English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 436-449 DOI: 10.7536/PC130779 前一篇   后一篇

• 综述与评论 •

水中金属纳米颗粒对细菌的光致毒性机理

李阳, 牛军峰*, 张驰, 王正早, 郑梦源, 商恩香   

  1. 北京师范大学环境学院 水环境模拟国家重点实验室 北京 100875
  • 收稿日期:2013-07-01 修回日期:2013-09-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 牛军峰,e-mail:junfengn@bnu.edu.cn E-mail:junfengn@bnu.edu.cn
  • 基金资助:

    国家自然科学基金创新研究群体科学基金项目(No. 51121003)、国家自然科学基金面上项目(No. 21077010)和霍英东教育基金会青年教师基金基础性研究课题(No. 121077)资助

Photoinduced Toxic Mechanism of Metallic Nanoparticles toward Bacteria in Water

Li Yang, Niu Junfeng*, Zhang Chi, Wang Zhengzao, Zheng Mengyuan, Shang Enxiang   

  1. The State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
  • Received:2013-07-01 Revised:2013-09-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National Natural Science Foundation for Innovative Research Group of China (No.51121003), the General Program of National Natural Science Foundation of China (No.21077010) and the Fok Ying-Tong Education Foundation, China (No.121077)

金属纳米颗粒由于具有特殊的理化性质,被广泛应用于化学、光学和生物学等领域,使其在应用的过程中不可避免地释放到水体中。近年来,金属纳米颗粒对生态系统和人类健康造成了潜在危害,引起了日益广泛的关注。本文对目前水环境中存在的纳米颗粒的种类、来源、理化性质及金属纳米颗粒对细菌光致毒性的影响因素(光源波长、粒径大小、天然有机质和介质组分)进行了详细介绍,并通过有毒金属离子释放、活性氧自由基(羟基自由基、超氧阴离子自由基和单线态氧)产生以及粒径变化等光化学现象,阐述了金属纳米颗粒物对细菌的光致毒性机理。最后总结了目前金属纳米颗粒在环境行为和光致毒性研究中面临的主要问题,并在此基础上提出将来金属纳米颗粒光致毒性的研究方向(如金属纳米颗粒的定量结构-活性关系,其他污染物与金属纳米颗粒的复合光致毒性效应等)。

Nanoparticles (NPs) have been widely used in the fields of chemistry, optics, and biology because of their unique physicochemical properties. The mass production and extensive applications of commercially manufactured NPs inevitably leads to NPs release into the aqueous environment and poses a risk to the ecosystem and human health accidentally or intentionally during production, distribution, use or disposal. The progress on the types, sources, and the physicochemical properties of NPs is critically reviewed in this work. In addition, the factors (i.e., light source wavelength, particle size, natural organic matter, and medium components) that influence the photoinduced toxicity of metallic NPs toward bacteria in the aqueous environments are also summarized. Under light irradiation conditions, metallic NPs can release toxic ions, generate reactive oxygen species (ROS), and change the particle size in the aqueous environment. However, whether the toxicity of metallic NPs toward the bacteria is owing to the released ions, photogenerated ROS (superoxide anion, hydroxyl radical, and singlet oxygen), particle size change, or the combination of the three photochemical behaviors is still uncertain. Therefore the three photochemical behaviors of metallic NPs are critically reviewed to elucidate the possible mechanism of photoinduced toxicity toward the bacteria. Finally, the challenges and existing problems of environmental behavior of metallic NPs are listed and the direction for further research of photoinduced toxicity after metallic NPs entry into the aqueous environment are pointed out (such as quantitative structure-activity relationship of metallic NPs, the complex photoinduced toxic effect of metallic NPs and other pollutants).

Contents
1 Introduction
2 Influence factors for photoinduced toxicity of metallic nanoparticles to bacteria
2.1 Light source wavelength
2.2 Particle size
2.3 Natural organic matter
2.4 Medium component
2.5 Other factors
3 Photoinduced toxicity mechanisms of metallic nanoparticles to bacteria
3.1 Release of metal ions
3.2 Oxidative stress response
3.3 Size effect of metallic nanoparticles
4 Existing problems and perspectives

中图分类号: 

()

[1] 蒋国翔(Jiang G X), 沈珍瑶(Shen Z Y), 牛军峰(Niu J F), 庄玲萍(Zhuang L P), 何天德(He T D). 化学进展(Prog. Chem.), 2011, 23(8): 1769.
[2] Nel A, Xia T, Mdler L, Li N. Science, 2006, 311(5761): 622.
[3] 王震宇(Wang Z Y), 赵建(Zhao J), 李娜(Li N), 李锋民(Li F M). 环境科学学报(J. Environ. Sci.), 2010, 31(6): 1409.
[4] Li Y, Zhang W, Li K G, Yao Y, Niu J F, Chen Y S. Environ. Pollut., 2012, 164: 259.
[5] Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Nature, 2004, 22(11): 1360.
[6] Zhang W, Li Y, Niu J, Chen Y. Langmuir, 2013, 29(15): 4647.
[7] Chithrani B D, Ghazani A A, Chan W C W. Nano Lett., 2006, 6(4): 662.
[8] Li Y, Zhang W, Niu J F, Chen Y S. ACS Nano, 2012, 6(6): 5164.
[9] Simon-Deckers A l, Loo S, Mayne-L'hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carrieère M. Environ. Sci. Technol., 2009, 43(21): 8423.
[10] Hotze E M, Labille J, Alvarez P, Wiesner M R. Environ. Sci. Technol., 2008, 42(11): 4175.
[11] 朱小山(Zhu X S), 朱琳(Zhu L), 田胜艳(Tian S Y), 郎宇鹏(Lang Y P), 李燕(Li Y). 生态学报(Acta Ecol. Sin.), 2008, 28(8): 3507.
[12] AshaRani P V, Mun G L K, Hande M P, Valiyaveettil S. ACS Nano, 2009, 3(2): 279.
[13] Bhattacharjee S, de Haan L H J, Evers N M, Jiang X, Marcelis A, Zuilhof H, Rietjens I M C M, Alink G M. Part. Fibre. Toxicol., 2010, 7: 25.
[14] Misawa M, Takahashi J. Nanomed. Nanotechnol. Biol. Med., 2011, 7.
[15] 常雪灵(Chang X L), 祖燕(Zu Y), 赵宇亮(Zhao Y L). 科学通报(Chin. Sci. Bull.), 2011, 56(2): 108.
[16] Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston B D, de-Bastos E, Booth T, Tyler C R, Santos E M. Environ. Sci. Technol., 2013, 47(14): 8005.
[17] Fujiwara H, Yanagida S, Kamat P V. J. Phys. Chem. B, 1999, 103(14): 2589.
[18] Aldana J, Wang Y A, Peng X. J. Am. Chem. Soc, 2001, 123(36): 8844.
[19] Colvin V L. Nat. Biotechnol., 2003, 21(10): 1166.
[20] Cunningham S, Brennan-Fournet M E, Ledwith D, Byrnes L, Joshi L. Environ. Sci. Technol., 2013, 47(8): 3883.
[21] Jiang G X, Shen Z Y, Niu J F, Bao Y P, Chen J, He T D. J. Environ. Monit., 2011, 13(1): 42.
[22] Choi O, Hu Z. Environ. Sci. Technol., 2008, 42(12): 4583.
[23] Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R. J. Phys. Chem. C, 2008, 112(15): 5825.
[24] 吕继涛(Lv J T), 张淑贞(Zhang S Z). 化学进展(Prog. Chem.), 2013, 25(1): 156.
[25] Adams L K, Lyon D Y, Alvarez P J. Water Res., 2006, 40(19): 3527.
[26] Choi O, Hu Z. J. Environ. Eng., 2009, 135(12): 1365.
[27] Ahamed M. Toxicol. Vitro, 2011, 25(4): 930.
[28] Jiang W, Mashayekhi H, Xing B. Environ. Pollut., 2009, 157(5): 1619.
[29] Reddy K M, Feris K, Bell J, Wingett D G, Hanley C, Punnoose A. Appl. Phys. Lett., 2007, 90(21): 213902.
[30] Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti M F, Fievet F. Nano Lett., 2006, 6(4): 866.
[31] Baek Y W, An Y J. Sci. Total Environ., 2011, 409(8): 1603.
[32] Choi O, Yu C P, Fernandez G E, Hu Z. Water Res., 2010, 44(20): 6095.
[33] Ispas C, Andreescu D, Patel A, Goia D V, Andreescu S, Wallace K N. Environ. Sci. Technol., 2009, 43(16): 6349.
[34] Dasari T P, Pathakoti K, Hwang H M. J. Environ. Sci., 2013, 25(5): 882.
[35] Li M, Pokhrel S, Jin X, Maedler L, Damoiseaux R, Hoek E M V. Environ. Sci. Technol., 2011, 45(2): 755.
[36] Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C. Langmuir, 2009, 26(6): 4429.
[37] Wu B, Wang Y, Lee Y H, Horst A, Wang Z, Chen D R, Sureshkumar R, Tang Y J. Environ. Sci. Technol., 2010, 44(4): 1484.
[38] Heinlaan M, Ivask A, Blinova I, Dubourguier H C, Kahru A. Chemosphere, 2008, 71(7): 1308.
[39] Ivask A, Bondarenko O, Jepihhina N, Kahru A. Anal. Bioanal. Chem., 2010, 398: 1.
[40] Wang Z, Lee Y H, Wu B, Horst A, Kang Y, Tang Y J, Chen D R. Chemosphere, 2010, 80(5): 525.
[41] Hu X, Cook S, Wang P, Hwang H M. Sci. Total Environ., 2009, 407(8): 3070.
[42] Brunet L, Lyon D Y, Hotze E M, Alvarez P J J, Wiesner M R. Environ. Sci. Technol., 2009, 43(12): 4355.
[43] Gunawan C, Teoh W Y, Marquis C P, Amal R. ACS Nano, 2011, 5(9): 7214.
[44] Bondarenko O, Ivask A, Kaekinen A, Kahru A. Environ. Pollut., 2012, 169: 81.
[45] Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E. Small, 2012, 8(21): 3326.
[46] Dimkpa C O, McLean J E, Britt D W, Johnson W P, Arey B, Lea A S, Anderson A J. Chem. Res. Toxicol., 2012, 25(5): 1066.
[47] Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M. Environ. Sci. Technol., 2006, 40(19): 6151.
[48] Fang T T, Li X, Wang Q S, Zhang Z J, Liu P, Zhang C C. Toxicol. Vitro, 2012, 26(7): 1233.
[49] Wang Q, Fang T, Liu P, Min X, Li X. J. Colloid Interface Sci., 2011, 363(2): 476.
[50] Li R, Jiang F, Xiao Q, Li J, Liu X, Yu Q, Liu Y, Zeng C. Nanotechnology, 2010, 21(47): 1.
[51] Kumar A, Pandey A K, Singh S S, Shanker R, Dhawan A. Free Radic. Biol. Med., 2011, 51(10): 1872.
[52] Kim S W, An Y J. Appl. Microbiol. Biotechnol., 2012, 95(1): 243.
[53] Tong T, Binh C T T, Kelly J J, Gaillard J F, Gray K A. Water Res., 2013, 47(7): 2352.
[54] Li M, Zhu L, Lin D. Environ. Sci. Technol., 2011, 45(5): 1977.
[55] Liu J, Hurt R H. Environ. Sci. Technol., 2010, 44(6): 2169.
[56] Zhang W, Yao Y, Li K G, Huang Y, Chen Y S. Environ. Pollut., 2011, 159(12): 3757.
[57] Li M, Lin D, Zhu L. Environ. Pollut., 2013, 173: 97.
[58] Gorham J M, MacCuspie R I, Klein K L, Fairbrother D H, Holbrook R D. J. Nanopart. Res., 2012, 14(10): 1139.
[59] Li Y, Zhang W, Niu J F, Chen Y S. Environ. Sci. Technol., 2013, 47(18): 10293.
[60] Kittler S, Greulich C, Diendorf J, Koeller M, Epple M. Chem. Mat., 2010, 22(16): 4548.
[61] Yang X, Gondikas A P, Marinakos S M, Auffan M, Liu J, Hsu-Kim H, Meyer J N. Environ. Sci. Technol., 2012, 46(2): 1119.
[62] Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004, 4(1): 11.
[63] Lin H F, Liao S C, Hung S W. J. Photochem. Photobiol. A-Chem., 2005, 174(1): 82.
[64] Du J, Gebicki J M. Int. J. Biochem. Cell B, 2004, 36(1): 2334.
[65] Wang S, Gao R, Zhou F, Selke M. J. Mater. Chem., 2004, 14(4): 487.
[66] Irwin F. Arch. Biochem. Biophysics., 1986, 247(1): 1.
[67] Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E. Nano Lett., 2006, 6(8): 1794.
[68] Thomas C, Saleh N, Tilton R D, Lowry G V, Veronesi B. Environ. Sci. Technol., 2006, 40(14): 4346.
[69] Long T C, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry G V, Veronesi B. Environ. Health Perspect., 2007, 115(11): 1631.
[70] Cho M, Chung H, Choi W, Yoon J. Water Res., 2004, 38(4): 1069.
[71] Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh J I, Zink J I, Nel A E. ACS Nano, 2008, 2(10): 2121.
[72] Limbach L K, Wick P, Manser P, Robert N, Bruinink A, Stark W J. Environ. Sci. Technol., 2007, 41(11): 4158.
[73] Park E J, Choi J, Park Y K, Park K. Toxicology, 2008, 245(1/2): 90.
[74] Lin W, Huang Y, Zhou X D, Ma Y. Int. J. Toxicol., 2006, 25(6): 451.
[75] Schubert D, Dargusch R, Raitano J, Chan S W. Biochem. Biophys. Res. Commun., 2006, 342(1): 86.
[76] Horie M, Nishio K, Kato H, Fujita K, Endoh S, Nakamura A, Miyauchi A, Kinugasa S, Yamamoto K, Niki E. J. Biochem., 2011, 150(4): 461.
[77] Eom H J, Choi J. Toxicol. Vitro, 2009, 23(7): 1326.
[78] Huang C C, Aronstam R S, Chen D R, Huang Y W. Toxicol. Vitro, 2010, 24(1): 45.
[79] Yamamoto O, Komatsu M, Sawai J, Nakagawa Z. J. Mmater Sci: Mater Med., 2004, 15(8): 847.
[80] Fahmy B, Cormier S A. Toxicol. Vitro, 2009, 23(7): 1365.
[81] Karlsson H L, Cronholm P, Gustafsson J, Mller L. Chem. Res. Toxicol., 2008, 21(9): 1726.
[82] Lin W, Huang Y, Zhou X D, Ma Y. Toxicol. Appl. Pharmacol., 2006, 217(3): 252.
[83] Kim Y J, Yu M, Park H O, Yang S I. Mol. Cell Toxicol., 2010, 6(4): 336.
[84] Hussain S, Hess K, Gearhart J, Geiss K, Schlager J. Toxicol. Vitro, 2005, 19(7): 975.
[85] Kim S, Choi J E, Choi J, Chung K H, Park K, Yi J, Ryu D Y. Toxicol. Vitro, 2009, 23(6): 1076.
[86] Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W. Small, 2009, 5(18): 2067.
[87] Dumas E M, Ozenne V, Mielke R E, Nadeau J L. IEEE Trans. NanoBiosci., 2009, 8(1): 58.
[88] Chibli H, Carlini L, Park S, Dimitrijevic N M, Nadeau J L. Nanoscale, 2011, 3(6): 2552.
[89] Ipe B I, Lehnig M, Niemeyer C M. Small, 2005, 1(7): 706.
[90] Green M, Howman E. Chem. Commun., 2005, (1): 121.
[91] Ma J, Chen J Y, Zhang Y, Wang P N, Guo J, Yang W L, Wang C C. J. Phys. Chem. B, 2007, 111(41): 12012.
[92] Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M. J. Chem. Eng. Jpn., 1996, 29(4): 627.
[93] 吴其圣(Wu Q S), 杨琛(Yang C), 胡秀敏(Hu X M), 党志(Dang Z), 李筱琴(Li X Q). 环境科学学报(J. Environ. Sci.), 2012, 32(7): 1596.
[94] 叶茵茵(Ye Y Y), 戚菁(Qi J), 王洪涛(Wang H T), 李风亭(Li F T). 水处理技术(Water Treat. Technol.), 2012, 38(12): 6.
[95] Kamat P V, Flumiani M, Hartland G V. J. Phys. Chem. B, 1998, 102(17): 3123.
[96] Kamat P V. J. Phys. Chem. B, 2002, 106(32): 7729.
[97] Osamu Y. Int. J. Inorg. Mater., 2001, 3(7): 643.
[98] Levard C, Hotze E M, Lowry G V, Brown G E, Jr. Environ. Sci. Technol., 2012, 46(13): 6900.

[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[3] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[4] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[5] 骆敏倩, 衡伟利, 代娟, 魏元锋, 高缘, 张建军. 药物无定形的转晶及其抑制策略[J]. 化学进展, 2021, 33(11): 2116-2127.
[6] 王红娟, 时蜜, 田璐, 赵亮, 张美芹. 指纹遗留时间的研究方法[J]. 化学进展, 2019, 31(5): 654-666.
[7] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[8] 杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华*. 铁基复合材料的制备及其对水中锑的去除[J]. 化学进展, 2017, 29(11): 1407-1421.
[9] 李力成, 方东, 李广忠, 刘瑞娜, 刘素琴, 徐卫林. 阳极氧化法制备阀金属氧化物纳米管的机理及影响因素[J]. 化学进展, 2016, 28(4): 589-606.
[10] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[11] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[12] 崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015, 27(10): 1509-1522.
[13] 饶路, 姜艳霞, 张斌伟, 游乐星, 李崭虹, 孙世刚. 乙醇电催化氧化[J]. 化学进展, 2014, 26(05): 727-736.
[14] 李志果, 张玲玲. 金表面巯基化DNA单层性能的影响因素研究[J]. 化学进展, 2014, 26(05): 846-855.
[15] 程龙, 吕晓锋, 李铭, 张琳, 侯红卫. 功能配合物三阶非线性光学性能的研究[J]. 化学进展, 2013, 25(10): 1625-1630.