English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 963-972 DOI: 10.7536/PC210438 前一篇   后一篇

• 综述 •

同步辐射技术在大气科学领域的研究进展

孔祥瑞1,*(), 窦静2, 陈淑贞2,3, 汪冰冰4, 吴志军5,*()   

  1. 1 哥德堡大学化学与分子生物学学院 哥德堡 41296 瑞典
    2 苏黎世联邦理工学院大气与气候科学研究所 苏黎世 8092 瑞士
    3 保罗谢尔研究所环境化学实验室 菲利根 5232 瑞士
    4 近海海洋环境科学国家重点实验室 厦门大学海洋与地球学院 厦门 361102
    5 北京大学环境科学与工程学院 北京 100871
  • 收稿日期:2021-04-22 修回日期:2021-07-14 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 孔祥瑞, 吴志军
  • 基金资助:
    国家自然科学基金项目(41975160); 瑞典研究委员会(2021-04042); 瑞典国际研究与高等教育合作基金会(CH2019-8361)

Progress of Synchrotron-Based Research on Atmospheric Science

Xiangrui Kong1(), Jing Dou2, Shuzhen Chen2,3, Bingbing Wang4, Zhijun Wu5()   

  1. 1 Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41296, Sweden
    2 Institute for Atmospheric and Climate Science, ETH Zürich, Zürich 8092, Switzerland
    3 Laboratory of Environmental Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
    4 State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102, China
    5 College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • Received:2021-04-22 Revised:2021-07-14 Online:2022-04-24 Published:2021-07-29
  • Contact: Xiangrui Kong, Zhijun Wu
  • Supported by:
    National Natural Science Foundation of China(41975160); Swedish Research Council(2021-04042); Swedish Foundation for International Cooperation in Research and Higher Education(CH2019-8361)

作为新颖和独特的大型仪器,同步辐射装置正在越来越多地被应用到大气和环境科学的研究中。本文介绍了基于同步辐射的探测技术的理论原理、关键技术以及近期的主要研究成果。涉及的同步辐射技术包括:常压X射线光电子能谱(APXPS)、近边X射线吸收精细结构(NEXAFS)和扫描透射X射线显微镜(STXM)。本文按实验类型进行了分类,即APXPS实验、流体束实验和STXM实验。主要内容包括:(1)冰表面;(2)盐表面;(3)酸性溶液;(4)有机溶液;(5)盐溶液;(6)臭氧分解;(7)黑碳;(8)冰核;(9)吸湿性;(10)反应机理。同步辐射设施的发展为气溶胶科学和大气异相化学的研究提供了强大的工具。可以预见越来越多的重要大气过程和机制将通过基于同步辐射的研究所揭示,而这也将体现同步辐射装置在大气和环境领域的巨大潜力和价值。

As a novel and unique large-scale instrument, the synchrotron radiation facilities have been progressively applied to the research of atmospheric science. This article introduces the theoretical principles, key technologies, and recent major research results of key synchrotron radiation-based experimental methods. The main synchrotron radiation technologies include the atmospheric pressure X-ray photoelectron spectroscopy (APXPS), the near edge X-ray absorption fine structure (NEXAFS) and the scanning transmission X-ray microscopy (STXM). A key component (environmental cell) commonly used in all three technologies is explained in detail. This article classifies the collected research according to experimental types, i.e., APXPS experiments, liquid jet experiments and STXM experiments. The main topics include: (1) ice surface, (2) salt surface, (3) acidic solution, (4) organic solution, (5) halite solution, (6) ozonolysis, (7) soot, (8) ice nuclei, (9) hygroscopicity and (10) reaction mechanism. The development of synchrotron radiation facilities has provided strong support for the research of aerosol science and atmospheric heterogeneous chemistry, giving atmospheric scientists the ability to explore unknown fields and latitudes. It is foreseeable that more and more important atmospheric processes and mechanisms will be revealed by technologies based on synchrotron radiation, which will also reflect the great potential and value of synchrotron radiation devices in the field of atmospheric and environmental science.

Contents

1 Introduction

2 Synchrotron-based techniques used in atmospheric science

2.1 X-ray Photoelectron Spectroscopy (XPS)

2.2 X-ray Adsorption Spectroscopy (XAS)

3 Key technologies for connecting synchrotron-based techniques and atmospheric science——Environmental cell

3.1 APXPS environmental chamber

3.2 Liquid jet environment chamber

3.3 STXM environmental chamber

4 Research progress

4.1 APXPS

4.2 Liquid jet

4.3 Scanning Transmission X-ray Microscopy (STXM)

5 Limitations and Outlook

6 Summary

()
图1 光电子逸出示意图,K, L1, K2,3为电子层
Fig. 1 Illustration of the escape of photoelectron. K, L1, K2,3 are electron orbitals
图2 俄歇电子逸出示意图,K, L1, K2,3为电子层
Fig. 2 Illustration of the escape of Auger electron. K, L1, K2,3 are electron orbitals
图3 APXPS终端站示意图
Fig. 3 Schematic view of APXPS endstations
图4 流体束环境腔示意图
Fig. 4 Illustration of liquid jet environmental cell
图5 STXM与环境腔示意图
Fig. 5 Illustration of STXM environmental cell
图6 盐酸在冰面上的吸附和分布
Fig. 6 Uptake and distribution of HCl on ice surface
图7 不同RH下的(a) Na K-edge和(b) O K-edge NEXAFS能谱,RH标记在各能谱的右下侧,自上而下的RH变化顺序为实际的实验顺序,RH括号中的r为reverse,即RH在此处降低
Fig. 7 The NEXAFS spectra of (a) Na K-edge and (b) O K-edge at various RHs. The RH values are marked below the corresponding spectra. The order of measurements follows the top-down sequence. The letter r in the bracket stands for reverse, where the RH is reached from higher RH
[1]
George C, Ammann M, D’Anna B, Donaldson D J, Nizkorodov S A. Chem. Rev., 2015, 115(10): 4218.

doi: 10.1021/cr500648z     URL    
[2]
Nie W, Ding A, Wang T, Kerminen V M, George C, Xue L, Wang W, Zhang Q, Petaja T, Qi X, Gao X, Wang X, Yang X, Fu C, Kulmala M. Sci. Rep., 2014, 4: 6634.

doi: 10.1038/srep06634     URL    
[3]
Simpson W R, Brown S S, Saiz-Lopez A, Thornton J A, von Glasow R. Chem. Rev., 2015, 115(10): 4035.

doi: 10.1021/cr5006638     URL    
[4]
Abbatt J P. Chem. Rev., 2003, 103: 4783.

doi: 10.1021/cr0206418     URL    
[5]
Chen H H, Nanayakkara C E, Grassian V H. Chem. Rev., 2012, 112(11): 5919.

doi: 10.1021/cr3002092     URL    
[6]
Burkholder J B, Cox R A, Ravishankara A R. Chem. Rev., 2015, 115(10): 3704.

doi: 10.1021/cr5006759     pmid: 25893463
[7]
Kolb C E, Cox R A, Abbatt J P D, Ammann M, Davis E J, Donaldson D J, Garrett B C, George C, Griffiths P T, Hanson D R, Kulmala M, McFiggans G, Pöschl U, Riipinen I, Rossi M J, Rudich Y, Wagner P E, Winkler P M, Worsnop D R, O' Dowd C D. Atmos. Chem. Phys., 2010, 10(21): 10561.

doi: 10.5194/acp-10-10561-2010     URL    
[8]
Reid J P, Bertram A K, Topping D O, Laskin A, Martin S T, Petters M D, Pope F D, Rovelli G. Nat. Commun., 2018, 9(1): 956.

doi: 10.1038/s41467-018-03027-z     URL    
[9]
Artiglia L, Edebeli J, Orlando F, Chen S Z, Lee M T, Corral Arroyo P, Gilgen A, Bartels-Rausch T, Kleibert A, Vazdar M, Andres Carignano M, Francisco J S, Shepson P B, Gladich I, Ammann M. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6     URL    
[10]
McNeill V F, Loerting T, Geiger F M, Trout B L, Molina M J. Proc. Natl. Acad. Sci. USA, 2006, 103, 9422.

doi: 10.1073/pnas.0603494103     URL    
[11]
Wise M E, Martin S T, Russell L M, Buseck P R. Aerosol Sci. Tech., 2008, 42, 281.

doi: 10.1080/02786820802047115     URL    
[12]
Bruzewicz D A, Checco A, Ocko B M, Lewis E R, McGraw R L, Schwartz S E. J. Chem. Phys., 2011, 134(4): 044702.

doi: 10.1063/1.3524195     URL    
[13]
Watts J F, Wolstenholme J. An Introduction to Surface Analysis by XPS and AES, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester., West Sussex PO 19 8SQ, England, 2003.
[14]
Moffet R C, Tivanski A V, Gilles M K. Fundamentals and Applications in Aerosol Spectroscopy, CRC Press; Taylor & Francis Group, Boca Raton, FL, 2011.
[15]
Kong X R, Waldner A, Orlando F, Artiglia L, Huthwelker T, Ammann M, Bartels-Rausch T. J. Phys. Chem. Lett., 2017, 8(19): 4757.

doi: 10.1021/acs.jpclett.7b01573     URL    
[16]
Bluhm H, Ogletree D F, Fadley C S, Hussain Z, Salmeron M. J. Phys.: Condens. Matter, 2002, 14(8): L227.
[17]
Kolmakov A, Gregoratti L, Kiskinova M, Gunther S. Catal. Lett., 2016, 59: 448.

doi: 10.1007/s11244-015-0519-1     pmid: 28008215
[18]
Fitzek H, Schroettner H, Wagner J, Hofer F, Rattenberger J. J. Microsc., 2016, 262(1): 85.

doi: 10.1111/jmi.12347     URL    
[19]
Ramachandramoorthy R, Bernal R, Espinosa H D. ACS Nano, 2015, 9(5): 4675.

doi: 10.1021/acsnano.5b01391     pmid: 25942405
[20]
Johansson S M, Kong X R, Papagiannakopoulos P, Thomson E S, Pettersson J B C. Rev. Sci. Instrum., 2017, 88(3): 035112.

doi: 10.1063/1.4978325     URL    
[21]
Ogletree D F, Bluhm H, Lebedev G, Fadley C S, Hussain Z, Salmeron M. Rev. Sci. Instrum., 2002, 73(11): 3872.

doi: 10.1063/1.1512336     URL    
[22]
Velasco-VÉlez J J, Pfeifer V, Hävecker M, Wang R, Centeno A, Zurutuza A, Algara-Siller G, Stotz E, Skorupska K, Teschner D, Kube P, Braeuninger-Weimer P, Hofmann S, Schlögl R, Knop-Gericke A. Rev. Sci. Instrum., 2016, 87(5): 053121.

doi: 10.1063/1.4951724     URL    
[23]
Orlando F, Waldner A, Bartels-Rausch T, Birrer M, Kato S, Lee M T, Proff C, Huthwelker T, Kleibert A, Bokhoven J, Ammann M. Top. Catal., 2016, 59(5/7): 591.

doi: 10.1007/s11244-015-0515-5     URL    
[24]
Siegbahn H, Siegbahn K. J. Electron Spectrosc., 1973, 2: 319.

doi: 10.1016/0368-2048(73)80023-4     URL    
[25]
Lena T, Ashley R H, Osman K, Line K, Hendrik B, J. Phys.: Condens. Mat., 2017, 29: 053002.
[26]
Winter B. Nucl. Instrum. Methods Phys. Res., 2009, 601, 139.

doi: 10.1016/j.nima.2008.12.108     URL    
[27]
Molina M J, Tso T L, Molina L T, Wang F CY. Science, 1987, 238, 1253.

pmid: 17744362
[28]
Bolton K, Pettersson J B C. J. Am. Chem. Soc., 2001, 123: 7360.

pmid: 11472166
[29]
Devlin J P, Uras N, Sadlej J, Buch V. Nature, 2002, 417(6886): 269.

doi: 10.1038/417269a     URL    
[30]
Parent P, Lasne J, Marcotte G, Laffon C. Phys. Chem. Chem. Phys., 2011, 13(15): 7142.

doi: 10.1039/c0cp02864a     URL    
[31]
Svanberg M, Pettersson J B C, Bolton K. J. Phys. Chem. A, 2000, 104(24): 5787.

doi: 10.1021/jp0012698     URL    
[32]
Waldner A, Artiglia L, Kong X R, Orlando F, Huthwelker T, Ammann M, Bartels-Rausch T. Phys. Chem. Chem. Phys., 2018, 20(37): 24408.

doi: 10.1039/c8cp03621g     pmid: 30221299
[33]
Bartels-Rausch T, Orlando F, Kong X R, Artiglia L, Ammann M. ACS Earth Space Chem., 2017, 1(9): 572.

doi: 10.1021/acsearthspacechem.7b00077     URL    
[34]
Krepelová A, Newberg J, Huthwelker T, Bluhm H, Ammann M. Phys. Chem. Chem. Phys., 2010, 12(31): 8870.

doi: 10.1039/c0cp00359j     pmid: 20532376
[35]
Krepelová A, Bartels-Rausch T, Brown M A, Bluhm H, Ammann M. J. Phys. Chem. A, 2013, 117(2): 401.

doi: 10.1021/jp3102332     URL    
[36]
Starr D E, Pan D, Newberg J T, Ammann M, Wang E G, Michaelides A, Bluhm H. PCCP, 2011, 13: 19988.

doi: 10.1039/c1cp21493d     URL    
[37]
Newberg J T, Bluhm H. PCCP, 2015, 17: 23554.

doi: 10.1039/C5CP03821A     URL    
[38]
Kong X R, Castarède D, Boucly A, Artiglia L, Ammann M, Bartels-Rausch T, Thomson E S, Pettersson J B C. J. Phys. Chem. C, 2020, 124(9): 5263.

doi: 10.1021/acs.jpcc.0c00319     URL    
[39]
Kong X, Gladich I, Castarede D, Thomson E S, Boucly A, Artiglia L, Ammann M, Pettersson J B C, European Geosciences Union General Assembly, 2021, 21: 727.
[40]
Krepelová A, Huthwelker T, Bluhm H, Ammann M. ChemPhysChem, 2010, 11(18): 3859.

doi: 10.1002/cphc.201000461     URL    
[41]
Ghosal S, Hemminger J C, Bluhm H, Mun B S, Hebenstreit E L D, Ketteler G, Ogletree D F, Requejo F G, Salmeron M. Science, 2005, 307(5709): 563.

doi: 10.1126/science.1106525     URL    
[42]
Cziczo D J, Froyd K D, Hoose C, Jensen E J, Diao M, Zondlo M A, Smith J B, Twohy C H, Murphy D M. Science, 2013, 340: 1320.

doi: 10.1126/science.1234145     URL    
[43]
Bartels-Rausch T, Kong X, Orlando F, Artiglia L, Waldner A, Huthwelker T, Ammann M. Cryosphere Discuss., 2020, 2020: 1.
[44]
Lewis T, Winter B, Stern A C, Baer M D, Mundy C J, Tobias D J, Hemminger J C. J. Phys. Chem. C, 2011, 115(43): 21183.

doi: 10.1021/jp205842w     URL    
[45]
Lam R K, Smith J W, Rizzuto A M, Karslıoğlu O, Bluhm H, Saykally R J. J. Chem. Phys., 2017, 146(9): 094703.

doi: 10.1063/1.4977046     URL    
[46]
Ottosson N, Vácha R, Aziz E F, Pokapanich W, Eberhardt W, Svensson S, Öhrwall G, Jungwirth P, Björneholm O, Winter B. J. Chem. Phys., 2009, 131(12): 124706.

doi: 10.1063/1.3236805     URL    
[47]
Ottosson N, Wernersson E, Söderström J, Pokapanich W, Kaufmann S, Svensson S, Persson I, Öhrwall G, Björneholm O. Phys. Chem. Chem. Phys., 2011, 13(26): 12261.

doi: 10.1039/c1cp20245f     pmid: 21633751
[48]
Lee M T, Orlando F, Artiglia L, Chen S Z, Ammann M. J. Phys. Chem. A, 2016, 120(49): 9749.

doi: 10.1021/acs.jpca.6b09261     URL    
[49]
Öhrwall G, Prisle N L, Ottosson N, Werner J, Ekholm V, Walz M M, Björneholm O. J. Phys. Chem. B, 2015, 119(10): 4033.

doi: 10.1021/jp509945g     URL    
[50]
Prisle N L, Ottosson N, Öhrwall G, Söderström J, dal Maso M, Björneholm O. Atmos. Chem. Phys., 2012, 12(24): 12227.

doi: 10.5194/acp-12-12227-2012     URL    
[51]
Werner J, Julin J, Dalirian M, Prisle N L, Öhrwall G, Persson I, Björneholm O, Riipinen I. Phys. Chem. Chem. Phys., 2014, 16(39): 21486.

doi: 10.1039/C4CP02776K     URL    
[52]
Walz M M, Caleman C, Werner J, Ekholm V, Lundberg D, Prisle N L, Öhrwall G, Björneholm O. Phys. Chem. Chem. Phys., 2015, 17(21): 14036.

doi: 10.1039/c5cp01870f     pmid: 25953683
[53]
Walz M M, Werner J, Ekholm V, Prisle N L,. Ohrwall G, Bjorneholm O. PCCP, 2016, 18: 6648.

doi: 10.1039/C5CP06463E     URL    
[54]
Ottosson N, Heyda J, Wernersson E, Pokapanich W, Svensson S, Winter B, Öhrwall G, Jungwirth P, Björneholm O. Phys. Chem. Chem. Phys., 2010, 12(36): 10693.

doi: 10.1039/c0cp00365d     pmid: 20617257
[55]
Lee M T, Brown M A, Kato S, Kleibert A, Türler A, Ammann M. J. Phys. Chem. A, 2015, 119(19): 4600.

doi: 10.1021/jp510707s     URL    
[56]
Lee M T, Orlando F, Khabiri M, Roeselová M, Brown M A, Ammann M. Phys. Chem. Chem. Phys., 2019, 21(16): 8418.

doi: 10.1039/C8CP07448H     URL    
[57]
Gladich I, Chen S Z, Vazdar M, Boucly A, Yang H Y, Ammann M, Artiglia L. J. Phys. Chem. Lett., 2020, 11(9): 3422.

doi: 10.1021/acs.jpclett.0c00633     pmid: 32283032
[58]
Moffet R C, Henn T, Laskin A, Gilles M K. Anal. Chem., 2010, 82(19): 7906.

doi: 10.1021/ac1012909     pmid: 20879799
[59]
Moffet R C, O'Brien R E, Alpert P A, Kelly S T, Pham D Q, Gilles M K, Knopf D A, Laskin A. Atmos. Chem. Phys., 2016, 16(22): 14515.

doi: 10.5194/acp-16-14515-2016     URL    
[60]
Wilson T W, Ladino L A, Alpert P A, Breckels M N, Brooks I M, Browse J, Burrows S M, Carslaw K S, Huffman J A, Judd C, Kilthau W P, Mason R H, McFiggans G, Miller L A, Nájera J J, Polishchuk E, Rae S, Schiller C L, Si M, Temprado J V, Whale T F, Wong J P S, Wurl O, Yakobi-Hancock J D, Abbatt J P D, Aller J Y, Bertram A K, Knopf D A, Murray B J. Nature, 2015, 525(7568): 234.

doi: 10.1038/nature14986     URL    
[61]
Wang B, Knopf D A, China S, Arey B W, Harder T. H., Gilles M K, Laskin A. PCCP, 2016, 18: 29721.

doi: 10.1039/C6CP05253C     URL    
[62]
Knopf D A, Alpert P A, Wang B, O’Brien R E, Kelly S T, Laskin A, Gilles M K, Moffet R C. J. Geophys. Res.:Atmos., 2014, 119 (10): 365.
[63]
Wang B, Laskin A, Roedel T, Gilles M K, Moffet R C, Tivanski A V, Knopf D A. J. Geophys. Res.:Atmos., 2012, 117.
[64]
Ghorai S, Tivanski A V. Anal. Chem., 2010, 82(22): 9289.

doi: 10.1021/ac101797k     pmid: 21028839
[65]
Piens D S, Kelly S T, Harder T H, Petters M D, O’Brien R E, Wang B B, Teske K, Dowell P, Laskin A, Gilles M K. Environ. Sci. Technol., 2016, 50(10): 5172.

doi: 10.1021/acs.est.6b00793     URL    
[66]
Pöhlker C, Saturno J, Krüger M L, Förster J D, Weigand M, Wiedemann K T, Bechtel M, Artaxo P, Andreae M O. Geophys. Res. Lett., 2014, 41(10): 3681.

doi: 10.1002/2014GL059409     URL    
[67]
Alpert P A, Ciuraru R, Rossignol S, Passananti M, Tinel L, Perrier S, Dupart Y, Steimer S S, Ammann M, Donaldson D J, George C. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x     URL    
[68]
Ghorai S, Laskin A, Tivanski A V. J. Phys. Chem. A, 2011, 115(17): 4373.

doi: 10.1021/jp112360x     pmid: 21480651
[69]
Steimer S S, Lampimäki M, Coz E, Grzinic G, Ammann M. Atmos. Chem. Phys., 2014, 14(19): 10761.

doi: 10.5194/acp-14-10761-2014     URL    
[70]
Berkemeier T, Steimer S S, Krieger U K, Peter T, Pöschl U, Ammann M, Shiraiwa M. Phys. Chem. Chem. Phys., 2016, 18(18): 12662.

doi: 10.1039/c6cp00634e     pmid: 27095585
[71]
Alpert P A, Corral Arroyo P, Dou J, Krieger U K, Steimer S S, Forster J D, Ditas F, Pohlker C, Rossignol S, Passananti M, Perrier S, George C, Shiraiwa M, Berkemeier T, Watts B, Ammann M, PCCP, 2019, 21:20613.

doi: 10.1039/C9CP03731D     URL    
[72]
Alpert P A, Dou J, Corral Arroyo P, Schneider F, Xto J, Luo B P, Peter T, Huthwelker T, Borca C N, Henzler K D, Schaefer T, Herrmann H, Raabe J, Watts B, Krieger U K, Ammann M. Nat. Commun., 2021, 12(1): 1.

doi: 10.1038/s41467-020-20314-w     URL    
[73]
Dou J, Alpert P A, Corral Arroyo P, Luo B, Schneider F, Xto J, Huthwelker T, Borca C N, Henzler K D, Raabe J, Watts B, Herrmann H, Peter T, Ammann M, Krieger U K. Atmos. Chem. Phys., 2021, 21: 315.

doi: 10.5194/acp-21-315-2021     URL    
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 钟佳利, 王炜罡, 彭超, 马楠, 吴志军, 葛茂发. 大气气溶胶吸湿性及其对环境的影响[J]. 化学进展, 2022, 34(4): 801-814.
[3] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[4] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[5] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[6] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[7] 黄辉, 陈俊, 卢会茹, 周梦雪, 胡毅, 柴之芳. 帕金森病中的关键金属元素[J]. 化学进展, 2018, 30(10): 1592-1600.
[8] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[9] 王海潮, 陆克定. 五氧化二氮(N2O5)非均相摄取系数的定量和参数化[J]. 化学进展, 2016, 28(6): 917-933.
[10] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[11] 凌盛杰, 邵正中, 陈新. 同步辐射红外光谱成像技术对细胞的研究[J]. 化学进展, 2014, 26(01): 178-192.
[12] 田宇, 朱才镇, 龚静华, 马敬红, 杨曙光, 徐坚. 纤维结构形态的原位同步辐射X射线散射及衍射研究[J]. 化学进展, 2013, 25(10): 1751-1762.
[13] 凌盛杰, 黄郁芳*, 黄蕾, 邵正中, 陈新*. 同步辐射红外显微光谱学和成像技术在分析化学中的应用[J]. 化学进展, 2013, 25(05): 821-831.
[14] 储根柏, 陈军, 刘付轶*, 盛六四* . 气相自由基反应动力学的光电离质谱研究[J]. 化学进展, 2012, 24(11): 2097-2105.
[15] 马烨, 陈建民, 王琳. 大气有机硫酸酯化合物的特征及形成机制[J]. 化学进展, 2012, 24(11): 2277-2286.