English
新闻公告
More
化学进展 DOI: 10.7536/PC121205 前一篇   后一篇

• 综述与评论 •

纳米颗粒在抗癌药物可控靶向释放中的应用

张磊, 刘晓燕, 沈晶晶, 卢晓梅, 范曲立*, 黄维*   

  1. 南京邮电大学 信息材料与纳米技术研究院 有机电子与信息显示国家 重点实验室培育基地 南京 210023
  • 收稿日期:2012-12-01 修回日期:2013-03-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 范曲立,黄维 E-mail:iamqlfan@njupt.edu.cn;wei-huang@njupt.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2012CB933301, 2012CB723402);国家自然科学基金项目(No. 61205195);教育部“新世纪优秀人才支持计划”项目(No.NCET-10-0179);高等学校博士点专项科研基金项目(No.20093223110003, 20123223120011);江苏省高校自然科学基础研究项目(No. 12KJB150018)和生物电子学国家重点实验室开放研究基金(No.BJ211029)资助

Application of Nanoparticles with Targeting, Triggered Release in Anti-Cancer Drug Delivery

Zhang Lei, Liu Xiaoyan, Shen Jingjing, Lu Xiaomei, Fan Quli*, Huang Wei*   

  1. Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2012-12-01 Revised:2013-03-01 Online:2013-08-25 Published:2013-06-13

近些年来癌症发病率不断攀升,引起了人们的普遍关注。由于传统诊疗方法存在弊端,因此开发新型的针对肿瘤组织的多功能的纳米颗粒(如金纳米颗粒、脂质体、聚合物、DNA等)药物输送系统越来越重要。基于生物体的EPR效应或经过表面修饰功能化后,纳米颗粒输送系统可被动或主动靶向到达肿瘤组织,并通过控制温度、pH、超声、光以及酶等激发条件在肿瘤区域实现可控释放。本文简单介绍了肿瘤治疗中常用的具有靶向性、可控释放的纳米颗粒载药系统,系统地描述了纳米颗粒在药物输送系统的最新研究进展,并对今后的发展方向作了展望。

In recent years, the higher incidence of cancer has aroused wide public concern. Due to the drawbacks of conventional cancer treatment methods, there has been increasing interest in developing new drug targeting delivery systems with multi-functionalized nanoparticles, such as gold nanoparticles, liposomes, polymers, DNA, etc. Base on the enhanced permeability and retention (EPR) effect, the nanoparticles can present both passive and active targeting mechanisms after modified with the targeting biomoleculars on the surface. And the temperature, pH, ultrasound, light and enzymes can all act as incentives for triggered release in tumor regions. This review examines functionalities engineered into nanoparticles recently, including targeting and triggered release of contents, and these properties have raised new opportunities for drug delivery system. Contents
1 Introduction
2 The nanoparticles for anti-cancer drug delivery system
3 The application of nanoparticles with triggered release
3.1 Heat trigger
3.2 Light trigger
3.3 pH trigger
3.4 Ultrasound trigger
3.5 Enzymatic trigger
4 Conclusion and outlook

中图分类号: 

()
[1] Loomis K, McNeeley K, Bellamkonda R V. Soft Matter, 2011, 7:839-856
[2] Mollik M A H. J. Immunother, 2012, 35:757-758
[3] Li M D, Qiao C X, Qin L P, Zhang J Y, Ling C Q. J. Tradit. Chin. Med., 2012, 32:299-307
[4] Cho K J, Wang X, Nie S M, Chen Z, Shin D M. Clin. Cancer Res., 2008, 14:1310-1316
[5] Thomas K, Diagaradjane P, Deorukhkar A A, Chatterjee D K, Barry S, Krishnan S. Int. J. Radiat. Oncol., 2012, 84:S691-S692
[6] Yonamine Y, Hoshino Y, Shea K J. Biomacromolecules, 2012, 13:2952-2957
[7] Keereweer S, Mol I M, Kerrebijn J D F, van Driel P B A A, Xie B W, de Jong R J B, Vahrmeijer A L, Lowik C W G M. J. Surg. Oncol., 2012, 105:714-718
[8] Bernareggi A, Oldham F, Barone C. Ann. Oncol., 2004, 15:103-103
[9] Meng H, Xue M, Xia T, Ji Z X, Tarn D Y, Zink J I, Nel A E. Acs Nano, 2011, 5:4131-4144
[10] Iyer A K, Khaled G, Fang J, Maeda H. Drug Discov. Today, 2006, 11:812-818
[11] Yedlapalli S L, White G M, Carroll R L. Abstr. Pap. Am. Chem. S., 2011, 241: 194-COLL
[12] Hasenpusch G, Geiger J, Wagner K, Mykhaylyk O, Wiekhorst F, Trahms L, Heidsieck A, Gleich B, Bergemann C, Aneja M K, Rudolph C. Pharm. Res. Dordr., 2012, 29:1308-1318
[13] Larsen A K, Escargueil A E, Skladanowski A. Pharmacol. Therapeut., 2000, 85:217-229
[14] Wang X, Yang L L, Chen Z, Shin D M. Ca-Cancer J. Clin., 2008, 58:97-110
[15] Kovalainen M, Monkare J, Makila E, Salonen J, Lehto V P, Herzig K H, Jarvinen K. Pharm. Res. Dordr., 2012, 29:837-846
[16] Qian K K, Bogner R H. J Pharm Sci-Us, 2012, 101:444-463
[17] Weinstein J S, Varallyay C G, Dosa E, Gahramanov S, Hamilton B, Rooney W D, Muldoon L L, Neuwelt E A. J. Cerebr. Blood F. Met., 2010, 30:15-35
[18] Nasongkla N, Bey E, Ren J M, Ai H, Khemtong C, Guthi J S, Chin S F, Sherry A D, Boothman D A, Gao J M. Nano Lett., 2006, 6:2427-2430
[19] Li G Y, Guo L, Ma S M. J. Appl. Polym. Sci., 2009, 113:1364-1368
[20] Napoli A, Valentini M, Tirelli N, Muller M, Hubbell J A. Nature Materials, 2004, 3:183-189
[21] Wang S H, Shi X Y, Van Antwerp M, Cao Z Y, Swanson S D, Bi X D, Baker J R. Adv. Funct. Mater., 2007, 17:3043-3050
[22] Dickerson E B, Blackburn W H, Smith M H, Kapa L B, Lyon L A, McDonald J F. BMC Cancer, 2010, 10:art. no. 10
[23] Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C. J. Control Release, 2010, 142:108-121
[24] Torchilin V P. Pharm. Res-Dordr, 2007, 24:1-16
[25] Puri A, Loomis K, Smith B, Lee J H, Yavlovich A, Heldman E, Blumenthal R. Crit. Rev. Ther. Drug, 2009, 26:523-580
[26] Cosco D, Paolino D, Muzzalupo R, Celia C, Citraro R, Caponio D, Picci N, Fresta M. Biomed. Microdevices, 2009, 11:1115-1125
[27] Hong M H, Zhu S J, Jiang Y Y, Tang G T, Pei Y Y. J. Control Release, 2009, 133:96-102
[28] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angew. Chem. Int. Ed., 2010, 49:3014-3017
[29] Huang X H, El-Sayed I H, Qian W, El-Sayed M A. J. Am. Chem. Soc., 2006, 128:2115-2120
[30] Basiruddin S K, Maity A R, Saha A, Jana N R. J. Phys. Chem. C, 2011, 115:19612-19620
[31] Kuo T R, Hovhannisyan V A, Chao Y C, Chao S L, Chiang S J, Lin S J, Dong C Y, Chen C C. J. Am. Chem. Soc., 2010, 132:14163-14171
[32] Chen K, Li Z B, Wang H, Cai W B, Chen X Y. Eur. J. Nucl. Med. Mol. I., 2008, 35:2235-2244
[33] Xue Y D, Bao L, Xiao X R, Ding L, Lei J P, Ju H X. Anal. Biochem., 2011, 410:92-97
[34] Jiang Q, Song C, Nangreave J, Liu X W, Lin L, Qiu D L, Wang Z G, Zou G Z, Liang X J, Yan H, Ding B Q. J. Am. Chem. Soc., 2012, 134:13396-13403
[35] Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C H. ACS Nano, 2011, 5:8783-8789
[36] Chen P C, Hayashi M A F, Oliveira E B, Karpel R L. PLoS One, 2012, 7:e48913
[37] Cheng X Y, Zhang F, Zhou G X, Gao S Y, Dong L, Jiang W, Ding Z, Chen J N, Zhang J F. Drug Deliv., 2009, 16:135-144
[38] Wang Z J, Qian L, Wang X L, Yang F, Yang X R. Colloid. Surface. A, 2008, 326:29-36
[39] Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T. ACS Appl. Mater. Interfaces, 2010, 2:1903-1911
[40] Ruiz-Hernandez E, Baeza A, Vallet-Regi M. ACS Nano, 2011, 5:1259-1266
[41] Wu G, Mikhailovsky A, Khant H A, Fu C, Chiu W, Zasadzinski J A. J. Am. Chem. Soc., 2008, 130:8175-8177
[42] Paasonen L, Laaksonen T, Johans C, Yliperttula M, Kontturi K, Urth A. J. Control Release, 2007, 122:86-93
[43] Wei H, Cheng S X, Zhang X Z, Zhuo R X. Prog. Polym. Sci., 2009, 34:893-910
[44] Dvir T, Banghart M R, Timko B P, Langer R, Kohane D S. Nano Lett., 2010, 10:250-254
[45] Muhammad F, Guo M, Qi W, Sun F, Wang A, Guo Y, Zhu G. J. Am. Chem. Soc., 2011, 133:8778-8781
[46] Mei X, Chen D Y, Li N J, Xu Q F, Ge J F, Li H, Lu J M. Micropor. Mesopor. Mat., 2012, 152:16-24
[47] Li C G, Xing L, Che S A. Dalton Trans., 2012, 41:3714-3719
[48] Chen F, Zhu Y C. Micropor. Mesopor. Mat., 2012, 150:83-89
[49] Xie L L, Tong W J, Yu D H, Xu J Q, Li J, Gao C Y. J. Mater. Chem., 2012, 22:6053-6060
[50] Uhrich K E, Cannizzaro S M, Langer R S, Shakesheff K M. Chem. Rev., 1999, 99:3181-3198
[51] Kim H J, Matsuda H, Zhou H S, Honma I. Adv. Mater., 2006, 18:3083-3088
[52] Wu D C, Wan M X. J. Pharm. Pharm. Sci., 2008, 11:32-45
[53] Rapoport N, Gao Z G, Kennedy A. J. Natl. Cancer. Inst., 2007, 99:1095-1106
[54] Ibsen S, Benchimol M, Simberg D, Schutt C, Steiner J, Esener S. J. Control Release, 2011, 155:358-366
[55] Ashush H, Rozenszajn L A, Blass M, Barda-Saad M, Azimov D, Radnay J, Zipori D, Rosenschein U. Cancer Res., 2000, 60:1014-1020
[56] Schroeder A, Avnir Y, Weisman S, Najajreh Y, Gabizon A, Talmon Y, Kost J, Barenholz Y. Langmuir, 2007, 23:4019-4025
[57] Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. J. Control Release, 2006, 111:333-342
[58] Zhang R N, Bai Y H, Zhang B, Chen L X, Yan B. J. Hazard. Mater., 2012, 211:404-413
[59] Oberdorster G. J. Intern. Med., 2010, 267:89-105
[60] Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L'Hermite M, Reynaud C, Cassio D, Gouget B, Carriere M. J. Nanopart. Res., 2010, 12:61-73
[61] Tejral G, Panyala N R, Havel J. J. Appl. Biomed., 2009, 7:1-13
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[3] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[4] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[5] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[6] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[7] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[8] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[9] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[10] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[11] 陈天有, 王子豪, 许子政, 徐祖顺, 曹峥. 基于树枝状聚合物的无机纳米颗粒的制备及应用[J]. 化学进展, 2020, 32(2/3): 249-261.
[12] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[13] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[14] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[15] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.