English
新闻公告
More
化学进展 2017, Vol. 29 Issue (7): 720-739 DOI: 10.7536/PC170329 前一篇   后一篇

• 综述 •

基于大环主体构筑的超分子载药体系

陈盼盼, 史兵兵*   

  1. 浙江大学化学系 杭州 310027
  • 收稿日期:2017-03-20 修回日期:2017-06-01 出版日期:2017-07-15 发布日期:2017-06-22
  • 通讯作者: 史兵兵 E-mail:bingbingshi@zju.edu.cn
  • 基金资助:
    中央高校基本科研基金资助

Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts

Panpan Chen, Bingbing Shi*   

  1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
  • Received:2017-03-20 Revised:2017-06-01 Online:2017-07-15 Published:2017-06-22
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities.
近年来,为了降低癌症治疗中药物对正常细胞的副作用,发展响应癌细胞特定微环境变化,并实现药物靶向输送的功能化载药体系,引起了化学和药物学领域学者的广泛关注。以非共价作用构筑的超分子载药体系,在外界刺激下,可实现结构、形貌和功能的动态可逆性转变,从而为设计和发展智能超分子纳米药物载体提供平台。超分子自组装一直是超分子化学和纳米科学较为活跃的研究领域和重要组成部分。基于大环主体构筑新的识别机理,在超分子自组装及相关应用方面扮演着重要的角色。此外,通过特异性修饰主体或客体,可将功能化基团引入超分子体系,从而满足在不同领域应用的要求。通过非共价修饰,超分子纳米体系不仅可以作为理想的药物载体,改善药物水溶解性和稳定性,而且可以实现药物的可控释放。本文根据大环骨架的不同,分类介绍了基于大环主体构筑的超分子载药体系的最新研究进展,并结合该体系的研究现状,对超分子载药体系的发展前景进行了展望。
In recent years, functional drug delivery systems for both targeting drugs to cancer cells and responding to the specific microenvironmental changes of cancer cells for the delivery of the drug have drawn great attention from the chemistry and pharmacology fields in cancer treatment for minimizing undesired effects in the normal cells. Supramolecular drug delivery systems constructed by noncovalent interactions have the ability to realize dynamic reversible switching of structure, morphology and function in response to various external stimuli, thus, providing a platform for designing and developing smart supramolecular nano-drug carriers. It is clear that supramolecular self-assemblies have been an active area of research and an important component of supramolecular chemistry and nanoscience, novel macrocyclic hosts-based recognition motifs, play extremely important roles in supramolecular self-assemblies and related applications. Moreover, functional groups can be introduced into supramolecular systems through specific modification of hosts or guests, so as to meet the requirements for applications in various fields. By noncovalent functionalization, supramolecular nanosystems will be excellent drug carriers, improving the problems imposed by water solubility and stability of drugs as well as realizing controlled release. In this critical review, we summarize recent results in the investigation of macrocyclic hosts-based supramolecular nanostructures for controllable anticancer drug delivery, and supramolecular drug delivery systems are classified based on the types of macrocyclic frameworks involved. Finally, the prospects are pointed out based on the current development of this system.
Contents
1 Introduction
2 Supramolecular drug delivery systems based on cyclodextrins
2.1 Drug-loaded micelles
2.2 Drug-loaded nanoparticles
2.3 Supramolecular prodrug hydrogels
2.4 Photo-controllable drug delivery vehicles
2.5 Vehicles capable of targeted co-delivery of gene and drug
3 Supramolecular drug delivery systems based on calixarenes
3.1 Drug-loaded vesicles
3.2 Multifunctional co-assemblies
3.3 Amphoteric calixarene-based drug delivery vehicles
4 Supramolecular drug delivery systems based on cucurbiturils
4.1 Drug-loaded vesicles
4.2 Drug-loaded nanoparticles
4.3 Drug-loaded crosslinked supramolecular network
4.4 Molecular container-based drug delivery vehicles
5 Supramolecular drug delivery systems based on pillararenes
5.1 Drug-loaded vesicles or micelles
5.2 Supramolecular prodrug nanoparticles
5.3 Self-imaging drug delivery vehicles
6 Conclusion

中图分类号: 

()
[1] a) Mal N K, Fujiwara M, Tanaka Y. Nature, 2003, 421:350.; (b) Agasti S S, Chompoosor A, You C C, Ghosh P, Kim C K, Rotello V M. J. Am. Chem. Soc., 2009, 131:5728.; (c) Luo Z, Cai K Y, Hu Y, Li J H, Ding X W, Zhang B L, Xu D W, Yang W H, Liu P. Adv. Mater., 2012, 24:431.; (d) Li C H, Liu S Y. Chem. Commun., 2012, 48:3262.
[2] Shaik M R, Korsapati M, Panati D. Int. J. Pharm. Sci., 2012, 2:112.
[3] a) Yang Y W. Med. Chem. Commun., 2011, 2:1033.; (b) Chang Y C, Hou C X, Ren J L, Xin X T, Pei Y X, Lu Y C, Cao S P, Pei Z C. Chem. Commun., 2016, 52:9578.
[4] Guo D S, Yang J, Liu Y. Chem. Eur. J., 2013, 19:8755.
[5] Tu C L, Zhu L J, Li P P, Chen Y, Su Y, Yan D Y, Zhu X Y, Zhou G Y. Chem. Commun., 2011, 47:6063.
[6] Zhang J, Guo D S, Wang L H, Wang Z, Liu Y. Soft Matter., 2011, 7:1756.
[7] Duan Q P, Cao Y, Li Y, Hu X Y, Xiao T X, Lin C, Pan Y, Wang L Y. J. Am. Chem. Soc., 2013, 135:10542.
[8] Barenholz Y. J. Control. Release, 2012, 160:117.
[9] Chen Y, Xu P F, Wu M Y, Meng Q S, Chen H R, Shu Z, Wang J, Zhang L X, Li Y P, Shi J L. Adv. Mater., 2014, 26:4294.
[10] a) Connors K A. Chem. Rev., 1997, 97:1325.; (b) Uekama K, Hirayama F, Irie T. Chem. Rev., 1998, 98:2045.; (c) Harada A. Acc. Chem. Res., 2001, 34:456.; (d) Douhal A. Chem. Rev., 2004, 104:1955.; (e) Crini G. Chem. Rev., 2014, 114:10940.
[11] a) Szejtli J. Chem. Rev., 1998, 98:1743.; (b) Haider J M, Pikramenou Z. Chem. Soc. Rev., 2005, 34:120.; (c) Hu Q D, Tang G P, Chu P K. Acc. Chem. Res., 2014, 47:2017.
[12] Quan C Y, Wu D Q, Chang C, Zhang G B, Cheng S X, Zhang X Z, Zhuo R X. J. Phys. Chem. C, 2009, 113:11262.
[13] Quan C Y, Chen J X, Wang H Y, Li C, Chang C, Zhang X Z, Zhuo R X. ACS Nano, 2010, 4:4211.
[14] a) Mori T, Asakura M, Okahata Y. J. Am. Chem. Soc., 2011, 133:5701.; (b) Wu J J, Zhao Q, Liang C Z, Xie T. Soft Matter, 2013, 9:11136.
[15] Yan Q, Zhang H J, Zhao Y. ACS Macro Lett., 2014, 3:472.
[16] Zhang Z, Ding J X, Chen X F, Xiao C S, He C L, Zhuang X L, Chen L, Chen X S. Polym. Chem., 2013, 4:3265.
[17] Osada K, Cabral H, Mochida Y, Lee S, Nagata K, Matsuura T, Yamamoto M, Anraku Y, Kishimura A, Nishiyama N, Kataoka K. J. Am. Chem. Soc., 2012, 134:13172.
[18] Namgung R, Lee Y M, Kim J, Jang Y, Lee B H, Kim I S, Sokkar P, Rhee Y M, Hoffman A S, Kim W J. Nat. Commun., 2014, 5:3702.
[19] Ha W, Yu J, Song X Y, Chen J, Shi Y P. ACS Appl. Mater. Interfaces, 2014, 6:10623.
[20] a) Izatt R M, Lamb J D, Hawkins R T, Brown P R, Izatt S R, Christsen J J. J. Am. Chem. Soc., 1983, 105:1782.; (b) Ringsdorf H, Schlarb B, Venzmer J. Angew. Chem. Int. Ed., 1988, 27:113.
[21] a) Li H Y, Qian Z M. Med. Res. Rev., 2002, 22:225.; (b) Shigeta K, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, Hashida M. J. Control. Release, 2007, 118:262.
[22] Xiao W, Chen W H, Xu X D, Li C, Zhang J, Zhuo R X, Zhang X Z. Adv. Mater., 2011, 23:3526.
[23] a) Vrouwe M G, Pines A, Overmeer R M, Hanada K, Mullenders L H F. J. Cell Sci., 2011, 124:435.; (b) Wang Z Z, Johns V K, Liao Y. Chem. Eur. J., 2014, 20:14637.
[24] Kalka K, Merk H, Mukhtar H. J. Am. Acad. Dermatol., 2000, 42:389.
[25] Samanta S, Beharry A A, Sadovski O, McCormick T M, Babalhavaeji A, Tropepe V, Woolley G A. J. Am. Chem. Soc., 2013, 135:9777.
[26] Wang D S, Wagner M, Butt H J, Wu S. Soft Matter, 2015, 11:7656.
[27] Wang D S, Wu S. Langmuir, 2016, 32:632.
[28] Saad M, Garbuzenko O B, Minko T. Nanomedicine, 2008, 3:761.
[29] Li J M, Wang Y Y, Zhao M X, Tan C P, Li Y Q, Le X Y, Ji L N, Mao Z W. Biomaterials, 2012, 33:2780.
[30] Longley D B, Johnston P G. J. Pathol., 2005, 205:275.
[31] Shukla S, Wu C P, Ambudkar S V. Expert Opin. Drug Metab. Toxicol., 2008, 4:205.
[32] Nair R R, Rodgers J R, Schwarz L A. Mol. Ther., 2002, 5:455.
[33] Blagosklonny M V, Fojo T. Int. J. Cancer, 1999, 83:151.
[34] Nielsen L L, Lipari P, Dell J, Gurnani M, Hajian G. Clin Cancer Res., 1998, 4:835.
[35] Zhao F, Yin H, Li J. Biomaterials, 2014, 35:1050.
[36] a) Calama M C, Timmerman P, Reinhoudt D N. Angew. Chem. Int. Ed., 2000, 39:755.; (b) Kumar R, Lee Y O, Bhalla V, Kumar M, Kim J S. Chem. Soc. Rev., 2014, 43:4824.
[37] a) Ibach S, Prautzsch V, V gtle F, Chartroux C, Gloe K. Acc. Chem. Res., 1999, 32:729.; (b) Wang M X. Acc. Chem. Res., 2012, 45:182.
[38] a) Shinkai S, Araki K, Matsuda T, Nishiyama N, Ikeda H, Takasu I, Iwamoto M. J. Am. Chem. Soc., 1990, 112:9053.; (b) Liu Y, Guo D S, Zhang H Y, Ma Y H, Yang E C. J. Phys. Chem. B, 2006, 110:3428.
[39] a) Hennig A, Bakirci H, Nau W M. Nat. Methods, 2007, 4:629.; (b) Nau W M, Ghale G, Hennig A, Bakirci H, Bailey D M. J. Am. Chem. Soc., 2009, 131:11558.
[40] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131:4830.
[41] a) Beck J B, Rowan S J. J. Am. Chem. Soc., 2003, 125:13922.; (b) Oishi M, Nakamura T, Jinji Y, Matsuishi K, Nagasaki Y. J. Mater. Chem., 2009, 19:5909.
[42] a) Lee M, Lee S J, Jiang L H. J. Am. Chem. Soc., 2004, 126:12724.; (b) Li Y T, Lokitz B S, McCormick C L. Angew. Chem. Int. Ed., 2006, 45:5792.
[43] Wang K, Guo D S, Wang X, Liu Y. ACS Nano, 2011, 5:2880.
[44] a) Yang Z M, Liang G L, Xu B. Acc. Chem. Res., 2008, 41, 315.; (b) Azagarsamy M A, Sokkalingam P, Thayumanavan S. J. Am. Chem. Soc., 2009, 131:14184.; (c) Chien M P, Rush A M, Thompson M P, Gianneschi N C. Angew. Chem. Int. Ed., 2010, 49:5076.
[45] Guo D S, Wang K, Wang Y X, Liu Y. J. Am. Chem. Soc., 2012, 134:10244.
[46] Mo J, Eggers P K, Yuan Z X, Raston C L, Lim L Y. Sci. Rep., 2016, 6:23489.
[47] a) Elsabahy M, Wooley K L. Chem. Soc. Rev., 2012, 41:2545.; (b) Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Chem. Soc. Rev., 2013, 42:1147.
[48] a) Mitragotri S, Lahann J. Adv. Mater., 2012, 24:3717.; (b) Chen L M, Zhao X, Lin Y, Huang Y B, Wang Q. Chem. Commun., 2013, 49:9678.
[49] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40:94.
[50] a) De Mendoza J, Cuevas F, Prados P, Meadows E S, Gokel G W. Angew. Chem. Int. Ed., 1998, 37:1534.; (b) Seganish J L, Santacroce P V, Salimian K J, Fettinger J C, Zavalij P, Davis J T. Angew. Chem. Int. Ed., 2006, 45:3334.
[51] Wang Y X, Zhang Y M, Wang Y L, Liu Y. Chem. Mater., 2015, 27:2848.
[52] Wang Y X, Guo D S, Duan Y C, Wang Y J, Liu Y. Sci. Rep., 2015, 5:9019.
[53] Xue Y, Guan Y, Zheng A N, Xiao H N. Colloids Surf. B, 2013, 101:55.
[54] Yu X Q, Zipp G L, Ray Davidson G W. Pharm. Res., 1994, 11:522.
[55] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36:621.
[56] Ni X L, Xiao X, Cong H, Zhu Q J, Xue S F, Tao Z. Acc. Chem. Res., 2014, 47:1386.
[57] Park K M, Lee D W, Sarkar B, Jung H, Kim J, Ko Y H, Lee K E, Jeon H, Kim K. Small, 2010, 6:1430.
[58] a) Tuncel D, Demir H V. Nanoscale., 2010, 2:484.; (b) Ibrahimova V, Ekiz S, Gezici O, Tuncel D. Polym. Chem., 2011, 2:2818.
[59] Fischer I, Kaeser A, Peters-Gumbs M A M, Schenning A P H J. Chem. Eur. J., 2013, 19:10928.
[60] Pennakalathil J, Jahja E, Özdemir E S, Konu Ö, Tuncel D. Biomacromolecules, 2014, 15:3366.
[61] Meng F H, Hennink W E, Zhong Z Y. Biomaterials, 2009, 30:2180.
[62] Zhao J, Chen C J, Li D D, Liu X S, Wang H B, Jin Q, Ji J. Polym. Chem., 2014, 5:1843.
[63] a) Xiao D, Jia H Z, Zhang J, Liu C W, Zhuo R X, Zhang X Z. Small, 2014, 10:591.; (b) Bai L, Wang X H, Song F, Wang X L, Wang Y Z. Chem. Commun., 2015, 51:93.
[64] Li Q L, Xu S H, Zhou H, Wang X, Dong B, Gao H, Tang J, Yang Y W. ACS Appl. Mater. Interfaces, 2015, 7:28656.
[65] Irie M. J. Am. Chem. Soc., 1983, 105:2078.
[66] Loontiens F G, Regenfuss P, Zeche A, Dumortier L, Clegg R M. Biochemistry, 1990, 29:9029.
[67] Latt S A, Stetten G. J. Histochem. Cytochem., 1976, 24:24.
[68] Barooah N, Mohanty J, Pal H, Bhasikuttan A C. Phys. Chem. Chem. Phys., 2011, 13:13117.
[69] Carvalho C P, Uzunova V D, da Silva J P, Nau W M, Pischel U. Chem. Commun., 2011, 47:8793.
[70] Alcindor T, Beauger N. Current Oncology, 2011, 18:1.
[71] Cao L P, Hettiarachchi G, Briken V, Isaacs L. Angew. Chem., 2013, 125:12255.
[72] a) Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y. J. Am. Chem. Soc., 2008, 130:5022.; (b) Yu G C, Zhang Z B, Han C Y, Xue M, Zhou Q Z, Huang F H. Chem. Commun., 2012, 48:2958.; (c) Wei P F, Yan X Z, Li J Y, Ma Y J, Huang F H. Chem. Commun., 2013, 49:1070.; (d) Li C J. Chem. Commun., 2014, 50:12420.; (e) Dong S Y, Yuan J Y, Huang F H. Chem. Sci., 2014, 5:247.; (f) Shi B B, Jie K C, Zhou Y J, Xia D Y, Yao Y. Chem. Commun., 2015, 51:4503.; (g) Chen P P, Mondal J H, Zhou Y J, Zhu H T Z, Shi B B. Polym. Chem., 2016, 7:5221.; (h) Xing H, Shi B B. Polym. Chem., 2016, 7:6159.; (i) Hua B, Shao L, Yu G C, Huang F H. Chem. Commun., 2016, 52:10016.
[73] a) Ji X F, Chen J Z, Chi X D, Huang F H. ACS Macro Lett., 2014, 3:110.; (b) Yao Y, Wang Y, Huang F H. Chem. Sci., 2014, 5:4312.; (c) Yang J, Yu G C, Xia D Y, Huang F H. Chem. Commun., 2014, 50:3993.
[74] Wu X, Li Y, Lin C, Hu X Y, Wang L Y. Chem. Commun., 2015, 51:6832.
[75] a) Yu G C, Yu W, Mao Z W, Gao C Y, Huang F H. Small, 2015, 11:919.; (b) Meng L B, Zhang W Y, Li D Q, Li Y, Hu X Y, Wang L Y, Li G G. Chem. Commun., 2015, 51:14381.; (c) Shi B B, Jie K C, Zhou Y J, Zhou J, Xia D Y, Huang F H. J. Am. Chem. Soc., 2016, 138:80.
[76] Hu X Y, Liu X, Zhang W Y, Qin S, Yao C H, Li Y, Cao D R, Peng L M, Wang L Y. Chem. Mater., 2016, 28:3778.
[77] a) Al-Ahmady Z S, Al-Jamal W T, Bossche J V, Bui T T, Drake A F, Mason A J, Kostarelos K. ACS Nano, 2012, 6:9335.; (b) Moitra P, Kumar K, Kondaiah P, Bhattacharya S. Angew. Chem. Int. Ed., 2014, 53:1113.(Angew. Chem., 2014, 126:1131.)
[78] Chang Y C, Yang K, Wei P, Huang S S, Pei Y X, Zhao W, Pei Z C. Angew. Chem. Int. Ed., 2014, 53:13126.
[79] a) Montenaygarestier T, Helene C. Nature, 1968, 217:844.; (b) Zhang X, Zhang Z J, Xu X H, Li Y K, Li Y C, Jian Y T, Gu Z W. Angew. Chem. Int. Ed., 2015, 54:4289.
[80] Zeman S M, Phillips D R, Crothers D M. Proc. Natl. Acad. Sci. U. S. A., 1998, 95:11561.
[81] Yang K, Chang Y C, Wen J, Lu Y C, Pei Y X, Cao S P, Wang F, Pei Z C. Chem. Mater., 2016, 28:1990.
[82] Cao Y, Li Y, Hu X Y, Zou X C, Xiong S H, Lin C, Wang L Y. Chem. Mater., 2015, 27:1110.
[83] a) Yu G C, Tang G P, Huang F H. J. Mater. Chem. C, 2014, 2:6609.; (b) Bai W, Wang Z Y, Tong J Q, Mei J, Qin A J, Sun J Z, Tang B Z. Chem. Commun., 2015, 51:1089.; (c) Zhou J, Yu G C, Huang F H. J. Mater. Chem. B, 2016, 4:7761.; (d) Yu G C, Cook T R, Li Y, Yan X Z, Wu D, Shao L, Shen J, Tang G P, Huang F H, Chen X Y, Stang P J. Proc. Natl. Acad. Sci. U. S. A., 2016, 113:13720.
[84] Yu G C, Wu D, Li Y, Zhang Z H, Shao L, Zhou J, Hu Q L, Tang G P, Huang F H. Chem. Sci., 2016, 7:3017.
[85] Yu G C, Zhao R, Wu D, Zhang F W, Shao L, Zhou J, Yang J, Tang G P, Chen X Y, Huang F H. Polym. Chem., 2016, 7:6178.
[1] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[2] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[3] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[4] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[5] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[6] 汤洁, 刘仁发, 戴志飞*. 多功能脂质体递药系统[J]. 化学进展, 2018, 30(11): 1669-1680.
[7] 沈娟, 朱阳, 师红东, 刘扬中. 铂类抗癌药物的多功能纳米递送体系[J]. 化学进展, 2018, 30(10): 1557-1572.
[8] 闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星. 化学振荡反应调控的动态可逆智能体系[J]. 化学进展, 2017, 29(7): 740-749.
[9] 龚兆翠, 尹超, 赵惠, 卢晓梅, 范曲立, 黄维. 光控纳米载体在药物释放中的应用[J]. 化学进展, 2016, 28(9): 1387-1396.
[10] 梁嘉美, 冯岸超, 袁金颖. 刺激响应星形聚合物的合成及其药物可控释放研究[J]. 化学进展, 2015, 27(5): 522-531.
[11] 宿丹, 第凤, 邢季, 车剑飞, 肖迎红. 导电聚合物在药物可控释放领域的应用[J]. 化学进展, 2014, 26(12): 1962-1976.
[12] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.
[13] 张磊, 刘晓燕, 沈晶晶, 卢晓梅, 范曲立, 黄维. 纳米颗粒在抗癌药物可控靶向释放中的应用[J]. 化学进展, 2013, 25(08): 1375-1382.
[14] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.
[15] 王海波, 赵猛, 计亮年, 毛宗万*. 具有非共价相互作用的金属酶模拟物[J]. 化学进展, 2013, 25(04): 577-588.