English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 677-691 DOI: 10.7536/PC121024 前一篇   后一篇

• 综述与评论 •

基于介孔二氧化硅纳米颗粒的可控释放体系

王文谦1, 陈林峰2, 温永强*1, 张学记1, 宋延林2, 江雷2   

  1. 1. 北京科技大学化学与生物工程学院 生物工程与传感技术研究中心 北京 100083;
    2. 中国科学院化学研究所 北京 100190
  • 收稿日期:2012-10-01 修回日期:2012-11-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 温永强 E-mail:wyq_wen@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 21171019, 21073203)和教育部新世纪优秀人才支持计划(NCET-11-0584)资助

Mesoporous Silica Nanoparticle-Based Controlled-Release System

Wang Wenqian1, Chen Linfeng2, Wen Yongqiang*1, Zhang Xueji1, Song Yanlin2, Jiang Lei2   

  1. 1. Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2012-10-01 Revised:2012-11-01 Online:2013-05-24 Published:2013-04-15

基于介孔二氧化硅的控制释放体系具有良好的生物相容性、细胞靶向性、精准响应性控制释放和到达目标位点前有效阻止药物释放等功能特性。近年来,基于介孔二氧化硅的可控释放体系已成为众多科研工作者研究的热点。本文讨论了基于介孔二氧化硅纳米颗粒可控释放体系的特点,同时以不同的响应特性为主线,系统分析和总结了各种响应性介孔二氧化硅控释体系的开关及其控制释放机制,包括氧化还原控释系统、光控释系统、pH控释系统及生物分子相关控释系统等一系列基于介孔二氧化硅的控释系统,并对该领域未来的发展方向作了展望。

Mesoporous silica nanoparticles (MSNs)-based controlled-release system has the characteristics of good biocompatibility, cell targeting property, accurate responsive release, and eliminating undesirable drug release before reaching the target site, which has become a hot topic among many researchers in recent years. This article discussed the advantages of MSNs-based controlled-release system. Meanwhile, based on different stimuli-responsive characteristics, this article systematically analyzed and summarized various MSN-based controlled-release systems which was modified with different responsive switches, and further discussed the switching mechanisms of these devices, including redox-responsive controlled-release systems, light-responsive controlled-release systems, pH-responsive controlled-release systems and biological molecule-responsive controlled-release systems. The prospects and directions of this research field are also briefly addressed. Contents
1 Introduction
2 MSNs-based controlled-release system
3 Non-functionalized MSNs-based controlled-release
4 Functionalized MSNs-based controlled-release
4.1 Redox-responsive controlled-release
4.2 pH-responsive controlled-release
4.3 Light-responsive controlled-release
4.4 Temperature-responsive controlled-release
4.5 Magnet-responsive controlled-release
4.6 Biology-responsive controlled-release
4.7 Multiple responsive controlled-release
4.8 MSNs-based multifunctional systems
5 Outlook

中图分类号: 

()

[1] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359: 710-712
[2] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46: 7548-7558
[3] Slowing I I, Vivero-Escoto J L, Wu C W, Lin V S Y. Adv. Drug Delivery Rev., 2008, 60: 1278-1288
[4] Lee C H, Lo L W, Mou C Y, Yang C S. Adv. Funct. Mater., 2008, 18: 3283-3292
[5] Huh S, Wiench J W, Yoo J C, Pruski M, Lin V S Y. Chem. Mater., 2003, 15: 4247-4256
[6] Suzuki K, Ikari K, Imai H. J. Am. Chem. Soc., 2004, 126: 462-463
[7] Ying J Y. Chem. Eng. Sci., 2006, 61: 1540-1548
[8] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548-552
[9] Bagshaw S A, Prouzet E, Pinnavaia T J. Science, 1995, 269: 1242-1244
[10] Inagaki S, Fukushima Y, Kuroda K. J. Chem. Soc. Chem. Commun, 1993, 680-682
[11] Trewyn B G, Slowing I I, Giri S, Chen H T, Lin V S Y. Acc. Chem. Res., 2007, 40: 846-853
[12] 袁丽(Yuan L), 王蓓娣(Wang B D), 唐倩倩(Tang Q Q), 张晓鸿(Zhang X H), 张晓环(Zhang X H), 杨东(Yang D), 胡建华(Hu J H). 有机化学(Chinese Journal of Organic Chemistry), 2010, 30: 640-647
[13] Jin S, Ye K. Biotechnol. Prog., 2007, 23: 32-41
[14] Hughes G A. Nanomed-Nanotechnol., 2005, 1: 22-30
[15] Mayor S, Pagano R E. Nat. Rev. Mol. Cell. Biol., 2007, 8: 603-612
[16] Rejman J, Oberle V, Zuhorn L S, Hoekstra D. Biochem. J., 2004, 377: 159-169
[17] Vallet-Regi M, Ramila A, del Real R P, Perez-Pariente J. Chem. Mater., 2001, 13: 308-311
[18] Mal N K, Fujiwara M, Tanaka Y. Nature, 2003, 421: 350-353
[19] Radu D R, Lai C Y, Jeftinija K, Rowe E W, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2004, 126: 13216-13217
[20] Slowing I I, Trewyn B G, Giri S, Lin V S Y. Adv. Funct. Mater., 2007, 17: 1225-1236
[21] Slowing I I, Trewyn B G, Lin V S Y. J. Am. Chem. Soc., 2006, 128: 14792-14793
[22] Slowing I I, Trewyn B G, Lin V S Y. J. Am. Chem. Soc., 2007, 129: 8845-8849
[23] Chung T H, Wu S H, Yao M, Lu C W, Lin V S Y, Hung Y, Mou C W, Chen Y C, Huang D M. Biomaterials, 2007, 28: 2959-2966
[24] Sun W, Fang N, Trewyn B G, Tsunoda M, Slowing I I, Lin V S Y, Yeung E S. Anal. Bioanal. Chem., 2008, 391: 2119-2125
[25] Trewyn B G, Nieweg J A, Zhao Y N, Lin V S Y. Chem. Eng. J., 2008, 137: 23-29
[26] Martin-Ortigosa S, Valenstein J S, Lin V S Y, Trewyn B G, Wang K. Adv. Funct. Mater., 2012, 22: 3576-3582
[27] Vivero-Escoto J L, Slowing I I, Lin V S Y. Biomaterials, 2010, 31: 1325-1333
[28] Slowing I I, Wu C W, Vivero-Escoto J L, Lin V S Y. Small, 2009, 5: 57-62
[29] Zhao Y N, Sun X X, Zhang G N, Trewyn B G, Slowing I I, Lin V S Y. ACS Nano, 2011, 5: 1366-1375
[30] Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink J I, Nel A E. ACS Nano, 2009, 3: 3272-3286
[31] Ferris D P, Lu J, Gothard C, Yanes R, Thomas C R, Olsen J C, Stoddart J F, Tamanoi F, Zink J I. Small, 2011, 7: 1816-1826
[32] Lu J, Liong M, Zink J I, Tamanoi F. Small, 2007, 3: 1341-1346
[33] Lu J, Liong M, Li Z X, Zink J I, Tamanoi F. Small, 2010, 6: 1794-1805
[34] Meng H, Liong M, Xia T, Li Z X, Ji Z X, Zink J I, Nel A E. ACS Nano, 2010, 4: 4539-4550
[35] Hom C, Lu J, Liong M, Luo H Z, Li Z X, Zink J I, Tamanoi F. Small, 2010, 6: 1185-1190
[36] Liu J W, Stace-Naughton A, Jiang X M, Brinker C J. J. Am. Chem. Soc., 2009, 131: 1354-1355
[37] Liu J W, Jiang X M, Ashley C, Brinker C J. J. Am. Chem. Soc., 2009, 131: 7567-7569
[38] Carnes E C, Harper J C, Ashley C E, Lopez D M, Brinker L M, Liu J W, Singh S, Brozik S M, Brinker C J. J. Am. Chem. Soc., 2009, 131: 14255-14257
[39] Ashley C E, Carnes E C, Phillips G K, Padilla D, Durfee P N, Brown P A, Hanna T N, Liu J W, Phillips B, Carter M B, Carroll N J, Jiang X M, Dunphy D R, Willman C L, Petsev D N, Evans D G, Parikh A N, Chackerian B, Wharton W, Peabody D S, Brinker C J. Nat. Mater., 2011, 10: 389-397
[40] Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2003, 125: 4451-4459
[41] Huang X, Zhuang J, Teng X, Li L, Chen D, Yan X, Tang F. Biomaterials, 2010, 31: 6142-6153
[42] He Q J, Zhang Z W, Gao F, Li Y P, Shi J L. Small, 2011, 7: 271-280
[43] Zhu M, Wang H X, Liu J Y, He H L, Hua X G, He Q J, Zhang L X, Ye X J, Shi J L. Biomaterials, 2011, 32: 1986-1995
[44] Trewyn B G, Whitman C M, Lin V S Y. Nano Letter, 2004, 4: 2139-2143
[45] Trewyn B G, Giri S, Slowing I I, Lin V S Y. Chem. Commun., 2007, 3236-3245
[46] Chen Z D, Li X, He H Y, Ren Z H, Liu Y, Wang J, Li Z, Shen G, Han G R. Colloids and Surfaces A: Biointerfaces, 2012, 95: 274-278
[47] Wan M M, Yang J Y, Qiu Y, Zhou Y, Guan C X, Hou Q, Lin W G, Zhu J H. ACS Appl. Mater. Interfaces, 2012, 4: 4113-4122
[48] Verma A, Simard J M, Worrall J W E, Rottello V M. J. Am. Chem. Soc., 2004, 126: 13987-13991
[49] Giri S, Trewyn B G, Stellmaker M P, Lin V S Y. Angew. Chem. Int. Ed., 2005, 44: 5038-5044
[50] Torney F, Trewyn B G, Lin V S Y, Wang K. Nat. Nanotechnol., 2007, 2: 295-300
[51] Sun X X, Zhao Y N, Lin V S Y, Slowing I I, Trewyn B G. J. Am. Chem. Soc., 2011, 133: 18554-18557
[52] Hernandez R, Tseng H R, Wong J W, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2004, 126: 3370-3371
[53] Nguyen T D, Tseng H R, Celestre P C, Flood A H, Liu Y, Stoddart J F, Zink J I. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 10029-10034
[54] Nguyen T D, Liu Y, Saha S, Leung K C F, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2007, 129: 626-634
[55] Liu R, Zhao X, Wu T, Feng P Y. J. Am. Chem. Soc., 2008, 130: 14418-14419
[56] Zhu C L, Song X Y, Zhou W H, Yang H H, Wen Y H, Wang X R. J. Mater. Chem., 2009, 19: 7765-7770
[57] Kim H, Kim S, Park C Y, Lee H, Park H J, Kim C. Adv. Mater., 2010, 22: 4280-4283
[58] Cui Y N, Dong H Q, Cai X J, Wang D P, Li Y Y. ACS Appl. Mater. Interfaces, 2012, 4: 3177-3183
[59] Park C Y, Oh K, Lee S C, Kim C. Angew. Chem. Int. Ed., 2007, 46: 1455-1457
[60] Du L, Liao S J, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 15136-15142
[61] Zhao Y L, Li Z X, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132: 13016-13025
[62] Meng H, Xue M, Xia T, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132: 12690-12697
[63] Angelos S, Yang Y W, Patel K, Stoddart J F, Zink J I. Angew. Chem. Int. Ed., 2008, 47: 2222-2226
[64] Angelos S, Khashab N M, Yang Y W, Trabolsi A, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 12912-12914
[65] Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P Y. J. Am. Chem. Soc., 2010, 132: 1500-1501
[66] Muhammad F, Guo M Y, Qi W X, Sun F X, Wang A F, Guo Y J, Zhu G S. J. Am. Chem. Soc., 2011, 133: 8778-8781
[67] Yang Q, Wang S C, Fan P W, Wang L F, Di Y, Lin K F, Xiao F S. Chem. Mater., 2005, 17: 5999-6003
[68] Yuan L, Tang Q Q, Yang D, Zhang J Z, Zhang F Y, Hu J H. J. Phys. Chem. C, 2011, 115: 9926-9932
[69] Xing R, Lin H M, Jiang P P, Qu F Y. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2012, 403: 7-14
[70] Liu R, Liao P H, Liu J K, Feng P Y. Langmuir, 2011, 27: 3095-3099
[71] Chen F, Zhu Y C. Micropor. Mesopor. Mat., 2012, 150: 83-89
[72] Mei X, Chen D Y, Li N J, Xu Q F, Ge J F, Li H, Lu J M. Micropor. Mesopor. Mat., 2012, 152: 16-24
[73] He Q J, Gao Y, Zhang L X, Zhang Z W, Gao F, Ji X F, Li Y P, Shi J L. Biomaterials, 2011, 32: 7711-7720
[74] Zhu Y F, Shi J L, Shen W H, Dong X P, Feng J W, Ruan M L, Li Y S. Angew. Chem. Int. Ed., 2005, 44: 5083-5087
[75] He D G, He X X, Wang K, Cao J, Zhao Y X. Langmuir, 2012, 28: 4003-4008
[76] Angelos S, Choi E, Vogtle F, Cola L D, Zink J I. J. Phys. Chem. C, 2007, 111: 6589-6592
[77] Lu J, Choi E, Tamanoi F, Zink J I. Small, 2008, 4: 421-426
[78] Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 1686-1688
[79] Vivero-Escoto J L, Slowing I I, Wu C W, Lin V S Y. J. Am. Chem. Soc., 2009, 131: 3462-3463
[80] Park C Y, Lee K, Kim C. Angew. Chem. Int. Ed., 2009, 48: 1275-1278
[81] Fu Q, Rao G V R, Ista L K, Wu Y, Andrzejewski B P, Sklar L A, Ward T L, Lopez G P. Adv. Mater., 2003, 15, 1262-1266
[82] You Y Z, Kalebaila K K, Brock S L, Oupick D. Chem. Mater., 2008, 20: 3354-3359
[83] Chen P J, Hu S H, Hsiao C S, Chen Y Y, Liu D M, Chen S Y. J. Mater. Chem., 2011, 21: 2535-2543
[84] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132: 10623-10625
[85] Ruiz-Hernáandez E, Baeza A, Vallet-Regí M. ACS Nano, 2011, 5: 1259-1266
[86] Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 2382-2383
[87] Schlossbauer A, Kecht J, Bein T. Angew. Chem. Int. Ed., 2009, 48: 3092-3095
[88] Park C Y, Kim H, Kim S, Kim C. J. Am. Chem. Soc., 2009, 131: 16614-16615
[89] Bernardos A, Aznar E, Marcos M D, Martíez-Mánez R, Sancenón F, Soto J, Barat J M, Amorós P. Angew. Chem. Int. Ed., 2009, 48: 5884-5887
[90] Zhao Y, Trewyn B G, Slowing I I, Lin V S Y. J. Am. Chem. Soc., 2009, 131: 8398-8400
[91] Singh N, Karambelkar A, Gu L, Lin K, Miller J S, Chen C S, Sailor M J, Bhatia S N. J. Am. Chem. Soc., 2011, 133: 19582-19585
[92] Chen M J, Huang C S, He C S, Zhu W P, Xu Y F, Lu Y F. Chem. Commun., 2012, 9522-9524
[93] Chen C, Geng J, Pu F, Yang X J, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2011, 50: 882-886
[94] Climent E, Martínez-Máez R, Sancenón F, Marcos M D, Soto J, Maquieira A, Amorós P. Angew. Chem. Int. Ed., 2010, 49: 7281-7283
[95] Schlossbauer A, Warncke S, Gramlich P M E, Kecht J, Manetto A, Carell T, Bein T. Angew. Chem. Int. Ed., 2010, 49: 4734-4737
[96] Chen C, Pu F, Huang Z Z, Liu Z, Ren J S, Qu X G. Nucl. Acids Res., 2011, 39: 1638-1644
[97] Chen L F, Di J C, Cao C Y, Zhao Y, Ma Y, Luo J, Wen Y Q, Song W G, Song Y L, Jiang L. Chem. Commun., 2011, 2850-2852
[98] Wen Y Q, Xu L P, Wang W Q, Wang D Y, Du H W, Zhang X J. Nanoscale, 2012, 4: 4473-4476
[99] Chen L F, Wen Y Q, Su B, Di J C, Song Y L, Jiang L. J. Mater. Chem., 2011, 21: 13811-13816
[100] He X X, Zhao Y X, He D G, Wang K M, Xu F Z, Tang J L. Langmuir, 2012, 28: 12909-12915
[101] Wen Y Q, Xu L P, Li C B, Du H W, Chen L F, Su B, Zhang Z L, Zhang X J, Song Y L. Chem. Commun., 2012, 8410-8412
[102] Luo Z, Cai K Y, Hu Y, Zhao L, Liu P, Duan L, Yang W H. Angew. Chem. Int. Ed., 2011, 50: 640-643
[103] Zhu C L, Lu C H, Song X Y, Yang H H, Wang X R. J. Am. Chem. Soc., 2011, 133: 1278-1281
[104] Leung K C F, Nguyen T D, Stoddart J F, Zink J I. Chem. Mater., 2006, 18: 5919-5928
[105] Casasús R, Climent E, Marcos M D, Martínez-Máez R, Sancenón F, Soto J, Amorós P, Cano J, Ruiz E. J. Am. Chem. Soc., 2008, 130: 1903-1917
[106] Aznar E, Marcos M D, Martínez-Máez R, Sancenón F, Soto J, Amorós P, Guillem C. J. Am. Chem. Soc., 2009, 131: 6833-6843
[107] Angelos S, Yang Y W, Khashab N M, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 11344-11346
[108] Liu R, Zhang Y, Feng P Y. J. Am. Chem. Soc., 2009, 131: 15128-15129
[109] Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M. Chem. Mater., 2012, 24: 517-524
[110] Croissant J, Zink J I. J. Am. Chem. Soc., 2012, 134: 7628-7631
[111] Yan H, Teh C, Sreejith S, Zhu L L, Kwok A, Fang W Q, Ma X, Nguyen K, Korzh V, Zhao Y L. Angew. Chem. Int. Ed., 2012, 51: 8373-8377
[112] Yang X J, Liu X, Liu Z, Pu F, Ren J S, Qu X G. Adv. Mater., 2012, 24: 2890-2895
[113] Zhang Z J, Wang L M, Wang J, Jiang X M, Li X H, Hu Z J, Ji Y L, Wu X C, Chen C Y. Adv. Mater., 2012, 24: 1418-1423
[114] Kang X J, Cheng Z Y, Yang D M, Ma P A, Shang M M, Peng C, Dai Y L, Lin J. Adv. Funct. Mater., 2012, 22: 1470-1481
[115] Chen Y, Yin Q, Ji X F, Zhang S J, Chen H R, Zheng Y Y, Sun Y, Qu H Y, Wang Z, Li Y P, Wang X, Zhang K, Zhang L L, Shi J L. Biomaterials, 2012, 33: 7126-7137
[116] Fang W J, Yang J, Gong J W, Zheng N F. Adv. Funct. Mater., 2012, 22: 842-848
[117] Lee J, Kim H, Kim S, Lee H, Kim J, Kim N, Park H, Choi E K, Lee J S, Kim C. J. Mater. Chem., 2012, 22: 14061-14067
[118] Wang C, Lv P P, W W, Tao S Y, Hu T, Yang J B, Meng C G. Nanotechnology, 2011, 22: 415101-415108
[119] Wua H X, Tang L H, Ana L, Wang X, Zhang H Q, Shi J L, Yang S P. React. Funct. Polym., 2012, 72: 329-336
[120] Kne?evi Dc' N ?, Slowing I I, Lin V S Y. Chem. Plus. Chem., 2012, 77: 48-55
[121] Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. ACS Nano, 2008, 2: 889-896

[1] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[2] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[3] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[4] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[5] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[6] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[7] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[8] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[9] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[10] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[11] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[12] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[13] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[14] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[15] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.