English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1611-1617 前一篇   后一篇

• 综述与评论 •

超临界流体输运技术在缓/控释药物制备中的应用

倪敏, 徐琴琴, 徐刚, 王恩俊, 银建中*   

  1. 大连理工大学化工机械学院 大连 116024
  • 收稿日期:2010-11-01 修回日期:2011-01-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 银建中 E-mail:jzyin@dlut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20976028)资助

Applications of Supercritical Fluid Transport Technology in Preparation of Controlled-Release Drug Delivery Systems

Ni Min, Xu Qinqin, Xu Gang, Wang Enjun, Yin Jianzhong*   

  1. School of Chemical Machinery, Dalian University of Technology, Dalian 116024, China
  • Received:2010-11-01 Revised:2011-01-01 Online:2011-08-24 Published:2011-07-25

缓/控释药物制剂作为一种新药剂是药学研究的热点。本文对近年来超临界流体技术在缓/控释药物系统制备中的研究成果进行了回顾和总结,重点对以超临界流体为溶剂、无机介孔材料为载体制备缓/控释药物系统的方法进行了阐述和评价,内容包括:技术原理、工艺流程、主要影响因素、药效试验、与传统方法比较等。分析了各种工艺流程的优缺点,并指出超临界流体输运技术在缓/控释药物系统制备中所具有的优势。在此基础上,提出药物溶于超临界二氧化碳后所形成的超临界二氧化碳溶液在多孔材料纳米级孔道内的渗透、扩散以及表面物理化学吸附机理、在特定环境氛围下的控制释放机制、药物超临界溶液热力学模型以及制备过程动力学研究等是应该重点关注的理论问题。

Among the research of new pharmaceutic dosage forms, controlled-release drug delivery system is a very important issue nowdays. In this field, processes using supercritical fluid technology are mostly "clean" process leading to "clean" products. Meanwhile, inorganic porous materials are emerging as a new category of host/guest systems due to some interesting features such as their biological stability and their drug-releasing properties. This review summarizes the applications of supercritical fluid transport technology in preparation of controlled-release drug delivery system in recent years and pays more attention on the method using supercritical fluid as the solvent and inorganic mesoporous materials as the support to prepare this controlled-release drug delivery system. The technical principle, development of technological process and the main influence factors are discussed here besides the drug release experiments and the comparison with the traditional methods. It shows clearly the advantages and disadvantages of various processes, and sums up the superiority of the supercritical transport technology in preparing controlled-release drug delivery system. Although this technique has lots of advantages, as for the papers delivered at present, the research on supercritical fluid transport technology is just at its initial stage of development because there are so many factors influencing the experimental results and these factors are sometimes link-coupled. It is still challenging to make the preparation controllable. It indicates that the diffusion and penetration of the supercritical carbon dioxide drug solution in porous materials, the surface chemical and physical adsorption mechanism should be focused on as well as the controlled drug release mechanism, thermodynamic model and process dynamic.

Contents
1 Introduction
2 Experimental principle, process and equipments
3 Application of inorganic mesoporous materials in preparing controlled-release drug
3.1 Inorganic mesoporous materials
3.2 The traditional impregnation methods
3.3 The experiments using scCO2 and liquid CO2
3.4 Analysis of influence factors
4 Conclusions and outlook

中图分类号: 

()

[1] 杨祥良(Yang X L), 曾繁典(Zeng F D), 徐辉碧(Xu H B). 纳米药物(Nanomedicine). 北京:清华大学出版社(Beijing: Tsinghua University Press), 2007. 1-15
[2] Smirnova I, Suttiruengwong S, Arlt W. Journal of Non-Crystalline Solids, 2004, 350: 54-60
[3] Kim Y H, Shing K S. Powder Technology, 2008, 182(1): 25-32
[4] Bush J R, Akgerman A, Hall K R. The Journal of Supercritical Fluids, 2007, 41(2): 311-316
[5] Kawashima Y, York P. Advanced Drug Delivery Reviews, 2008, 60(3): 297-298
[6] Cocero M J, Martín á, Mattea F, Varona S. The Journal of Supercritical Fluids, 2009, 47(3): 546-555
[7] 银建中(Yin J Z), 张宪阵(Zhang X Z), 徐琴琴(Xu Q Q), 张传杰(Zhang C J), 王爱琴(Wang A Q). 化学进展(Progress in Chemistry), 2009, 21: 606-614
[8] Gong K, Rehman I, Darr J. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48(4): 1112-1119
[9] Banchero M, Manna L, Ronchetti S, Campanellli P, Ferri A. The Journal of Supercritical Fluids, 2009, 49(2): 271-278
[10] Braga M E M, Pato M T V, Silva H S R C, Ferreira E I, Gil M H, Duarte C M M, Sousa H C D. The Journal of Supercritical Fluids, 2008, 44(2): 245-257
[11] 陈庆华(Chen Q H), 张强(Zhang Q). 药物微囊化新技术及应用(Novel Technologies of Microencapsulation and The Application in Drug Delivery System). 北京: 人民卫生出版社(Beijing: People's Medical Publishing House), 2008. 337-339
[12] Lee M Y, Ganapathy H S, Lim K T. Journal of Physics and Chemistry of Solids, 2010, 71(4): 630-633
[13] Natu M, Gil M, Desousa H. The Journal of Supercritical Fluids, 2008, 47(1): 93-102
[14] Ji C, Barrett A, Poole-Warren L A, Foster N R, Dehghani F. International Journal of Pharmaceutics, 2010, 391(1/2): 187-196
[15] Yoganathan R, Mammucari R, Foster N R. Journal of Physics: Conference Series, 2010, 215: art. no. 012087
[16] Temtem M, Silva L M C, Andrade P Z, Santos F S, Silva C L D, Cabral J M S, Abecasis M M, Aguiar-Ricardo A. The Journal of Supercritical Fluids, 2009, 48(3): 269-277
[17] Duarte A R C, Simplicio A L, Vega-González A, Subra-Paternault P, Coimbra P, Gil M H D, Sousa H C, Duarte C M M. The Journal of Supercritical Fluids, 2007, 42(3): 373-377
[18] 关怡新(Guan Y X), 余金鹏(Yu J P), 姚善泾(Yao S J), 朱自强(Zhu Z Q). 化学工报(Journal of Chemical Industry and Engineering), 2010, 61(2): 269-274
[19] Wang S. Microporous and Mesoporous Materials, 2009, 117(1/2): 1-9
[20] 银建中(Yin J Z). CN101310846, 2008
[21] 银建中(Yin J Z), 张传杰(Zhang C J), 徐琴琴(Xu Q Q), 王爱琴(Wang A Q). 无机材料学报(Journal of Inorganic Material). 2009, 24(1): 129-132
[22] 银建中(Yin J Z), 徐琴琴(Xu Q Q), 张传杰(Zhang C J), 王爱琴(Wang A Q). 复合材料学报(Acta Materiae Compositae Sinica), 2009, 26(2): 25-29
[23] 徐琴琴(Xu Q Q), 银建中(Yin J Z), 肖敏(Xiao M), 王爱琴(Wang A Q). 化学通报(Chemistry), 2007, 70(3): 188-194
[24] Yin J Z, Xu Q Q, Wang A Q. Chemical Engineering Communications, 2010, 197(4): 627-632
[25] 徐武军(Xu W J), 高强(Gao Q), 徐耀(Xu Y), 吴东(Wu D), 孙予罕(Sun Y H). 化学学报(Acta Chemical Sinica), 2008, 66(14): 1658-1662
[26] Hillerström A, van Stam J, Andersson M. Green Chemistry, 2009, 11(5): 662-667
[27] Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regi M. Micro. Mesop. Mater., 2004, 68(1/3): 105-109
[28] Manzano M, Aina V, Arean C O, Cauda V, Colilla M, Delgado M R, Vallet-Regi M. Chemical Engineering Journal, 2008, 37(1): 30-37
[29] Vallet-Regi M, Doadrio J C, Doadrio A L, Izquierdo-Barba I, Perez-Pariente J. Solid State Ionics, 2004, 172(1/4): 435-439
[30] Yu H, Zhai Q Z. Microporous and Mesoporous Materials, 2009, 123(1/3): 298-305
[31] Mellaerts R, Mols R, Jammaer J A G, Aerts C A, Annaert P, Humbeeck J V, Mooter G V D, Augustijns P, Martens J A. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(1): 223-230
[32] Izquierdo-Barba I, Sousa E, Doadrio J C, Doadrio A L, Pariente J P, Martinez A, Babonneau F, Vallet-Regi M. Journal of Sol-Gel Science and Technology, 2009, 50(3): 421-429
[33] Charnay C, Bégu S, Tourné-Péteilh C, Nicole L, Lerner D A, Devoisselle J M. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57(3): 533-540
[34] Zeng W, Qian X F, Yin J, Zhu Z K. Materials Chemistry and Physics, 2006, 97(2/3): 437-441
[35] Mellaerts R, Houthoofd K, Elen K, Chen K, Speybroeck M V, Humbeeck J V, Augustijns P, Mullens J, Mooter G V D, Martens J A. Microporous and Mesoporous Materials, 2010, 130(1/3): 154-161
[36] Mellaerts R, Aerts C A, Humbeeck J V, Augustijns P, Mooter G V D, Martens J A. Chemical Communications, 2007, (13): 1375-1377
[37] Belhadj-Ahmed F, Badens E, Llewellyn P, Denoyel R, Charbit G. The Journal of Supercritical Fluids, 2009, 51(2): 278-286
[38] Kikic I, Alessi P, Cortesi A, Macnaughton S J, Foster N, Spicka B. Fluid Phase Equilibria, 1996, 117: 304-311
[39] Liu Z, Dong Z, Han B, Zhang J L, Zhang J M, Hou Z S, He J, Jiang T. Journal of Materials Chemistry, 2003, 13(6): 1373-1377

[1] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[2] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[3] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[4] 汤洁, 刘仁发, 戴志飞*. 多功能脂质体递药系统[J]. 化学进展, 2018, 30(11): 1669-1680.
[5] 沈娟, 朱阳, 师红东, 刘扬中. 铂类抗癌药物的多功能纳米递送体系[J]. 化学进展, 2018, 30(10): 1557-1572.
[6] 陈盼盼, 史兵兵*. 基于大环主体构筑的超分子载药体系[J]. 化学进展, 2017, 29(7): 720-739.
[7] 龚兆翠, 尹超, 赵惠, 卢晓梅, 范曲立, 黄维. 光控纳米载体在药物释放中的应用[J]. 化学进展, 2016, 28(9): 1387-1396.
[8] 梁嘉美, 冯岸超, 袁金颖. 刺激响应星形聚合物的合成及其药物可控释放研究[J]. 化学进展, 2015, 27(5): 522-531.
[9] 宿丹, 第凤, 邢季, 车剑飞, 肖迎红. 导电聚合物在药物可控释放领域的应用[J]. 化学进展, 2014, 26(12): 1962-1976.
[10] 翁西伦, 鲍宗必, 罗飞, 苏宝根, 杨亦文, 任其龙. 纤维素类手性色谱固定相的制备及其应用[J]. 化学进展, 2014, 26(0203): 415-423.
[11] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
[12] 张磊, 刘晓燕, 沈晶晶, 卢晓梅, 范曲立, 黄维. 纳米颗粒在抗癌药物可控靶向释放中的应用[J]. 化学进展, 2013, 25(08): 1375-1382.
[13] 高春梅*, 柳明珠*, 吕少瑜, 陈晨, 黄银娟, 陈远谋. 海藻酸钠水凝胶的制备及其在药物释放中的应用[J]. 化学进展, 2013, 25(06): 1012-1022.
[14] 何晓燕*, 周文瑞, 徐晓君, 杨武*. 两性离子聚合物的合成及应用[J]. 化学进展, 2013, 25(06): 1023-1030.
[15] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.