English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 1023-1030 DOI: 10.7536/PC121106 前一篇   后一篇

• 综述与评论 •

两性离子聚合物的合成及应用

何晓燕*, 周文瑞, 徐晓君, 杨武*   

  1. 西北师范大学化学化工学院 甘肃省生物电化学与环境分析重点实验室 兰州 730070
  • 收稿日期:2012-11-01 修回日期:2013-01-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 何晓燕,杨武 E-mail:hexy09@163.com;yangw@nwnu.edu.cn[
  • 基金资助:

    国家自然科学基金地区科学基金项目(No.21164010)和甘肃省自然科学基金项目(No.1107RJZA149)资助

Preparation and Application of Zwitterionic Polymers

He Xiaoyan*, Zhou Wenrui, Xu Xiaojun, Yang Wu*   

  1. College of Chemistry and Chemical Engineering, Northwest Normal University, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China
  • Received:2012-11-01 Revised:2013-01-01 Online:2013-06-25 Published:2013-05-02

两性离子聚合物因独特的链结构, 使其具有卓越的化学性能、良好的热稳定性与水化性能, 尤其是具有 “反聚电解质效应溶液行为”这一特点, 近年来引起了广泛关注。因大多数两性离子聚合物链内引入了-OH,-COOH,-SO3H等亲水基团, 使其具有抗蛋白质污染、抗细菌黏附及抗凝血等性能。迄今为止, 人们已合成了很多新型的、功能化的两性离子聚合物并将其应用于石油工业、生物医用材料、药物合成和污水处理等各个领域。本文主要对两性离子聚合物的结构、性质、合成方法、应用、最新研究成果及发展前景等作了简单的概述和分析, 并对它的合成方法和应用作了主要介绍, 以期对两性离子聚合物的研究和发展有所借鉴。

Because of their unique pendant-side chain structures, zwitterionic polymers present excellent chemical properties, preferable thermal stability and hydration capacity, especially the anti-polyelectrolyte behavior in solution, have attracted broad attention in the world in recent years. Due to the hydrophilic functional groups such as -OH, -COOH and -SO3H present in the molecular structure, zwitterionic polymers are capable of resisting non-specific protein adsorption,bacterial adhesion and blood coagulation even from undiluted blood plasma and serum.Many novel and functional zwitterionic polymers have been synthesized and attracted a great deal of interest in such fields as petroleum industry, biomedical materials, drug synthesis and sewage treatment. In this review, recent progress in the structure, properties, synthesis methods, applications and developing prospects of zwitterionic polymers are summarized, specifically their synthesis methods and applications. We hope it can be helpful for the research and development of the zwitterionic polymers. Contents
1 Introduction
2 Characteristic and classification of polymers
3 Preparation of zwitterionic polymers
3.1 Copolymerization of one or more monomers
3.2 Functionalization of the polymers
4 Application of zwitterionic polymers
4.1 Application of zwitterionic polymers in the petroleum industry
4.2 Application of zwitterionic polymers in the anti-protein pollution
4.3 Application of zwitterionic polymers in drug controlled release
5 Conclusion and outlook

中图分类号: 

()

[1] Andrew B L, Charles L M. Chem. Rev., 2002, 102: 4177-4189
[2] Liu J S, Zhan Y, Xu T G, Shao G Q. J. Membrane Sci., 2008, 325: 495-502
[3] Liu J S, Xu T W, Han X Z, Fu Y X. Eur. Polym. J., 2006, 42: 2755-2764
[4] Liu J S, Ma Y, Xu T G, Shao G Q. J. Hazard. Mater., 2010, 178: 1021-1029
[5] Liu J S, Song L, Shao G Q. J. Chem. Eng., 2011, 56: 2119-2127
[6] Xuan F Q, Liu J S. Polym. Int., 2009, 58: 1350-1361
[7] 景峰(Jing F), 黄荣华(Huang R H). 高分子材料科学与工程(Polymer Materials Science and Engineering), 1997, 13: 109-113
[8] Salamone J C, Volksen W, lsrael S C, Olson A P, Raia D C. Polymer, 1977, 18: 1058-1062
[9] McCormick C L, Johnson C B. Macromolecules, 1988, 21: 686-693
[10] McCormick C L, Johnson C B. Macromolecules, 1988, 21: 694-699
[11] 张黎明(Zhang L M). 高分子通报(Polymer Bulletin), 1998, 4: 80-85
[12] Peter K, Andre L, Vladimir T. Makromol. Chem., 1992, 193: 1815-1827
[13] Krzysztof M, Nicolay V. Nat. Chem., 2009, 1: 276-288
[14] 李强(Li Q), 张丽芬(Zhang L F), 柏良久(Bo L J), 缪洁(Miao J), 程振平(Cheng Z P), 朱秀林(Zhu X L). 化学进展(Progress in Chemistry), 2010, 22(11): 2080-2088
[15] 杨正龙(Yang Z L), 周丹(Zhou D), 陈秋云(Chen Q Y). 化学进展(Progress in Chemistry), 2011, 23(11): 2360-2367
[16] 游倩倩(You Q Q), 张普玉(Zhang P Y), 张怀敏(Zhang H M), 庄玉伟(Zhuang Y W). 化学研究(Chemical Research), 2012, 23(2): 94-99
[17] 胡俊祺(Hu J Q), 董智贤(Dong Z X), 崔艳艳(Cui Y Y), 刘晓暄(Liu X X). 高分子通报(Polymer Bulletin), 2012, 5: 47-54
[18] 郑海洪(Zheng H H), 李建波(Li J B), 罗庆英(Luo Q Y). 天然气勘探与开发(Natural Gas Exploration and Development), 2009, 32(3): 59-62
[19] Dobbins S C, McGrath D E, Bernards M T. J. Phys. Chem. B, 2012, 116: 14346-14352
[20] Salamone J C, Watterson A C, Hsu T D, Tsai C C, Mahmud M U. Polym. Lett., 1977, 15: 487-491
[21] Abdelgawad R, George O. J. Appl. Polym. Chem., 1977, 15: 469-488
[22] Salamone J C, Rodriguez E L, Lin K C, Quach L, Watterson A C, Ahmed I. Polymer, 1985, 26: 1234-1238
[23] Salamone J C, Quach L, Watterson A C, Krauser S, Mahmud M U. J. Macromol. Sci. Chem., A22 (5/7): 1985, 653-664
[24] Joan F D, Khadidja B, Mustapha R, Jean P B, Jack H. Catal. Commun., 2002, 3: 185-190
[25] Galin M, Chapoton A, Galin J C. J. Chem. Soc. Perkin Trans., 1993, 2: 545-553
[26] Salamone J C, Volksen W, Israel S C, Olson A P, Raia D C. Polymer, 1977, 18: 1058-1062
[27] 丁伟(Ding W), 毛程(Mao C), 韦兆水(Wei Z S), 李明(Li M), 于涛(Yu T), 曲广淼(Qu G M). 应用化学(Applied Chemistry), 2012, 5: 555-559
[28] 丁伟(Ding W), 毛程(Mao C), 于涛(Yu T), 刘宏彬(Liu H B), 曲广淼(Qu G M), 化工科技(Science Technology in Chemical Industry), 2010, 18(5): 15-19
[29] Brault N D, Sundaram H S, Li Y T, Huang C J, Yu Q M, Jiang S Y. Biomacromolecules, 2012, 13: 589-593
[30] Lalani R, Liu L Y. Biomacromolecules, 2012, 13: 1853-1863
[31] Sun J T, Yu Z Q, Hong C Y, Pan C Y. Macromol. Rapid Commun., 2012, 33: 811-818
[32] Wu L, Jasinski J, Krishnan S. Appl. Polym. Sci., 2012, 124: 2154-2170
[33] Kim M, Kim J C, Rho Y, Jung J, Kwon W, Kim H, Ree M. J. Mater. Chem., 2012, 22: 19418-19428
[34] Yang R, Gleason K K. Langmuir, 2012, 28: 12266-12274
[35] Philippe F, Laschewsky A. Macromol. Chem. Phys., 1999, 200: 887-895
[36] 李娟(Li J), 王中华(Wang Z H), 胡群爱(Hu Q A). 油田化学(Oilfield Chemistry), 2011, 2: 229-235
[37] Kuang J H, Phillip B M. Langmuir, 2012, 28: 7258-7266
[38] 石卿(Shi Q), 苏延磊(Su Y L), 姜忠义(Jiang Z Y). 中国科技论文(China Sciencepaper), 2010, 5: 172-175
[39] Li Y, Giesbers M, Gerth M, Zuilhof H. Langmuir, 2012, 28: 12509-12517
[40] Chen S F, Li L Y, Zhao C, Zheng J. Polymer, 2010, 51: 5283-5293
[41] Ai T N, Jacob B, Jos M J P, Cees J M, Han Z. Langmuir, 2011, 27: 2587-2594
[42] Jiang S Y, Cao Z Q. Adv. Mater., 2010, 22: 920-932
[43] Ladd J, Zhang Z, Chen S F, Jason C H, Jiang S Y. Biomacromolecules, 2008, 9(5): 1357-1361
[44] Huang C J, Li Y T, Jiang S Y. Anal. Chem., 2012, 84: 3440-3445
[45] Cheng G, Li G Z, Xue H, Chen S F, Bryers J D, Jiang S Y. Biomaterials, 2009, 30: 5234-5240
[46] Zhang L, Xue H, Gao C L, Carr L, Wang J N, Chu B C, Jiang S Y. Biomaterials, 2010, 31: 6582-6588
[47] Li G, Cheng G, Xue H, Chen S F, Zhang F B, Jiang S Y. Biomaterials, 2008, 29: 4592-4597
[48] Huang C J, Mi L, Jiang S Y. Biomaterials, 2012, 33: 3626-3631
[49] Cao Z Q, Zhang L, Jiang S Y. Langmuir, 2012, 28: 11625-11632
[50] Nguyen A T, Baggerman J, Paulusse J M J, Rijn C J M, Zuilhof H. Langmuir, 2011, 27: 2587-2594
[51] 李建华(Li J H), 李弥滋(Li M Z), 张其清(Zhang Q Q), 许小平(Xu X P). 功能材料(Functional Materials), 2012, 13: 1748-1751
[52] Li Q, Bi Q Y, Zhou B, Wang X L. Appl. Surf. Sci., 2012, 258: 4707-4717
[53] Yuan Y Y, Mao C Q, Du X J, Du J Z, Wang F, Wang J. Adv. Mater., 2012, 24: 5476-5480
[54] 杜翠鸣(Du C M), 王坤余(Wang K Y), 刘白玲(Liu B L), 苏德强(Su D Q). 皮革科学与工程(Leather Science and Engineering), 2007, 17: 37-42
[55] Lee W F, Huang G Y. Polymer, 1996, 37( 19): 4389-4395

[1] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[2] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[3] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[4] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[5] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[6] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[7] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[8] 郭晓峰, 潘翔宇, 魏晓虎, 冯岸超*, 汤华燊*. 刺激响应梯度聚合物[J]. 化学进展, 2017, 29(10): 1184-1194.
[9] 何福喜, 唐刚, 闵晓燕, 胡敏奇, 邵立东, 毕韵梅. N-乙烯基己内酰胺的活性/可控自由基聚合[J]. 化学进展, 2016, 28(2/3): 328-336.
[10] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[11] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[12] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[13] 李斌, 于波, 叶谦, 周峰. 外界刺激调控的表面引发原子转移自由基聚合[J]. 化学进展, 2015, 27(2/3): 146-156.
[14] 杨小东, 瞿金清. 有机自由基电池[J]. 化学进展, 2013, 25(08): 1283-1291.
[15] 高春梅*, 柳明珠*, 吕少瑜, 陈晨, 黄银娟, 陈远谋. 海藻酸钠水凝胶的制备及其在药物释放中的应用[J]. 化学进展, 2013, 25(06): 1012-1022.
阅读次数
全文


摘要

两性离子聚合物的合成及应用