English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1550-1559 DOI: 10.7536/PC200827 前一篇   后一篇

• 综述 •

手性药物的对映体选择性释放

宋路杰1,3, 吴友平1,3,*(), 邓建平2,3,*()   

  1. 1 北京化工大学有机-无机复合材料国家重点实验室 北京 100029
    2 北京化工大学化工资源有效利用国家重点实验室 北京 100029
    3 北京化工大学材料科学与工程学院 北京 100029
  • 收稿日期:2020-08-17 修回日期:2020-10-08 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 吴友平, 邓建平
  • 基金资助:
    国家自然科学基金项目(21774009); 国家自然科学基金项目(51973011); 国家自然科学基金项目(21474007); 中央高校基本科研业务费专项资金(XK1802-02)

Enantioselective Release of Chiral Drugs

Lujie Song1,3, Youping Wu1,3(), Jianping Deng2,3()   

  1. 1 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
    2 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,Beijing 100029, China
    3 College of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029, China
  • Received:2020-08-17 Revised:2020-10-08 Online:2021-09-20 Published:2020-12-28
  • Contact: Youping Wu, Jianping Deng
  • Supported by:
    National Natural Science Foundation of China(21774009); National Natural Science Foundation of China(51973011); National Natural Science Foundation of China(21474007); Fundamental Research Funds for the Central Universities(XK1802-02)

手性和手性物质的重要性已不言而喻,手性药物的开发也已成为主要发展趋势,但目前仍有部分手性药物以消旋体的形式出售和使用。如何合理、有效地使用这些消旋体药物,一直是值得深入研究的课题。对映体选择性释放将手性拆分和控释两个概念结合于一体,有望为消旋体药物的使用提供新的途径。基于本课题组的研究,本文综述了近年来对映体选择性释放研究领域所取得的主要进展。为便于讨论,本文根据构成药物控释载体的手性分子或结构(手性因素),将手性药物释放体系分为有机材料(水凝胶和粒子等)、无机材料和分子印迹材料等控释体系。关于对映体选择性释放以及释放过程中的对映选择性作用的研究,可进一步提升我们对于手性、手性物质和手性作用的认识。

The importance of chirality and chiral compounds has been widely recognized. The proportion of chiral drugs increases continuously and rapidly. However, some chiral drugs are still marketed and used in racemic form. How to appropriately and effectively use racemic drugs accordingly becomes a subject of high importance in both academic research and practical applications. ‘Enantioselective release' strategy combines two separate processes in a single one, that is, ‘chiral separation' and ‘controlled release', providing alternative routes for the use of racemic drugs. Up to date, striking advancements have been made in this research area. The review paper summarizes the representative advancements made in recent years. Herein, according to the major materials constituting the chiral releasing carriers, chiral drug releasing systems are classified into three groups: (1) organic materials (hydrogels, particles, etc.), (2) inorganic materials and (3) molecularly imprinted materials based releasing systems. The investigations dealing with enantioselective release and enantioselectivity effects are anticipated to enhance our understanding about the mysterious chiral world.

Contents

1 Introduction

2 Chiral organic material-based releasing systems

2.1 Hydrogels

2.2 Particles

2.3 Self-assembled carriers

2.4 Other chiral carriers

3 Chiral inorganic material-based releasing systems

3.1 Silica particles

3.2 Polymers/silica hybrid particles

4 Molecularly imprinted material-based releasing systems

5 Conclusion and outlook

()
图1 L-和D-脯氨酸的时间-释放曲线:(A) L-脯氨酸和D-脯氨酸分别释放;L-和D-脯氨酸在(B)分别释放/(C)同时释放时的差异;(D)两种情况下L-和D-脯氨酸释放差异的比较[24]
Fig.1 Time-release profiles of L- and D-proline: L- and D-proline separately released (A); The difference between L- and D-proline when (B) released separately/(C) released simultaneously; (D) A comparison of the difference between L- and D-proline released in the two modes[24]
图2 两种螺旋聚合物构筑手性粒子及其对映选择性释放[44]
Fig.2 Preparation of chiral particles with two helical polymers and the process of enantioselective release[44]
图3 (+)-辛可宁和(-)-辛可尼丁在(a)Spin-MPs 和(b)SpHe-MPs中的释放曲线图[54]
Fig.3 Drug release curves of (+)-cinchonine and (-)-cinchonidine in (a) Spin-MPS and (b) Sphe-MPS[54]
图4 含席夫碱结构的手性粒子的制备及香茅醛的释放过程[40]
Fig.4 Preparation of chiral particles containing Schiff base and release of citronellal[40]
图5 肽链分子结构及可逆自组装形成囊泡[61]
Fig.5 Peptide molecular structure and reversibly self-assembled vesicles[61]
图6 polyHIPEs的制备与药物控释过程[65]
Fig.6 Preparation of and controlled release from polyHIPEs[65]
图7 CMS协同自组装形成示意图[80]
Fig.7 Schematic illustration for cooperative self-assembly formation of CMS[80]
图8 分子印迹聚合物(MIP)材料制备示意图[94]
Fig.8 Schematic illustration for preparing MIP materials[94]
[1]
Asghar W, Pittman E, Jamali F. DARU J. Pharm. Sci., 2015, 23(1): 1.

doi: 10.1186/s40199-015-0089-6     URL    
[2]
Eriksson T, Björkman S, Höglund P. Eur. J. Clin. Pharmacol., 2001, 57(5): 365.

pmid: 11599654
[3]
Agranat I, Wainschtein S R, Zusman E Z. Nat. Rev. Drug Discov., 2012, 11(12): 972.

doi: 10.1038/nrd3657-c1     pmid: 23197042
[4]
Cheng J, Huang Y D, Mi L, Chen W J, Wang D, Wang Q H. J. Ind. Microbiol. Biotechnol., 2018, 45(6): 405.

doi: 10.1007/s10295-018-2044-2     URL    
[5]
Pérez-García F, Max Risse J, Friehs K, Wendisch V F. Biotechnol. J., 2017, 12(7): 1600646.

doi: 10.1002/biot.v12.7     URL    
[6]
Shaw S, White J D. Chem. Rev., 2019, 119(16): 9381.

doi: 10.1021/acs.chemrev.9b00074     URL    
[7]
Chrzanowska M, Grajewska A, Rozwadowska M D. Chem. Rev., 2016, 116(19): 12369.

pmid: 27680197
[8]
Gu Z G, Zhan C H, Zhang J, Bu X H. Chem. Soc. Rev., 2016, 45(11): 3122.

doi: 10.1039/C6CS00051G     URL    
[9]
Huang X Y, Pei D, Liu J F, Di D L. J. Chromatogr. A, 2018, 1531: 1.

doi: 10.1016/j.chroma.2017.10.073     URL    
[10]
Meyer V R, Rais M. Chirality, 1989, 1(2): 167.

pmid: 2642044
[11]
Sanjoy M, Sujoy D, Arun N K. Soft Matter, 2020, 16(6): 1404.

doi: 10.1039/c9sm02127b     pmid: 31984400
[12]
Yazdi M K, Vatanpour V, Taghizadeh A, Taghizadeh M, Ganjali M R, Munir M T, Habibzadeh S, Saeb M R, Ghaedi M. Mater. Sci. Eng.: C, 2020, 114: 111023.

doi: 10.1016/j.msec.2020.111023     URL    
[13]
Maiorov V A. Opt. Spectrosc., 2020, 128(3): 367.

doi: 10.1134/S0030400X20030133     URL    
[14]
Motealleh A, Seda Kehr N. ACS Appl. Mater. Interfaces, 2017, 9(39): 33674.

doi: 10.1021/acsami.7b10871     URL    
[15]
Dou X Q, Mehwish N, Zhao C L, Liu J Y, Xing C, Feng C L. Acc. Chem. Res., 2020, 53(4): 852.

doi: 10.1021/acs.accounts.0c00012     URL    
[16]
Zhou Q, Dong C Y, Fan W F, Jiang H P, Xiang J J, Qiu N S, Piao Y, Xie T, Luo Y W, Li Z C, Liu F S, Shen Y Q. Biomaterials, 2020, 240: 119902.

doi: 10.1016/j.biomaterials.2020.119902     URL    
[17]
Song W Q, Qian L W. Sep. Purif. Technol., 2017, 182: 247.

doi: 10.1016/j.seppur.2017.03.055     URL    
[18]
McNeel K E, Siraj N, Negulescu I, Warner I M. Talanta, 2018, 177: 66.

doi: 10.1016/j.talanta.2017.09.025     URL    
[19]
Sacchetti A, Rossi F, Rossetti A, Pesa R, Mauri E. Chem. Pap., 2016, 70(4): 436.
[20]
Zhang Y N, Yang D, Han J L, Zhou J, Jin Q X, Liu M H, Duan P F. Langmuir, 2018, 34(20): 5821.

doi: 10.1021/acs.langmuir.8b01035     URL    
[21]
Motealleh A, Hermes H, Jose J, Kehr N S. Nanomed.: Nanotechnol. Biol. Med., 2018, 14(2): 247.

doi: 10.1016/j.nano.2017.10.014     URL    
[22]
Tobis J, Thomann Y, Tiller J C. Polymer, 2010, 51(1): 35.

doi: 10.1016/j.polymer.2009.10.055     URL    
[23]
Shi L, Xie P, Li Z M, Wu Y P, Deng J P. Macromol. Chem. Phys., 2013, 214(12): 1375.

doi: 10.1002/macp.201200729     URL    
[24]
Xie P, Liu X, Cheng R, Wu Y P, Deng J P. Ind. Eng. Chem. Res., 2014, 53(19): 8069.

doi: 10.1021/ie500538x     URL    
[25]
Cheng R, Liu J, Xie P, Wu Y P, Deng J P. Polymer, 2015, 68: 246.

doi: 10.1016/j.polymer.2015.05.034     URL    
[26]
Candau F, Selb J. Adv. Colloid Interface Sci., 1999, 79(2/3): 149.

doi: 10.1016/S0001-8686(98)00077-3     URL    
[27]
Zheng X D, Tong Y P, Xie F Y. Guangdong Trace Elem. Sci., 2016, 23(12): 59.
(郑晓丹, 童义平, 谢飞燕. 广东微量元素科学, 2016, 23(12): 59.)
[28]
Schuur B, Verkuijl B J V, Minnaard A J, de Vries J G, Heeres H J,, Feringa B L. Org. Biomol. Chem., 2011, 9(1): 36.

doi: 10.1039/c0ob00610f     pmid: 21107491
[29]
Wang R, Wan X H, Zhang J. Chem. Commun., 2019, 55(32): 4711.

doi: 10.1039/C9CC01981B     URL    
[30]
Wang H L, Yong X Y, Huang H J, Yu H L, Wu Y P, Deng J P. Polym. Chem., 2019, 10(14): 1780.

doi: 10.1039/C8PY01759J     URL    
[31]
Medina D D, Mastai Y. Isr. J. Chem., 2018, 58(12): 1330.

doi: 10.1002/ijch.v58.12     URL    
[32]
Zhao Y B, Zhang X C, Li W, Zhang A. Eur. Polym. J., 2019, 118: 275.

doi: 10.1016/j.eurpolymj.2019.05.054     URL    
[33]
Siriwardane D A, Kulikov O, Reuther J F, Novak B M. Macromolecules, 2017, 50(3): 832.

doi: 10.1021/acs.macromol.6b02456     URL    
[34]
Wang Q, Huang J, Jiang Z Q, Zhou L, Liu N, Wu Z Q. Polymer, 2018, 136: 92.

doi: 10.1016/j.polymer.2017.12.057     URL    
[35]
Wang Q, Chu B F, Chu J H, Liu N, Wu Z Q. ACS Macro Lett., 2018, 7(2): 127.

doi: 10.1021/acsmacrolett.7b00875     URL    
[36]
Chen B, Song C, Luo X F, Deng J P, Yang W T. Macromol. Rapid Commun., 2011, 32(24): 1986.

doi: 10.1002/marc.201100557     URL    
[37]
Song C, Zhang C H, Wang F J, Yang W T, Deng J P. Polym. Chem., 2013, 4(3): 645.

doi: 10.1039/C2PY20546G     URL    
[38]
Liang J Y, Deng J P. J. Mater. Chem. B, 2016, 4(39): 6437.

doi: 10.1039/C6TB01757F     URL    
[39]
Deng X S, Liang J Y, Deng J P. Chem. Eng. J., 2016, 306: 1162.

doi: 10.1016/j.cej.2016.08.061     URL    
[40]
Zhao D Y, Yu H L, Mei S, Pan K, Deng J P. Ind. Eng. Chem. Res., 2019, 58(2): 1105.

doi: 10.1021/acs.iecr.8b05307     URL    
[41]
Liang J Y, Yang B W, Deng J P. Chem. Eng. J., 2018, 344: 262.

doi: 10.1016/j.cej.2018.03.076     URL    
[42]
Chen B, Deng J P, Yang W T. Adv. Funct. Mater., 2011, 21(12): 2345.
[43]
Yang B W, Deng J P. J. Mater. Sci., 2018, 53(16): 11932.

doi: 10.1007/s10853-018-2448-4     URL    
[44]
Liang J Y, Deng J P. Macromolecules, 2018, 51(11): 4003.

doi: 10.1021/acs.macromol.8b00580     URL    
[45]
Li H F, Zhang B M, Guo X L. Prog. Chem., 2011, 23(6): 1196.
(李宏福, 张博明, 郭兴林. 化学进展, 2011, 23(6): 1196.)
[46]
Manoharan V N, Elsesser M T, Pine D J. Science, 2003, 301: 483.

pmid: 12881563
[47]
Walther A, Müller A H E. Chem. Rev., 2013, 113(7): 5194.

doi: 10.1021/cr300089t     URL    
[48]
Gong Z, Hueckel T, Yi G R, Sacanna S. Nature, 2017, 550(7675): 234.

doi: 10.1038/nature23901     URL    
[49]
Zhang Y J, Kang L, Huang H J, Deng J P. ACS Appl. Mater. Interfaces, 2020, 12(5): 6319.

doi: 10.1021/acsami.9b21222     URL    
[50]
Li P P, Pan K, Deng J P. Nanoscale, 2019, 11(48): 23197.

doi: 10.1039/C9NR07816A     URL    
[51]
Zhao B, Lin J F, Deng J P, Liu D. Macromol. Rapid Commun., 2018, 39(20): 1800072.

doi: 10.1002/marc.201800072     URL    
[52]
Li W F, Deng J P. ACS Appl. Mater. Interfaces, 2016, 8(25): 16273.

doi: 10.1021/acsami.6b02654     URL    
[53]
Siriwardane D A, Kulikov O, Reuther J F, Novak B M. Macromolecules, 2017, 50(3): 832.

doi: 10.1021/acs.macromol.6b02456     URL    
[54]
Yu H L, Pan K, Deng J P. Macromolecules, 2018, 51(15): 5656.

doi: 10.1021/acs.macromol.8b01282     URL    
[55]
Pourjavadi A, Kohestanian M, Streb C. Mater. Sci. Eng.: C, 2020, 108: 110418.

doi: 10.1016/j.msec.2019.110418     URL    
[56]
Schmaljohann D. Adv. Drug Deliv. Rev., 2006, 58(15): 1655.

doi: 10.1016/j.addr.2006.09.020     URL    
[57]
Duan B C, Zou S W, Sun Y, Xu X J. Biomacromolecules, 2019, 20(4): 1567.

doi: 10.1021/acs.biomac.8b01780     URL    
[58]
Wang J, Wang T, Chem. J. Chin. Univ., 2020, 41(3): 377.
(王军, 王铁. 高等学校化学学报, 2020, 41(3): 377.)
[59]
Luo Z L, Yue Y Y, Zhang Y F, Yuan X, Gong J P, Wang L L, He B, Liu Z, Sun Y L, Liu J, Hu M F, Zheng J. Biomaterials, 2013, 34(21): 4902.

doi: 10.1016/j.biomaterials.2013.03.081     URL    
[60]
Lin D W, Xing Q G, Wang Y F, Qi W, Su R X, He Z M. Prog. Chem., 2019, 31(12): 1623.
(林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 化学进展, 2019, 31(12): 1623.)

doi: 10.7536/PC190446    
[61]
Chen X, He Y, Kim Y, Lee M. J. Am. Chem. Soc., 2016, 138(18): 5773.

doi: 10.1021/jacs.6b02401     pmid: 27078796
[62]
Cao W J, Xiong X Y, Gong Y C, Li Z L, Li Y P. China Biotechnol., 2019, 6: 62.
(曹文杰, 熊向源, 龚妍春, 李资玲, 李玉萍. 中国生物工程杂志, 2019, 6: 62.).
[63]
Yan T F, Li F, Qi S W, Tian J, Tian R Z, Hou J X, Luo Q, Dong Z Y, Xu J Y, Liu J Q. Chem. Commun., 2020, 56(1): 149.

doi: 10.1039/C9CC08380D     URL    
[64]
Farah S, Anderson D G, Langer R. Adv. Drug Deliv. Rev., 2016, 107: 367.

doi: 10.1016/j.addr.2016.06.012     URL    
[65]
Yong X Y, Hu Q S, Zhou E G, Deng J P, Wu Y P. ACS Biomater. Sci. Eng., 2019, 5(10): 5072.

doi: 10.1021/acsbiomaterials.9b01276     URL    
[66]
Khodabandeh A, Arrua R D, Coad B R, Rodemann T, Ohigashi T, Kosugi N, Thickett S C, Hilder E F. Polym. Chem., 2018, 9(2): 213.

doi: 10.1039/C7PY01770G     URL    
[67]
Zhao C S, Nie S Q, Tang M, Sun S D. Prog. Polym. Sci., 2011, 36(11): 1499.

doi: 10.1016/j.progpolymsci.2011.05.004     URL    
[68]
Chen X X, Sun W W, Yang C Y, Yang R, Yuan L M. Membr. Sci. Technol., 2020, 40(1): 78.
(谌学先, 孙维维, 杨璨瑜, 杨蕊, 袁黎明. 膜科学与技术, 2020, 40(1): 78.)
[69]
Wang S B. Microporous Mesoporous Mater., 2009, 117(1/2): 1.

doi: 10.1016/j.micromeso.2008.07.002     URL    
[70]
Bagheri E, Ansari L, Abnous K, Taghdisi S M, Charbgoo F, Ramezani M, Alibolandi M. J. Control. Release, 2018, 277: 57.

doi: 10.1016/j.jconrel.2018.03.014     URL    
[71]
Bakhshian Nik A, Zare H, Razavi S, Mohammadi H, Torab Ahmadi P, Yazdani N, Bayandori M, Rabiee N, Izadi Mobarakeh J. Microporous Mesoporous Mater., 2020, 299: 110115.

doi: 10.1016/j.micromeso.2020.110115     URL    
[72]
Wang J G, Wang W Q, Sun P C, Yuan Z Y, Li B H, Jin Q H, Ding D T, Chen T H. J. Mater. Chem., 2006, 16(42): 4117.

doi: 10.1039/b609243h     URL    
[73]
Zengin A, Cinar G, Guler M O. Curr. Appl. Phys., 2017, 17(5): 785.

doi: 10.1016/j.cap.2017.02.026     URL    
[74]
Yokoi T, Yamataka Y, Ara Y, Sato S, Kubota Y, Tatsumi T. Microporous Mesoporous Mater., 2007, 103(1/3): 20.

doi: 10.1016/j.micromeso.2007.01.018     URL    
[75]
Park K W, Kim J Y, Seo H J, Kwon O Y. Sci. Rep., 2019, 9(1): 13360.

doi: 10.1038/s41598-019-50053-y     URL    
[76]
Wang B, Chi C, Shan W, Zhang Y H, Ren N, Yang W L, Tang Y. Angew. Chem. Int. Ed., 2006, 45(13): 2088.

doi: 10.1002/(ISSN)1521-3773     URL    
[77]
Li J, Xu L, Yang B X, Bao Z H, Pan W S, Li S M. Mater. Sci. Eng.: C, 2015, 55: 367.

doi: 10.1016/j.msec.2015.05.039     URL    
[78]
Lu T, Li G J, Li J. Microporous Mesoporous Mater., 2020, 294: 109834.

doi: 10.1016/j.micromeso.2019.109834     URL    
[79]
Yu H L, Yong X Y, Liang J Y, Deng J P, Wu Y P. Ind. Eng. Chem. Res., 2016, 55(21): 6037.

doi: 10.1021/acs.iecr.6b01031     URL    
[80]
Song L J, Pan M, Zhao R, Deng J P, Wu Y P. J. Control. Release, 2020, 324: 156.

doi: 10.1016/j.jconrel.2020.05.019     URL    
[81]
Li H R, Li H T, Wei C, Ke J, Li J, Xu L, Liu H Z, Yang Y, Li S M, Yang M S. Eur. J. Pharm. Sci., 2018, 117: 321.

doi: 10.1016/j.ejps.2018.03.013     URL    
[82]
Li H R, Song L N, Hu B B, Li Z, Li S M, Wang Z Y. J. Shenyang Pharmaceut. Univ., 2017, 4: 15.
(李鹤然, 宋立娜, 胡贝贝, 李贞, 李三鸣, 王中彦. 沈阳药科大学学报, 2017, 4: 15.).
[83]
Cui M S, Xie L Y, Zhang S W, Chen L, Xi Y R, Wang Y M, Guo Y Y, Xu L. Colloids Surf. B: Biointerfaces, 2019, 184: 110483.

doi: 10.1016/j.colsurfb.2019.110483     URL    
[84]
Pu Y Y, Li Y, Zhuang W, Zhang M, Li B Z, Yang Y G. Chin. Chem. Lett., 2012, 23(10): 1201.

doi: 10.1016/j.cclet.2012.07.010     URL    
[85]
Zhang W, Zheng N, Chen L, Xie L Y, Cui M S, Li S M, Xu L. Pharmaceutics, 2018, 11(1): 4.

doi: 10.3390/pharmaceutics11010004     URL    
[86]
Wang Y M, Li W, Liu T T, Xu L, Guo Y Y, Ke J, Li S M, Li H R. Mater. Sci. Eng.: C, 2019, 103: 109737.

doi: 10.1016/j.msec.2019.109737     URL    
[87]
Guo Z, Du Y, Liu X B, Ng S C, Chen Y, Yang Y H. Nanotechnology, 2010, 21(16): 165103.

doi: 10.1088/0957-4484/21/16/165103     URL    
[88]
Wulff G, Sarhan A, Zabrocki K. Tetrahedron Lett., 1973, 14(44): 4329.

doi: 10.1016/S0040-4039(01)87213-0     URL    
[89]
Andersson L, Ekberg B, Mosbach K. Tetrahedron Lett., 1985, 26(30): 3623.

doi: 10.1016/S0040-4039(00)89207-2     URL    
[90]
Hosoya K, Yoshizako K, Shirasu Y, Kimata K, Araki T, Tanaka N, Haginaka J. J. Chromatogr. A, 1996, 728(1/2): 139.

doi: 10.1016/0021-9673(95)01165-X     URL    
[91]
Luliński P. Mater. Sci. Eng.: C, 2017, 76: 1344.

doi: 10.1016/j.msec.2017.02.138     URL    
[92]
Zhang H Q. Adv. Mater., 2020, 32(3): 1806328.

doi: 10.1002/adma.v32.3     URL    
[93]
Tuwahatu C A, Yeung C C, Lam Y W, Roy V A L. J. Control. Release, 2018, 287: 24.

doi: 10.1016/j.jconrel.2018.08.023     URL    
[94]
Beyazit S, Tse Sum Bui B, Haupt K, Gonzato C. Prog. Polym. Sci., 2016, 62: 1.

doi: 10.1016/j.progpolymsci.2016.04.001     URL    
[95]
Haupt K, Medina Rangel P X, Bui B T S. Chem. Rev., 2020, 120(17): 9554.

doi: 10.1021/acs.chemrev.0c00428     URL    
[96]
Gaálová J, Yalcinkaya F, Cuřínová P, Kohout M, Yalcinkaya B, Koštejn M, Jirsák J, Stibor I, Bara J E, van der Bruggen B, Izák P. J. Membr. Sci., 2020, 596: 117728.

doi: 10.1016/j.memsci.2019.117728     URL    
[97]
Goyal G, Bhakta S, Mishra P. ACS Appl. Nano Mater., 2019, 2(10): 6747.

doi: 10.1021/acsanm.9b01649     URL    
[98]
Liu Y, Li Z Q, Jia L. J. Chromatogr. A, 2020, 1622: 461147.

doi: S0021-9673(20)30387-3     pmid: 32450989
[99]
Li Z Y, Liu Z S, Zhang Q W, Duan H Q. Chin. Chem. Lett., 2007, 18(3): 322.

doi: 10.1016/j.cclet.2007.01.037     URL    
[100]
Jaiswal L, Rakkit S, Pochin K, Jaisamut P, Tanthana C, Tanmanee N, Srichana T, Suedee R. Process. Biochem., 2015, 50(12): 2035.

doi: 10.1016/j.procbio.2015.09.016     URL    
[101]
Monier M, Youssef I, Abdel-Latif D A. Chem. Eng. J., 2019, 356: 693.

doi: 10.1016/j.cej.2018.09.028    
[102]
Liu Y J, Liu Y C, Liu Z M, Zhao X C, Wei J T, Liu H C, Si X X, Xu Z G, Cai Z W. J. Hazard. Mater., 2020, 392: 122251.

doi: 10.1016/j.jhazmat.2020.122251     URL    
[103]
Liang J Y, Wu Y, Deng J P. ACS Appl. Mater. Interfaces, 2016, 8(19): 12494.

doi: 10.1021/acsami.6b04057     URL    
[104]
Yin J F, Cui Y, Yang G L, Wang H L. Chem. Commun., 2010, 46(41): 7688.

doi: 10.1039/c0cc01782e     URL    
[105]
Kao C L, Chen Y F, Huang P C, Hsu C Y, Kuei C H. RSC Adv., 2015, 5(20): 15511.

doi: 10.1039/C4RA16698A     URL    
[106]
Sajini T, Thomas R, Mathew B. Polymer, 2019, 173: 127.

doi: 10.1016/j.polymer.2019.04.031    
[107]
Kupai J, Rojik E, Huszthy P, Szekely G. ACS Appl. Mater. Interfaces, 2015, 7(18): 9516.

doi: 10.1021/acsami.5b00755     URL    
[108]
Ribeiro A R L, Maia A S, Ribeiro C, Tiritan M E. Trac Trends Anal. Chem., 2020, 124: 115783.

doi: 10.1016/j.trac.2019.115783     URL    
[109]
Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan M. Molecules, 2018, 23(2): 262.

doi: 10.3390/molecules23020262     URL    
[1] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[2] 高珊 曾庆乐 唐红艳 刘洋 董俊宇 张斌彬. 钛催化不对称硫醚氧化合成手性药物*[J]. 化学进展, 2010, 22(09): 1760-1766.
[3] 张春,郑炎松,梅付名,李光兴. 杯芳烃对生物活性分子的识别性能*[J]. 化学进展, 2004, 16(06): 934-.
[4] 张占金,毛金城,万伯顺,陈惠麟. 路易斯酸碱催化的外消旋体(动态)动力学拆分反应[J]. 化学进展, 2004, 16(04): 574-.
[5] 杜灿屑,梁文平,唐晋. 手性药物的化学与生物学研究[J]. 化学进展, 2002, 14(02): 156-.
[6] 许旭,林炳承,吴如金. 手性药物的高效毛细管电泳拆分方法*[J]. 化学进展, 1997, 9(04): 416-.
阅读次数
全文


摘要

手性药物的对映体选择性释放