     URL    
[12]
Huang T, Long M C, Wang X L, Wu G, Wang Y Z. Chem. Eng. J., 2019, 375:122062.

doi: 10.1016/j.cej.2019.122062     URL    
[13]
Gozdz A S, Schmutz C N, Tarascon J M. US patent 5, 296,138, 1994.
[14]
Tarascon J M, Gozdz A S, Schmutz C, Shokoohi F, Warren P C. Solid State Ionics, 1996, 86/88:49.

doi: 10.1016/0167-2738(96)00330-X     URL    
[15]
Zhou J Q, Ji H Q, Liu J, Qian T, Yan C L. Energy Storage Mater., 2019, 22:256.
[16]
Chen F, Yang D J, Zhao W P, Zhu B D, Zhang Y H, Li J Y, Gu Y P, Shen Q, Zhang L M, Sadoway D R. Electrochimica Acta, 2017, 258:1106.

doi: 10.1016/j.electacta.2017.11.164     URL    
[17]
Zhou D, He Y B, Cai Q, Qin X Y, Li B H, Du H D, Yang Q H, Kang F Y. J. Mater. Chem. A, 2014, 2:20059.

doi: 10.1039/C4TA04504A     URL    
[18]
Raccichini R, Dibden J W, Brew A, Owen J R, García-Aráez N. J. Phys. Chem. B, 2018, 122:267.

doi: 10.1021/acs.jpcb.7b09614     URL    
[19]
Zhang X L, Zhao S Y, Fan W, Wan J N, Li C J. Electrochim. Acta, 2019, 301:304.

doi: 10.1016/j.electacta.2019.01.156     URL    
[20]
Liu X C, Ding G L, Zhou X H, Li S Z, He W S, Chai J C, Pang C G, Liu Z H, Cui G L. J. Mater. Chem. A, 2017, 5:11124.

doi: 10.1039/C7TA02423A     URL    
[21]
Ni B Y, Jiao X N, Ruan Y L. J. TianJin Uni., 2009, 28:50.
(倪冰选, 焦晓宁, 阮艳莉. 天津工业大学学报, 2009, 28:50.).
[22]
Arya A, Sharma A L. Ionics, 2017, 23:497.

doi: 10.1007/s11581-016-1908-6     URL    
[23]
Zhou J Q, Qian T, Liu J, Wang M F, Zhang L, Yan C L. Nano Lett., 2019, 19:3066.

doi: 10.1021/acs.nanolett.9b00450     URL    
[24]
Mackanic D G, Michaels W, Lee M, Feng D W, Lopez J, Qin J, Cui Y, Bao Z N. Adv. Energy Mater., 2018, 8:1800703.

doi: 10.1002/aenm.v8.25     URL    
[25]
Chai J C, Liu Z H, Ma J, Wang J, Liu X C, Liu H S, Zhang J J, Cui G L, Chen L Q. Adv. Sci., 2017, 4:1600377.

doi: 10.1002/advs.201600377     URL    
[26]
Gao Y. Sci. Techol. Innov. Herld., 2017, 14(06):82.
(高媛. 科技创新导报, 2017, 14(06): 82.)
[27]
Devaux D, Bouchet R, Glé D, Denoyel R. Solid State Ionics, 2012, 227:119.

doi: 10.1016/j.ssi.2012.09.020     URL    
[28]
Li W Y, Pang Y, Zhu T C, Wang Y G, Xia Y Y. Solid State Ionics, 2018, 318:82.

doi: 10.1016/j.ssi.2017.08.018     URL    
[29]
Li W Y, Pang Y, Liu J Y, Liu G H, Wang Y G, Xia Y Y. RSC Adv., 2017, 7:23494.

doi: 10.1039/C7RA02603J     URL    
[30]
Zhao Y R, Huang Z, Chen S J, Chen B, Yang J, Zhang Q, Ding F, Chen Y H, Xu X X. Solid State Ionics, 2016, 295:65.

doi: 10.1016/j.ssi.2016.07.013     URL    
[31]
Zhu Y H, Cao J, Chen H, Yu Q P, Li B H. J. Mater. Chem. A, 2019, 7:6832.

doi: 10.1039/C9TA00560A     URL    
[32]
Sengwa R J, Choudhary S. J. Phys. Chem. Solids, 2014, 75:765.

doi: 10.1016/j.jpcs.2014.02.008     URL    
[33]
Ma Y, Ma J, Chai J C, Liu Z H, Ding G L, Xu G J, Liu H S, Chen B B, Zhou X H, Cui G L, Chen L Q. ACS Appl. Mater. Interfaces, 2017, 9:41462.

doi: 10.1021/acsami.7b11342     URL    
[34]
Hosseinioun A, Paillard E. J. Membr. Sci., 2020, 594:117456.

doi: 10.1016/j.memsci.2019.117456     URL    
[35]
Shao D S, Wang X Y, Li X L, Luo K L, Yang L, Liu L, Liu H. J. Solid State Electrochem., 2019, 23:2785.

doi: 10.1007/s10008-019-04382-7     URL    
[36]
Zhang S Z, Xia X H, Xie D, Xu R C, Xu Y J, Xia Y, Wu J B, Yao Z J, Wang X L, Tu J P. J. Power Sources, 2019, 409:31.

doi: 10.1016/j.jpowsour.2018.10.088    
[37]
Pu W H, He X M, Wang L, Jiang C Y, Wan C R. J. Membr. Sci., 2006, 272:11.

doi: 10.1016/j.memsci.2005.12.038     URL    
[38]
Guan J P, Li Y J, Li J Y. Ind. Eng. Chem. Res., 2017, 56:12456.

doi: 10.1021/acs.iecr.7b03387     URL    
[39]
Shalu S L, Singh V K, Singh R K. J. Mater. Chem. C, 2015, 3:7305.

doi: 10.1039/C5TC00940E     URL    
[40]
Chen G H, Zhang F, Zhou Z M Y, Li J R, Tang Y B. Adv. Energy Mater., 2018, 8:1801219.

doi: 10.1002/aenm.v8.25     URL    
[41]
Khoon L T, Fui M L W, Hassan N H, Su’ait M S, Vedarajan R, Matsumi N, Bin Kassim M, Shyuan L K, Ahmad A. J. Sol - Gel Sci. Technol., 2019, 90:665.

doi: 10.1007/s10971-019-04936-1     URL    
[42]
Xu D, Su J M, Jin J, Sun C, Ruan Y D, Chen C H, Wen Z Y. Adv. Energy Mater., 2019, 9:1900611.

doi: 10.1002/aenm.v9.25     URL    
[43]
Chai J C, Liu Z H, Zhang J J, Sun J R, Tian Z Y, Ji Y Y, Tang K, Zhou X H, Cui G L. ACS Appl. Mater. Interfaces, 2017, 9:17897.

doi: 10.1021/acsami.7b02844     URL    
[44]
Qiu Z F, Shi L Y, Wang Z Y, Mindemark J, Zhu J F, Edström K, Zhao Y, Yuan S. Chem. Eng. J., 2019, 368:321.

doi: 10.1016/j.cej.2019.02.107     URL    
[45]
Liu F Q, Li T, Yang Y J, Yan J, Li N, Xue J X, Huo H, Zhou J J, Li L. Macromol. Rapid Commun., 2020, 41:2000047.

doi: 10.1002/marc.v41.9     URL    
[46]
Chen L K, Hu Y, Ma J B, Huang F Y, Yu J, He Y B, Hou F Y. Chem. Ind. Eng., 2020, 37:2.
(陈立坤, 胡懿, 马家宾, 黄妍斐, 余静, 贺艳兵, 侯飞宇. 化学工业与工程, 2020, 37:2.).
[47]
Zhang Y H, Lu W, Cong L N, Liu J, Sun L Q, Mauger A, Julien C M, Xie H M, Liu J. J. Power Sources, 2019, 420:63.

doi: 10.1016/j.jpowsour.2019.02.090     URL    
[48]
Lin D C, Liu W, Liu Y Y, Lee H R, Hsu P C, Liu K, Cui Y. Nano Lett., 2015, 16:459.

doi: 10.1021/acs.nanolett.5b04117     URL    
[49]
Chen S J, Wang J Y, Zhang Z H, Wu L B, Yao L L, Wei Z Y, Deng Y H, Xie D J, Yao X Y, Xu X X. J. Power Sources, 2018, 387:72.

doi: 10.1016/j.jpowsour.2018.03.016     URL    
[50]
Tan X J, Wu Y M, Tang W P, Song S F, Yao J Y, Wen Z Y, Lu L, Savilov S V, Hu N, Molenda J. Nanomaterials, 2020, 10:157.

doi: 10.3390/nano10010157     URL    
[51]
Zhong H, Wang C H, Xu Z B, Ding F, Liu X J. Sci. Rep., 2016, 6:25484.

doi: 10.1038/srep25484     pmid: 27146645
[52]
Zhao Q, Liu X, Stalin S, Khan K, Archer L A. Nat. Energy, 2019, 4:365.

doi: 10.1038/s41560-019-0349-7     URL    
[53]
Zhang A F, Zhang G L, Zhang Z H. Acta Polym. Sin., 1999,502.
(张阿方, 张广利, 张鸿志. 高分子学报, 1999,502.).
[54]
Huang S Q, Cui Z L, Qiao L X, Xu G J, Zhang J J, Tang K, Liu X C, Wang Q L, Zhou X H, Zhang B T, Cui G L. Electrochimica Acta, 2019, 299:820.

doi: 10.1016/j.electacta.2019.01.039    
[55]
Dong T T, Zhang J J, Chai J C, Jia Q M, Cui G L. Acta Polym. Sin., 2017, 6:906.
(董甜甜, 张建军, 柴敬超, 贾庆明, 崔光磊. 高分子学报, 2017, 6:906.).
[56]
Ju J W, Wang Y T, Chen B B, Ma J, Dong S M, Chai J C, Qu H T, Cui L F, Wu X X, Cui G L. ACS Appl. Mater. Interfaces, 2018, 10:13588.

doi: 10.1021/acsami.8b02240     URL    
[57]
Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater., 2018, 10:85.
[58]
Wang H C, Wang Q, Cao X, He Y Y, Wu K, Yang J J, Zhou H H, Liu W, Sun X M. Adv. Mater., 2020, 32:2001259.

doi: 10.1002/adma.v32.37     URL    
[59]
Yuan J Y, Mecerreyes D, Antonietti M. Prog. Polym. Sci., 2013, 38:1009.

doi: 10.1016/j.progpolymsci.2013.04.002     URL    
[60]
Zhang S Y, Zhuang Q, Zhang M, Wang H, Gao Z M, Sun J K, Yuan J Y. Chem. Soc. Rev., 2020, 49:1726.

doi: 10.1039/C8CS00938D     URL    
[61]
Zhou D, Liu R L, Zhang J, Qi X G, He Y B, Li B H, Yang Q H, Hu Y S, Kang F Y. Nano Energy, 2017, 33:45.

doi: 10.1016/j.nanoen.2017.01.027     URL    
[62]
Zhang F R, Sun Y Y, Wang Z C, Fu D S, Li J, Hu J C, Xu J J, Wu X D. ACS Appl. Mater. Interfaces, 2020, 12:23774.

doi: 10.1021/acsami.9b22945     URL    
[63]
Li Y H, Sun Z J, Shi L, Lu S Y, Sun Z H, Shi Y C, Wu H, Zhang Y F, Ding S J. Chem. Eng. J., 2019, 375:121925.

doi: 10.1016/j.cej.2019.121925     URL    
[64]
Liu K, Zhang Q Q, Thapaliya B P, Sun X G, Ding F, Liu X J, Zhang J L, Dai S. Solid State Ionics, 2020, 345:115159.

doi: 10.1016/j.ssi.2019.115159     URL    
[65]
Zhang J J, Yang J F, Wu H, Zhang M, Liu T T, Zhang J N, Dong S M, Cui G L. Acta Polym. Sin., 2019,50, 9:890.
(张建军, 杨金凤, 吴瀚, 张敏, 刘亭亭, 张津宁, 董杉木, 崔光磊. 高分子学报, 2019,50, 9:890.).
[1] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[2] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[3] 张恒, 郑丽萍, 聂进, 黄学杰, 周志彬. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26(06): 1005-1020.
[4] 陈人杰, 张海琴, 吴锋. 离子液体在电池中的应用[J]. 化学进展, 2011, 23(0203): 366-373.
[5] 赵磊, 王维坤, 王安邦, 余仲宝, 陈实, 杨裕生. 含氧有机物作为锂电池正极材料[J]. 化学进展, 2010, 22(12): 2268-2275.
[6] 高鹏,韩家军,朱永明,张翠芬,李宁. 金属锂二次电池锂负极改性[J]. 化学进展, 2009, 21(0708): 1678-1686.
[7] 王莉 何向明 蒲薇华 姜长印 万春荣 . 金属锂二次电池研究进展[J]. 化学进展, 2006, 18(05): 641-647.
阅读次数
全文


摘要