English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 594-603 DOI: 10.7536/PC190819 前一篇   后一篇

• 综述 •

基于生物素的荧光有机小分子及其应用

张继东1,**(), 刘阿晨1, 陈娇2, 袁光辉1, 金华峰1   

  1. 1.安康学院化学化工学院 新型材料研究中心 陕西省富硒食品质量监督检验中心 安康 725000
    2.西北大学化学与材料科学学院 合成与天然功能分子化学教育部重点实验室 西安 710127
  • 收稿日期:2019-08-19 修回日期:2019-12-03 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 张继东
  • 基金资助:
    陕西省科技厅重点项目(2018PT-31); 陕西省科技厅青年基金项目(2019JQ-504); 陕西省自然科学基金项目(2019JM-229); 安康学院博士科研启动基金(2018AYQDZR06); 农业部富硒产品开发国家地方联合工程实验室开放课题资助项目(Se-2018B02)

Fluorescent Organic Small Molecule Based on Biotin and Their Applications

Jidong Zhang1,**(), Achen Liu1, Jiao Chen2, Guanghui Yuan1, Huafeng Jin1   

  1. 1.Department of Chemistry and Chemical Engineering, Research Centre of New Materials, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Ankang Univerisity, Ankang 725000, China
    2.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
  • Received:2019-08-19 Revised:2019-12-03 Online:2020-05-15 Published:2020-02-20
  • Contact: Jidong Zhang
  • About author:
  • Supported by:
    Key Projects of Shaanxi Provincial Science & Technology Department(2018PT-31); Youth Foundation of Shaanxi Provincial Science & Technology Department(2019JQ-504); Natural Science Foundation of Shaanxi Province(2019JM-229); Doctor’s Initial Funding of Ankang University(2018AYQDZR06); Key Laboratory of Se-Enriched Products Development and Quality control, Ministry of Agriculture(Se-2018B02)

生物素是一种水溶性维生素,在人体中作为一种重要的羧酸酶辅酶起作用,近年来受到化学家和生物学家的广泛青睐。此外,其在各种生理和病理过程中表现出低毒性,可以被设计成具有靶向选择性的药物载体,能将抗癌药物有效地传递给肿瘤细胞。如今含生物素的小分子已发展成一类具有显著应用价值的生物功能分子。该类化合物具有合成简便、易功能化和特异性强等优点。本文综述了生物素及其衍生物在生物传感、药物释放和其他领域的研究进展,并对其发展趋势做出了展望。

Biotin is a water-soluble vitamin and serves as a coenzyme for carboxylases in human body. It is widely favored by chemists and biologists in recent years. In addition, it exhibits low toxicity in various physiological and pathological processes, and can be designed as a selectivity targeting drug carriers, which can efficiently deliver therapeutic drugs to cells. Nowadays, small molecules containing biotin have developed into a class of biofunctional molecules of high utility value. These compounds have the advantages of simple synthesis, easy functionalization, and high specificity. In this paper, the progress of biotin and its derivatives in biosensors, drug release and other fields are systematically reviewed, and the prospects for their development are presented.

Contents

1 Introduction

2 Fluorescent probe based on biotin structure

3 Targeted diagnostic and therapeutic molecular system based on biotin structure

4 Other biomolecules containing based on biotin structure

5 Conclusion

()
图1 基于生物素的荧光探针1的合成过程[19]
Fig. 1 Synthesis route of fluorescent probe 1 based on biotin[19]
图2 荧光探针2对硫醇的识别机理图[20]
Fig. 2 Schematic sensing mechanism of the fluorescent probe 2 toward thiols[20]
图3 荧光探针3的合成过程[22]
Fig. 3 Synthesis procedure of fluorescent probe 3[22]
图4 荧光探针4与FA的传感机理[23]
Fig. 4 The proposed sensing mechanism of fluorescent probe 4 with FA[23]
图5 荧光探针5对pH的响应机理[24]
Fig. 5 Proposed response mechanism of fluorescent probe 5 to pH[24]
图6 荧光探针6对H2S的响应机理[25]
Fig. 6 Proposed response mechanism of fluorescent probe 6 to H2S[25]
图7 荧光探针7对Zn(Ⅱ)的检测机理[26]
Fig. 7 Proposed sensing mechanism of fluorescent probe 7 to Zn(Ⅱ)[26]
图8 基于生物素结构的荧光分子8、9、10和11的化学结构[27,28]
Fig. 8 The chemical structure of fluorescent molecular 8, 9, 10 and 11 based on biotin[27,28]
图9 生理条件下12与谷胱甘肽的反应机理[29]
Fig. 9 Reaction mechanism of 12 with GSH under physiological conditions[29]
图10 前药13的化学结构[30]
Fig. 10 The chemical structure of prodrug 13[30]
图11 治疗诊断学前药物14的化学结构[31]
Fig. 11 The chemical structure of theranostic prodrug 14[31]
图12 生理条件下15与硫醇的反应机理[32]
Fig. 12 Reaction mechanism of 15 with thiols under physiological conditions[32]
图13 16的化学结构及与细胞内谷胱甘肽的反应机理[33]
Fig. 13 The reaction mechanism of chemical structure 16 with intracellular GSH[33]
图14 17的化学结构和在肿瘤细胞中作用的示意图[34]
Fig. 14 The chemical structure of prodrug 17 and inllustration of interactions in tumor cells[34]
图15 18的化学结构[35]
Fig. 15 The chemical structure of prodrug 18[35]
图16 化合物19的合成过程[36]
Fig. 16 The synthesis procedure of compound 19[36]
图17 化合物20和21的化学结构[37]
Fig. 17 Chemical structures of compounds 20 and 21[37]
图18 肿瘤-细胞器靶向诊疗策略示意图和光热剂22结构[38]
Fig. 18 Illustration of the tumor- and organelle targeted theranostic strategy and the structure of photothermal agent 22[38]
图19 探针23的化学结构(A);三元复合物作用说明图(B)[39]
Fig. 19 Chemical structures of probe 23(A); illustration interaction of the ternary complex(B)[39]
图20 生物素衍生物24的化学结构(A);生物素结合袋图[40]
Fig. 20 The chemical structure of biotin derivatives 24(A); illustrations of the biotin-binding pocket(B)[40]
图21 化合物25和26的结构[41]
Fig. 21 Chemical structures of compounds 25 and 26[41]
图22 Am580生物素偶联物27和28的化学结构[42]
Fig. 22 Chemical structures of Am580-biotin conjugates 27 and 28[42]
图23 生物素-Gd-DOTA配合物29和30[43]
Fig. 23 Biotin Gd-DOTA complexes 29 and 30[43]
图24 生物素偶联配合物31和32的化学结构[44]
Fig. 24 Chemical structures of the biotin-conjugated metal complexes 31 and 32[44]
[1]
Chan J, Dodani S C, Chang C J. Nat. Chem., 2012,4(12):973. http://dx.doi.org/10.1038/NCHEM.1500

doi: 10.1038/NCHEM.1500     URL    
[2]
Xu Z, Kim S K, Yoon J. Chem. Soc. Rev., 2010,39(5):1457. http://xlink.rsc.org/?DOI=b918937h

doi: 10.1039/b918937h     URL    
[3]
Gao M, Yu F, Lv C, Choo J, Chen L. Chem. Soc. Rev., 2017,46(8):2237. http://xlink.rsc.org/?DOI=C6CS00908E

doi: 10.1039/C6CS00908E     URL    
[4]
Liu H W, Chen L, Xu C, Li Z, Zhang H, Zhang X B, Tan W. Chem. Soc. Rev., 2018,47(18):7140.
[5]
Li X, Guo X, Cao L, Xun Z, Wang S, Li S, Li Y, Yang G. Angew. Chem. Int. Ed., 2014,53(30):7809.
[6]
Yue Y, Huo F, Ning P, Zhang Y, Chao J, Meng X, Yin C. J. Am. Chem. Soc., 2017,139(8):3181.
[7]
Wu X, Sun X, Guo Z, Tang J, Shen Y, James T D, Tian H, Zhu W. J. Am. Chem. Soc., 2014,136(9):3579.
[8]
Shcherbakova E G, Zhang B, Gozem S, Minami T, Zavalij P Y, Pushina M, Isaacs L D, Anzenbacher P. J. Am. Chem. Soc., 2017,139(42):14954.
[9]
Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y. Nat. Chem., 2017,9(3):279.
[10]
You L, Zha D, Anslyn E V. Chem. Rev., 2015,115(15):7840.
[11]
Bruen D, Delaney C, Diamond D, Florea L. ACS Appl. Mater. Interfaces, 2018,10(44):38431.
[12]
Zempleni J, Wijeratne S S, Hassan Y I. Biofactors., 2009,35(1):36.
[13]
Ren W X, Han J, Uhm S, Jang Y J, Kang C, Kim J H, Kim J S. Chem. Commun., 2015,51(52):10403.
[14]
Scarborough J H, Brusoski K, Brewer S, Rodich S, Chatley K S, Nguyen T, Green K N. Organometallics, 2015,34(5):918. https://pubs.acs.org/doi/10.1021/om501294f

doi: 10.1021/om501294f     URL    
[15]
Yan C, Guo Z, Shen Y, Chen Y, Tian H, Zhu W H. Chem. Sci., 2018,9(22):4959. http://xlink.rsc.org/?DOI=C8SC01069B

doi: 10.1039/C8SC01069B     URL    
[16]
Yue Y, Huo F, Cheng F, Zhu X, Mafireyi T, Strongin R M, Yin C. Chem. Soc. Rev., 2019,48(15):4155. http://xlink.rsc.org/?DOI=C8CS01006D

doi: 10.1039/C8CS01006D     URL    
[17]
Mei J, Huang Y, Tian H. ACS Appl. Mater. Interfaces, 2018,10(15):12217. https://pubs.acs.org/doi/10.1021/acsami.7b14343

doi: 10.1021/acsami.7b14343     URL    
[18]
Razgulin A, Ma N, Rao J. Chem. Soc. Rev., 2011,40(7):4186. http://xlink.rsc.org/?DOI=c1cs15035a

doi: 10.1039/c1cs15035a     URL    
[19]
He Q, Fan X, Sun S, Li H, Pei Y, Xu Y Q. RSC Adv., 2015,5:38571. http://xlink.rsc.org/?DOI=C5RA07185B

doi: 10.1039/C5RA07185B     URL    
[20]
Sun Q, Sun D, Song L, Chen Z, Chen Z, Zhang W, Qian J. Anal. Chem., 2016,88(6):3400. https://pubs.acs.org/doi/10.1021/acs.analchem.6b00178

doi: 10.1021/acs.analchem.6b00178     URL    
[21]
Yuan L, Lin W, Zheng K, He L, Huang W. Chem. Soc. Rev., 2013,42(2):622. http://xlink.rsc.org/?DOI=C2CS35313J

doi: 10.1039/C2CS35313J     URL    
[22]
Yang J, Li K, Hou J T, Li L L, Lu C Y, Xie Y M, Wang X, Yu X Q. ACS Sensors, 2016,1(2):166. https://pubs.acs.org/doi/10.1021/acssensors.5b00165

doi: 10.1021/acssensors.5b00165     URL    
[23]
Lee Y H, Tang Y, Verwilst P, Lin W, Kim J S. Chem. Commun., 2016,52(75):11247. http://xlink.rsc.org/?DOI=C6CC06158C

doi: 10.1039/C6CC06158C     URL    
[24]
Dong B, Song X, Kong X, Wang C, Zhang N, Lin W Y. J. Mater. Chem. B, 2017,5(5):988. http://xlink.rsc.org/?DOI=C6TB02957D

doi: 10.1039/C6TB02957D     URL    
[25]
Song X, Dong B, Kong X, Wang C, Zhang N, Lin W Y. RSC Adv., 2017,7(26):15817. http://xlink.rsc.org/?DOI=C7RA01479A

doi: 10.1039/C7RA01479A     URL    
[26]
Fang L, Trigiante G, Kousseff C J, Crespo-Otero R, Philpott M P, Watkinson M. Chem. Commun., 2018,54(69):9619. http://xlink.rsc.org/?DOI=C8CC05425H

doi: 10.1039/C8CC05425H     URL    
[27]
Chen S, Zhao X, Chen J, Chen J, Kuznetsova L, Wong S S, Ojima I. Bioconjugate Chem., 2010,21:979. https://pubs.acs.org/doi/10.1021/bc9005656

doi: 10.1021/bc9005656     URL    
[28]
Vineberg J G, Zuniga E S, Kamath A, Chen Y J, Seitz J D, Ojima I. J. Med. Chem., 2014,57(13):5777. https://pubs.acs.org/doi/10.1021/jm500631u

doi: 10.1021/jm500631u     URL    
[29]
Maiti S, Park N, Han J H, Jeon H M, Lee J H, Bhuniya S, Kang C, Kim J S. J. Am. Chem. Soc., 2013,135(11):4567. https://pubs.acs.org/doi/10.1021/ja401350x

doi: 10.1021/ja401350x     URL    
[30]
Bhuniya S, Maiti S, Kim E J, Lee H, Sessler J L, Hong K S, Kim J S. Angew. Chem., 2014,53(17):4469. http://doi.wiley.com/10.1002/anie.201311133

doi: 10.1002/anie.201311133     URL    
[31]
Kumar R, Han J, Lim H J, Ren W X, Lim J Y, Kim J H, Kim J S. J. Am. Chem. Soc., 2014,136(51):17836. http://dx.doi.org/10.1021/ja510421q

doi: 10.1021/ja510421q     URL    
[32]
Jung D, Maiti S, Lee J H, Lee J H, Kim J S. Chem. Commun., 2014,50(23):3044. http://xlink.rsc.org/?DOI=c3cc49790a

doi: 10.1039/c3cc49790a     URL    
[33]
Kim T, Jeon H M, Le H T, Kim T W, Kang C, Kim J S. Chem. Commun., 2014,50(57):7690. http://xlink.rsc.org/?DOI=c4cc02878c

doi: 10.1039/c4cc02878c     URL    
[34]
Park S, Kim E, Kim W Y, Kang C, Kim J S. Chem. Commun., 2015,51(45):9343. http://xlink.rsc.org/?DOI=C5CC03003J

doi: 10.1039/C5CC03003J     URL    
[35]
Bhuniya S, Lee M H, Jeon H M, Han J H, Lee J H, Park N, Maiti S, Kang C, Kim J S. Chem. Commun., 2013,49:7141. http://xlink.rsc.org/?DOI=c3cc42653j

doi: 10.1039/c3cc42653j     URL    
[36]
Arvin-Berod M, Desroches-Castan A, Bonte S, Brugiere S, Coute Y, Guyon L, Feige J J, Baussanne I, Demeunynck M. ACS Omega, 2017,2(12):9221. https://pubs.acs.org/doi/10.1021/acsomega.7b01184

doi: 10.1021/acsomega.7b01184     URL    
[37]
Cao L, Hettiarachchi G, Briken V, Isaacs L. Angew. Chem. Int. Ed., 2013,52(46):12033. http://doi.wiley.com/10.1002/anie.201305061

doi: 10.1002/anie.201305061     URL    
[38]
Wang H, Chang J, Shi M, Pan W, Li N, Tang B. Angew. Chem. Int. Ed., 2019,58(4):1057. https://onlinelibrary.wiley.com/toc/15213773/58/4

doi: 10.1002/anie.v58.4     URL    
[39]
Ohtsuka K, Sato S, Sato Y, Sota K, Ohzawa S, Matsuda T, Takemoto K, Takamune N, Juskowiak B, Nagai T, Takenaka S. Chem. Commun., 2012,48(39):4740. http://xlink.rsc.org/?DOI=c2cc30536d

doi: 10.1039/c2cc30536d     URL    
[40]
Ying L Q, Branchaud B P. Chem. Commun., 2011,47(30):8593. http://xlink.rsc.org/?DOI=c1cc12738a

doi: 10.1039/c1cc12738a     URL    
[41]
Vibhute S M, Engelmann J, Verbić T,Maier M E, Logothetis N K, Angelovski G. Org. Biomol. Chem., 2013,11(8):1294. http://xlink.rsc.org/?DOI=C2OB26555A

doi: 10.1039/C2OB26555A     URL    
[42]
Fujii S, Mori S, Kagechika H, Mendoza Parra M A, Gronemeyer H. Bioorg. Med. Chem. Lett., 2018,28(14):2442. https://linkinghub.elsevier.com/retrieve/pii/S0960894X18304979

doi: 10.1016/j.bmcl.2018.06.011     URL    
[43]
Germeroth A I, Hanna J R, Karim R, Kundel F, Lowther J, Neate P G, Blackburn E A, Wear M A, Campopiano D J, Hulme A N. Org. Biomol. Chem., 2013,11(44):7700. http://xlink.rsc.org/?DOI=c3ob41837e

doi: 10.1039/c3ob41837e     URL    
[44]
Kallus S, Uhlik L, Schoonhoven S, Pelivan K, Berger W, Enyedy E A, Hofmann T, Heffeter P, Kowol C R, Keppler B K. J. Inorg. Biochem., 2019,190:85. https://linkinghub.elsevier.com/retrieve/pii/S0162013418303507

doi: 10.1016/j.jinorgbio.2018.10.006     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[5] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[6] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[7] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[8] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[9] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[10] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[11] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[12] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[13] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[14] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[15] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.