English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1962-1976 DOI: 10.7536/PC140736 前一篇   后一篇

• 综述与评论 •

导电聚合物在药物可控释放领域的应用

宿丹1, 第凤1, 邢季1, 车剑飞*1, 肖迎红*2   

  1. 1. 南京理工大学化工学院教育部软化学与功能材料重点实验室 南京 210094;
    2. 南京师范大学江苏省生物医用功能材料协同创新中心 南京 210097
  • 收稿日期:2014-07-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 车剑飞, 肖迎红 E-mail:chjianfei@mail.njust.edu.cn;yhxiao@njnu.edu.cn
  • 基金资助:

    教育部博士点基金项目(No. 20123219110010)和江苏省自然科学基金项目(No. BK2012845)资助

Application of Conducting Polymers in Controlled Drug Delivery System

Su Dan1, Di Feng1, Xing Ji1, Che Jianfei*1, Xiao Yinghong*2   

  1. 1. Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210097, China
  • Received:2014-07-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the Ph.D. programs foundation of Ministry of Education of China (No. 20123219110010) and the Natural Science Foundation of Jiangsu Province(No. BK2012845)

导电聚合物(conducting polymers,CPs)是一类与金属具有相似的电、磁和光学特性的有机聚合物,电刺激会引起其氧化-还原状态的改变,从而导致CPs的电荷量、掺杂水平、导电性以及体积发生变化.利用CPs的这些特性,可将其用于药物、蛋白质以及基因等的传递和可控释放.通过对CPs基体进行化学物理修饰,可以扩大CPs基体的载药品种、提高载药量以及优化药物控释手段.本文简要介绍了CPs的性能和制备方法,对CPs基药物传递体系的药物担载和释放机理进行了详细的讨论,并归纳总结了近年来国内外以CPs为基体的药物传递体系的研究进展,最后对CPs基药物传递体系所面临的问题和未来发展进行了总结和展望.

Conducting polymers (CPs) are conjugated polymers with interesting chemical and physical properties. CP-based drug delivery systems (DDSs) have been developed rapidly in the past few decades. The advantages of CPs as potential candidates for application in DDSs are derived from their inherent electroactivity, ease of preparation and applicability to a wide spectrum of dopants, including anionic, cationic and neutral biomolecules. More importantly, due to the switching property of the redox states external electrical stimulations can be used to alter the electronegativity, conductivity, doping level and volume of CPs. Moreover, the structure and surface morphology of CPs can be tailored by incorporating different dopants or carbon nanotubes (CNTs) as well as by different preparation methods. Capitalizing the unique properties, CP-based DDSs can provide high drug load, trigger release of the incorporated drugs, control drug release and modify the release rate of the drugs. In this review, we briefly introduce the properties and preparation methods of CPs, and summarize the research progress of drug loading and release of CP-based DDSs. Finally, potential problems, challenges and future development in this area are proposed and discussed.

Contents
1 Introduction
2 The properties and preparation of conducting polymers
3 Drug incorporation and release of conducting polymer-based drug delivery system
3.1 Drug incorporation
3.2 Drug release
4 The modification of conducting polymer-based drug delivery system
4.1 Nano modification
4.2 Conducting hydrogel
4.3 Biotin-doped modification
4.4 Bilayer system
4.5 Self-powered system
4.6 Fluorescence imaging system
5 Challenges and future directions

中图分类号: 

()

[1] LaVan D A, McGuire T, Langer R. Nature Biotechnology, 2003, 21: 1184.
[2] Allen T M, Cullis P R. Science, 2004, 303: 1818.
[3] Langer R. Science, 1990, 249: 1527.
[4] 张悦(Zhang Y), 于奡(Yu A), 王永健(Wang Y J). 化学进展(Progress in Chemistry), 2008, 20: 740.
[5] Gombotz W R, Pettit D K. Bioconjugate Chemistry, 1995, 6: 332.
[6] Folkman J, Long D M, Rosenbau R. Science, 1966, 154: 148.
[7] Folkman J, Long D M. Journal of Surgical Research, 1964, 4: 139.
[8] Zaffaroni A. US 3797494, 1974.
[9] Peppas N A, Colombo P. Journal of Controlled Release, 1997, 45: 35.
[10] Duncan R. Nature Reviews Drug Discovery, 2003, 2: 347.
[11] Nishiyama N, Kataoka K. Pharmacology & Therapeutics, 2006, 112: 630.
[12] Allen T M. Nature Reviews Cancer, 2002, 2: 750.
[13] Langer R. Nature, 1998, 392: 5.
[14] Uhrich K E, Cannizzaro S M, Langer R S, Shakesheff K M. Chemical Reviews, 1999, 99: 3181.
[15] Freiberg S, Zhu X X. International Journal of Pharmaceutics, 2004, 282: 1.
[16] Kumar M. J. Pharm. Pharm. Sci, 2000, 3: 234.
[17] Peng H, Soeller C, Travas-Sejdic J. Macromolecules, 2007, 40: 909.
[18] Spires J B, Peng H, Williams D E, Wright B E, Soeller C, Travas-Sejdic J. Biosensors and Bioelectronics, 2008, 24: 928.
[19] Kumari A, Yadav S K, Yadav S C. Colloids and Surfaces B: Biointerfaces, 2010, 75: 1.
[20] Barenholz Y C. Journal of Controlled Release, 2012, 160(2): 117.
[21] Lee L Y, Tong C Y W, Wong T, Wilkinson M. International Journal of Clinical Practice, 2012, 66: 342.
[22] Hoare T, Santamaria J, Goya G F, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane D S. Nano Letters, 2009, 9: 3651.
[23] Cai K, Luo Z, Hu Y, Chen X Y, Liao Y J, Yang L, Deng L H. Advanced Materials, 2009, 21: 4045.
[24] Kloxin A M, Kasko A M, Salinas C N, Anseth K S. Science, 2009, 324: 59.
[25] Kwon I C, Bae Y H, Kim S W. Nature, 1991, 354: 291.
[26] Santini J T, Cima M J, Langer R. Nature, 1999, 397: 335.
[27] Wood K C, Zacharia N S, Schmidt D J, Wrightman S T, Andaya B J, Hammond P T. Proceedings of the National Academy of Sciences, 2008, 105: 2280.
[28] Timko B P, Dvir T, Kohane D S. Advanced Materials, 2010, 22: 4925.
[29] Prescott J H, Lipka S, Baldwin S, Sheppard N F, Maloney J M, Coppeta J, Yomtov B, Staples M A, Santini T. Nature Biotechnology, 2006, 24: 437.
[30] Baughman R H. Synthetic Metals, 1996, 78(3): 339.
[31] 张景云(Zhang J Y). 化学进展(Progress in Chemistry), 1989(0): 009.
[32] Inzelt G. Conducting Polymers. Springer Berlin Heidelberg, 2012: 149.
[33] Svirskis D, Travas-Sejdic J, Rodgers A, Garg S. Journal of Controlled Release, 2010, 146: 6.
[34] Guo B, Glavas L, Albertsson A C. Progress in Polymer Science, 2013, 38(9): 1263.
[35] Wu C, Bull B, Szymanski C, Christensen K, McNeill J. ACS Nano, 2008, 2(11): 2415.
[36] Xing C, Yang G, Liu L, Yang Q, Lv F, Wang S. Small, 2012, 8(4): 525.
[37] Richardson R T, Wise A K, Thompson B C, Flynn B O, Atkinson P J, Fretwell N J, Fallon J B, Wallace G G, Shepherd R K, Clark G M, O'Leary S J. Biomaterials, 2009, 30: 2614.
[38] Leprince L, Dogimont A, Magnin D, Demoustier-Champagne S. Journal of Materials Science: Materials in Medicine, 2010, 21: 925.
[39] Svirskis D, Wright B E, Travas-Sejdic J, Rodgers S, Garg S. Electroanalysis, 2010, 22: 439.
[40] Kim H K, Chung H J, Park T G. Journal of Controlled Release, 2006, 112: 167.
[41] Csaba N, Sanchez A, Alonso M J. Journal of Controlled Release, 2006, 113: 164.
[42] Wang C, Whitten P G, Too C O, Wallace G G. Sensors and Actuators B: Chemical, 2008, 129(2): 605.
[43] Diaz A F, Bargon J. Handbook of Conducting Polymers, 1986, 1: 81.
[44] Skotheim T A. Handbook of Conducting Polymers. Marcel Dekker, 1986.
[45] Wadhwa R, Lagenaur C F, Cui X T. Journal of Controlled Release, 2006, 110: 531.
[46] Miller L L, Zinger B, Zhou Q X. Journal of the American Chemical Society, 1987, 109: 2267.
[47] Miller L L. Molecular Crystals and Liquid Crystals, 1988, 160: 297.
[48] Miller L L, Zhou X Q. Macromolecules, 1987, 20: 1594.
[49] Prezyna L A, Qiu Y J, Reynolds J R, Wnek G E. Macromolecules, 1991, 24: 5283.
[50] Svirskis D, Travas-Sejdic J, Rodgers A, Garg S. New Zealand: AIP Conference Proceedings. 2009, 1151: 36.
[51] Hepel M, Mahdavi F. Microchemical Journal, 1997, 56: 54.
[52] Svirskis D, Sharma M, Yu Y, Garg S. Therapeutic Delivery, 2013, 4: 307.
[53] Kim D H, Richardson-Burns S M, Hendricks J L, Sequera C, Martin D C. Advanced Functional Materials, 2007, 17: 79.
[54] Kontturi K, Pentti P, Sundholm G. Journal of Electroanalytical Chemistry, 1998, 453: 231.
[55] Abidian M R, Kim D H, Martin D C. Advanced Materials, 2006, 18: 405.
[56] Thompson B C, Moulton S E, Ding J, Richardson R, Cameron A, O'Leary S, Wallace G G, Clark G M. Journal of Controlled Release, 2006, 116: 285.
[57] Zinger B, Miller L L. Journal of the American Chemical Society, 1984, 106: 6861.
[58] Pyo M, Maeder G, Kennedy R T, Reynolds J R. Journal of Electroanalytical Chemistry, 1994, 368: 329.
[59] Xiao Y, Ye X, He L, Che J F. Polymer International, 2012, 61: 190.
[60] Bidan G, Lopez C, Mendes-Viegas F, Vieil E. Biosensors and Bioelectronics, 1995, 10: 219.
[61] Han G, Shi G. Sensors and Actuators B: Chemical, 2004, 99: 525.
[62] Alici G, Devaud V, Renaud P, Spinks G. Journal of Micromechanics and Microengineering, 2009, 19(2): 025017.
[63] Jeon G, Yang S Y, Byun J, Kim J K. Nano letters, 2011, 11: 1284.
[64] Gao W, Li J, Cirillo J, Borgens R B, Cho Y. Langmuir, 2014, 30(26): 7778.
[65] Ru X, Shi W, Huang X, Cui X, Ren B, Ge D. Electrochimica Acta, 2011, 56(27): 9887.
[66] Luo X, Cui X T. Electrochemistry Communications, 2009, 11(2): 402.
[67] Kang G, Borgens R B, Cho Y. Langmuir, 2011, 27(10): 6179.
[68] Han J, Wang L, Guo R. Macromolecular Rapid Communications, 2011, 32(9/10): 729.
[69] Luo X, Matranga C, Tan S, Alba N, Cui X Y. Biomaterials, 2011, 32: 6316.
[70] 徐秀娟(Xu X J), 秦金贵(Li J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559.
[71] Liu H W, Hu S H, Chen Y W, Chen S Y. Journal of Materials Chemistry, 2012, 22(33): 17311.
[72] Weaver C L, LaRosa J M, Luo X, Cui X T. ACS Nano, 2014, 8(2): 1834.
[73] Guiseppi-Elie A. Biomaterials, 2010, 31: 2701.
[74] Lira L M, Córdoba de Torresi S I. Electrochemistry Communications, 2005, 7: 717.
[75] Chikar J A, Hendricks J L, Richardson-Burns S M, Raphael Y, Pfingst B E, Martin D C. Biomaterials, 2012, 33: 1982.
[76] George P M, LaVan D A, Burdick J A, Chen C Y, Liang E, Langer R. Advanced Materials, 2006, 18: 577.
[77] Pyo M, Reynolds J R. J. Chem. Soc., Chem. Commun., 1993,(3): 258.
[78] Demoustier-Champagne S, Reynolds J R, Pomerantz M. Chemistry of Materials, 1995, 7(2): 277.
[79] Pyo M, Reynolds J R. Chemistry of Materials, 1996, 8(1): 128.
[80] Massoumi B, Entezami A. Journal of Bioactive and Compatible Polymers, 2002, 17: 51.
[81] Massoumi B, Entezami A. European Polymer Journal, 2001, 37: 1015.
[82] EdwardáMoulton S, DavidáImisides M, LeonardáShepherd R, GeorgeáWallace G. Journal of Materials Chemistry, 2008, 18(30): 3608.
[83] Ge D, Ru X, Hong S, Jiang S, Tu J, Wang J, Zhang A, Ji S, Linkov V, Ren B, Shi, W. Electrochemistry Communications, 2010, 12(10): 1367.
[84] Ge D, Qi R, Mu J, Ru X, Hong S, Ji S, Linkov V, Shi W. Electrochemistry Communications, 2010, 12(8): 1087.
[85] Yang G, Lv F, Wang B, Liu L, Yang Q, Wang S. Macromolecular Bioscience, 2012, 12(12): 1600.
[86] Tang H, Duan X, Feng X, Liu L, Wang S, Li Y, Zhu D. Chem. Commun., 2009(6): 641.
[87] Feng X, Lv F, Liu L, Tang H, Xing C, Yang Q, Wang S. ACS Applied Materials & Interfaces, 2010, 2(8): 2429.
[88] Green R A, Lovell N H, Poole-Warren L A. Acta Biomaterialia, 2010, 6: 63.
[89] Uang Y M, Chou T C. Electroanalysis, 2002, 14: 1564.9, 21(12): 2559.
[71] Liu H W, Hu S H, Chen Y W, Chen S Y. Journal of Materials Chemistry, 2012, 22(33): 17311.
[72] Weaver C L, LaRosa J M, Luo X, Cui X T. ACS nano, 2014, 8(2): 1834.
[73] Guiseppi-Elie A. Biomaterials, 2010, 31: 2701.
[74] Lira L M, Córdoba de Torresi S I. Electrochemistry communications, 2005, 7: 717.
[75] Chikar J A, Hendricks J L, Richardson-Burns S M, Raphael Y, Pfingst B E, Martin D C. Biomaterials, 2012, 33: 1982.
[76] George P M, LaVan D A, Burdick J A, Chen C Y, Liang E, Langer R. Advanced Materials, 2006, 18: 577.
[77] Pyo M, Reynolds J R. J. Chem. Soc., Chem. Commun., 1993(3): 258.
[78] Demoustier-Champagne S, Reynolds J R, Pomerantz M. Chemistry of materials, 1995, 7(2): 277.
[79] Pyo M, Reynolds J R. Chemistry of materials, 1996, 8(1): 128.
[80] Massoumi B, Entezami A. Journal of bioactive and compatible polymers, 2002, 17: 51.
[81] Massoumi B, Entezami A. European polymer journal, 2001, 37: 1015.
[82] EdwardáMoulton S, DavidáImisides M, LeonardáShepherd R, GeorgeáWallace G. Journal of Materials Chemistry, 2008, 18(30): 3608.
[83] Ge D, Ru X, Hong S, Jiang S, Tu J, Wang J, Zhang A, Ji S, Linkov V, Ren B, Shi, W. Electrochemistry Communications, 2010, 12(10): 1367.
[84] Ge D, Qi R, Mu J, Ru X, Hong S, Ji S, Linkov V, Shi W. Electrochemistry Communications, 2010, 12(8): 1087.
[85] Yang G, Lv F, Wang B, Liu L, Yang Q, Wang S. Macromolecular bioscience, 2012, 12(12): 1600.
[86] Tang H, Duan X, Feng X, Liu L, Wang S, Li Y, Zhu D. Chem. Commun., 2009(6): 641.
[87] Feng X, Lv F, Liu L, Tang H, Xing C, Yang Q, Wang S. ACS applied materials & interfaces, 2010, 2(8): 2429.
[88] Green R A, Lovell N H, Poole-Warren L A. Acta Biomaterialia, 2010, 6: 63.
[89] Uang Y M, Chou T C. Electroanalysis, 2002, 14: 1564.

 

[1] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[2] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[3] 董志瑞, 仝维鋆*. 剪切响应性药物传递体系[J]. 化学进展, 2018, 30(2/3): 190-197.
[4] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[5] 汤洁, 刘仁发, 戴志飞*. 多功能脂质体递药系统[J]. 化学进展, 2018, 30(11): 1669-1680.
[6] 沈娟, 朱阳, 师红东, 刘扬中. 铂类抗癌药物的多功能纳米递送体系[J]. 化学进展, 2018, 30(10): 1557-1572.
[7] 陈盼盼, 史兵兵*. 基于大环主体构筑的超分子载药体系[J]. 化学进展, 2017, 29(7): 720-739.
[8] 龚兆翠, 尹超, 赵惠, 卢晓梅, 范曲立, 黄维. 光控纳米载体在药物释放中的应用[J]. 化学进展, 2016, 28(9): 1387-1396.
[9] 胡传波, 厉英, 孔亚州, 丁玉石. 改性聚苯胺及其衍生物涂层的防腐性能[J]. 化学进展, 2016, 28(8): 1238-1250.
[10] 梁嘉美, 冯岸超, 袁金颖. 刺激响应星形聚合物的合成及其药物可控释放研究[J]. 化学进展, 2015, 27(5): 522-531.
[11] 舒昕, 李兆祥, 夏江滨. 聚噻吩的合成方法[J]. 化学进展, 2015, 27(4): 385-394.
[12] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[13] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[14] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.
[15] 韩彬, 廖霞俐, 杨波. 基于环糊精的靶向药物传递系统[J]. 化学进展, 2014, 26(06): 1039-1049.