English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 415-423 DOI: 10.7536/PC130776 前一篇   后一篇

• 综述与评论 •

纤维素类手性色谱固定相的制备及其应用

翁西伦, 鲍宗必*, 罗飞, 苏宝根, 杨亦文, 任其龙   

  1. 生物质化工教育部重点实验室 浙江大学化学工程与生物工程学系 杭州 310027
  • 收稿日期:2013-07-01 修回日期:2013-09-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 鲍宗必,e-mail:baozb@zju.edu.cn E-mail:baozb@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21006083,21376205)资助

Progress in Preparation and Applications of Cellulose Derivatives-Based Chiral Stationary Phase

Weng Xilun, Bao Zongbi*, Luo Fei, Su Baogen, Yang Yiwen, Ren Qilong   

  1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2013-07-01 Revised:2013-09-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21006083,21376205)

对映体的分离、分析及检测是目前医药与生化领域研究的热点之一。使用手性固定相并通过高效液相色谱直接拆分手性消旋体是现行单一对映体获取最直接且有效的手段之一,其中长链多糖类化合物如纤维素衍生物具有较强的手性识别能力,以此作为手性识别体的手性色谱固定相占有广阔的市场。本文对现有纤维素类手性色谱固定相的制备方法加以分类,评述了近年来该类别涂敷型、键合型及杂化型手性固定相的制备新方法,总结了采用衰减全反射傅里叶变换红外光谱技术、X射线衍射、固体核磁、密度泛函理论模拟等手段研究其手性识别机理的研究进展,综述了其在制备型超临界流体色谱和模拟移动床色谱中的应用情况。今后,对纤维素手性固定相的研究将主要集中在改善手性识别性能、提高样品处理能力以及降低溶剂消耗等方面,因此新型手性识别体的开发和负载方式的优化革新将是新一代手性固定相的研究关键,同时,应用领域的拓宽也将是其重要的发展方向之一。

Preparation of optically pure isomers and determination of the enantiomeric excess of chiral racemates are becoming increasingly important. Nowadays, many top selling drugs around the world have been administrated as single enantiomer with its desired physiological effect. Direct enantioseparation using chiral stationary phases (CSPs) by high performance liquid chromatography (HPLC) has signicantly evolved during the past few decades and has been recognized as the most popular and reliable tool for both analysis and preparation purposes.This paper reviewed the recent progress and breakthroughs made on the preparation of CSPs based on cellulose derivatives as selector. The new approaches for preparing the coated-type, bonded-type and hybrid-type CSPs are specifically discussed and evaluated. Many attempts to clarify the chiral recognition mechanism of cellulose derivatives-based CSPs on liquid chromatography have been carried out by NMR spectroscopy, ATR-FTIR, X-ray analysis and DFT etc. Apart from HPLC, the polysaccharide-based CSPs have also been used for simulated moving bed (SMB) and supercritical fluid chromatography (SFC), which are well-established techniques and becoming potential alternative for production of single enantiomer drugs. The applications performed by SFC and SMB are also summarized, and the purities, productivities and solvent consumptions are specifically displayed.Moreover, future prospects on design of new chiral selectors and optimization of supporting medium of CSPs based on cellulose derivatives are presented.

Contents
1 Introduction
2 Classification and preparation methods
2.1 Coated-type CSPs
2.2 Bonded-type CSPs
2.3 Organic-inorganic hybrid CSPs
3 Chiral discrimination mechanism
4 Application
5 Outlook

中图分类号: 

()

[1] Okamoto Y, Kawashima M, Hatada K. J. Chromatogr. A, 1986, 363: 173.
[2] Yashima E, Okamoto Y. Bull. Chem. Soc. Jpn., 1995, 68: 3289.
[3] Okamoto Y, Kaida Y. J. Chromatogr. A, 1994, 666: 403.
[4] Chen L M, Wang X S, Liu X, Jiang S X. Int. J. Polym. Anal. Charact., 2009, 14: 160.
[5] Katoh Y, Tsujimoto Y, Yamamoto C, Ikai T, Kamigaito M, Okamoto Y. Polym. J., 2010, 43: 84.
[6] Tang S W, Li X F, Wang F, Liu G H, Li Y L, Pan F Y. Chirality, 2012, 24: 167.
[7] McNeff C, Zigan L, Johnson K, Carr P W, Wang A, Weber-Main A M. LC GC North America, 2000, 18: 514.
[8] Kwon S H, Okamoto Y, Yamamoto C, Cheong W, Moon M, Park J H. Anal. Sci., 2006, 22: 1525.
[9] Kumar A P, Park J H. Anal. Lett., 2012, 45: 15.
[10] Kim M, Park J H. J. Chromatogr. A, 2012, 1251: 244.
[11] Kumar A P, Park J H. J. Chromatogr. A, 2011, 1218: 6548.
[12] Kumar A P, Park J H. J. Chromatogr. A, 2011, 1218: 5369.
[13] Ge J, Zhao L, Shi Y P. Chin. J. Chem., 2008, 26: 139.
[14] 杜明霞(Du M X), 徐茂震(Xu M Z), 绍鑫(Shao X), 蒲锡鹏(Pu X P), 李文智(Li W Z). 化学学报(Acta Chim. Sin.), 2011, 69: 2746.
[15] Francotte E. Chiral Separations, Applications and Technology, Washington DC: American Chemical Society, 1997. 271.
[16] Kouni H O, Ichida A. J. Chromatogr. A, 1995, 694: 91.
[17] Chankvetadze B. J. Chromatogr. A, 2012, 1269: 26.
[18] Okamoto Y, Ikai T, Shen J. Isr. J. Chem., 2011, 51: 1096.
[19] Chen X M, Yamamoto C, Okamoto Y. Pure Appl. Chem., 2007, 79: 1561.
[20] Ali I, AL-Othman Z A, Aboul-Enein H Y. Chiral Separations. Springer, 2013, 127.
[21] Okamoto Y, Aburatani R, Miura S I, Hatada K. J. Liq. Chromatogr., 1987, 10: 1613.
[22] Ling F, Brahmachary E, Xu M, Svec F, Frechet J M. J. Sep. Sci., 2003, 26: 1337.
[23] Tang S, Liu G, Li X, Jin Z, Wang F, Pan F, Okamoto Y. J. Sep. Sci., 2011, 34: 1763.
[24] Chen X M, Yamamoto C, Okamoto Y. J. Chromatogr. A, 2006, 1104: 62.
[25] Chen X M, Yamamoto C, Okamoto Y. J. Sep. Sci., 2006, 29: 1432.
[26] Seo Y J, Kang G W, Park S T, Moon M, Park J H, Cheong W J. Bull. Korean Chem. Soc., 2007, 28: 999.
[27] Zhang S, Ong T T, Ng S C, Chan H S O. Tetrahedron. Lett., 2007, 48: 5487.
[28] Shemper B S, Mathias L J. Eur. Polym. J., 2004, 40: 651.
[29] Zhang L, Cheng Z, Shi S, Li Q, Zhu X. Polymer, 2008, 49: 3054.
[30] Braunecker W A, Brown W C, Morelli B C, Tang W, Poli R, Matyjaszewski K. Macromolecules, 2007, 40: 8576.
[31] Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T, Surface-Initiated Polymerization I. Heidelberg: Springer Berlin, 2006. 1.
[32] Xie M, Kong Y, Han H, Shi J, Ding L, Song C, Zhang Y. React. Funct. Polym., 2008, 68: 1601.
[33] Meng T, Gao X, Zhang J, Yuan J, Zhang Y, He J. Polymer, 2009, 50: 447.
[34] Hu D, Cheng Z, Zhu J, Zhu X. Polymer, 2005, 46: 7563.
[35] Ishizu K, Murakami T, Takano S. J. Colloid Interf. Sci., 2008, 322: 59.
[36] Yang J H, Choi S H. J. Appl. Polym. Sci., 2012, 127: 4122.
[37] Matrab T, ChancolonJ, L'hermite M M, Rouzaud J N, Deniau G, Boudou J P, Chehimi M M, Delamar M. Colloid. Surface A, 2006, 287: 217.
[38] Bae I, Park J, Choi S. Polym. Int., 2011, 60: 833.
[39] Yang J, Choi S. J. Appl. Polym. Sci., 2011, 122: 3016.
[40] Ikai T, Yamamoto C, Kamigaito M, Okamoto Y. Chem. Lett., 2006, 35: 1250.
[41] Ikai T, Yamamoto C, Kamigaito M, Okamotoc Y. J. Chromatogr. B, 2008, 875: 2.
[42] Ikai T, Yamamoto C, Kamigaito M, Okamoto Y. J. Chromatogr. A, 2007, 1157: 151.
[43] Tang S, Ikai T, Tsuji M, Okamoto Y. Chirality, 2010, 22: 165.
[44] Li J Q, Ikai T, Okamoto Y. J. Sep. Sci., 2009, 32: 2885.
[45] Sugiura Y, Yamamoto C, Ikai T, Kamigaito M, Okamoto Y. Polym. J., 2010, 42: 31.
[46] Shen J, Ikai T, Okamoto Y. J. Chromatogr. A, 2010, 1217: 1041.
[47] Tang S, Ikai T, Tsuji M, Okamoto Y. J. Sep. Sci., 2010, 33: 1255.
[48] Qu H T, Li J Q, Wu G S, Shen J, Shen X, Okamoto Y. J. Sep. Sci., 2011, 34: 536.
[49] Sanchez C, Ribot F. New J. Chem., 1994, 18: 1007.
[50] Schottner G. Chem. Mater., 2001, 13: 3422.
[51] Avnir D, Coradin T, Lev O, Livage J. J. Mater. Chem., 2006, 16: 1013.
[52] Fidalgo A, Ciriminna R, Ilharco L M, Pagliaro M. Chem. Mater., 2005, 17: 6686.
[53] Rebbin V, Schmidt R, Froba M. Angew. Chem. Int. Edit., 2006, 45: 5210.
[54] Zhong H, Zhu G, Yang J, Wang P, Yang Q. Microporous Mesoporous Mat., 2007, 100: 259.
[55] Inagaki S, Guan S, Ohsuna T, Terasaki O. Nature, 2002, 416: 304.
[56] Kapoor M P, Inagaki S. Chem. Lett., 2004, 33: 88.
[57] Kapoor M P, Yang Q, Inagaki S. Chem. Mater., 2004, 16: 1209.
[58] Wahab M, Imae I, Kawakami Y, Ha C S. Chem. Mater., 2005, 17: 2165.
[59] Camarota B, Onida B, Goto Y, Inagaki S, Garrone E. Langmuir, 2007, 23: 13164.
[60] Cho E B, Kim D, Jaroniec M. Langmuir, 2007, 23: 11844.
[61] Ikai T, Muraki R, Yamamoto C, Kamigaito M, Okamoto Y. Chem. Lett., 2004, 33: 1188.
[62] Ikai T, Yamamoto C, Kamigaito M, Okamoto Y. J. Sep. Sci., 2007, 30: 971.
[63] Ikai T, Okamoto Y. Chem. Rev., 2009, 109: 6077.
[64] Ikai T, Yamamoto C, Kamigaito M, Okamoto Y. Chem Asian J., 2008, 3: 1494.
[65] Chen X, Yamamoto C, Okamoto Y. Pure App. Chem., 2007, 79: 1561.
[66] Okamoto Y, Ikai T. Chem. Soc. Rev., 2008, 37: 2593.
[67] Kasat R B, Wang N H L, Franses E I. Biomacromolecules, 2007, 8: 1676.
[68] Kasat R B, Wang N H L, Franses E I. J. Chromatogr. A, 2008, 1190: 110.
[69] Tsui H W, Willing J N, Kasat R B, Wang N H L, Franses E I. J. Phys. Chem. B, 2011, 115: 12785.
[70] Scriba G K E. Chiral Separations. Springer, 2013. 1.
[71] Kasat R B, Wee S Y, Loh J X, Wang N H L, Franses E I. J. Chromatogr. B, 2008, 875: 81.
[72] Kasat R B, Franses E I, Wang N H L. Chirality, 2010, 22: 565.
[73] Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F. Analytica Chimica Acta, 2011, 706: 205.
[74] Uccello-Barretta G, Vanni L, Balzano F. J. Chromatogr. A, 2010, 1217: 928.
[75] Friebolin V, Marten S, Albert K. Magn. Reson. Chem., 2010, 48: 111.
[76] Ciogli A, Bicker W, Lindner W. Chirality, 2009, 22: 463.
[77] Yao B, Zhan F, Yu G, Chen Z, Fan W, Zeng X, Zeng Q, Weng W. J. Chromatogr. A, 2009, 1216: 5429.
[78] Zhan F, Yu G, Yao B, Guo X, Liang T, Yu M, Zeng Q, Weng W. J. Chromatogr. A, 2011, 1217: 4278.
[79] Aranyi A, Ilisz I, Pataj Z, Szatmâri I, Fülöp F, Armstrong D W, Péter A. Chirality, 2011, 23: 549.
[80] Cirilli R, Alcaro S, Fioravanti R, Secci D, Fiore S, La Torre F, Ortuso F. J. Chromatogr. A, 2009, 1216: 4673.
[81] Francotte E R. J. Chromatogr. A, 2001, 906: 379.
[82] Bao Z, Su B, Xing H, Yang Y, Ren Q. J. Sep. Sci., 2010, 33: 3256.
[83] Su B, Bao Z, Xing H, Yang Y, Ren Q. J. Chromatogr. A, 2009, 1216: 5140.
[84] Ribeiro A E, Gomes P S, Pais L S, Rodrigues A E. Chirality, 2011, 23: 602.
[85] Ribeiro A E, Gomes P S, Pais L S, Rodrigues A E. Sep. Sci. Technol., 2011, 46: 1726.
[86] Goncalves C V, Carpes M J S, Correia C R D, Santana C C. Biochem. Eng. J., 2008, 40: 526.
[87] Zabka M, Minceva M, Gomes P S, Rodrigues A E. Sep. Sci. Technol., 2008, 43: 727.
[88] Francotté E, Leutert T, La Vecchia L, Ossola F, Richert P, Schmidt A. Chirality, 2002, 14: 313.
[89] Acetti D, Langel C, Brenna E, Fuganti C, Mazzotti M. J. Chromatogr. A, 2010, 1217: 2840.
[90] Miller L. J. Chromatogr. A, 2012, 1250: 250.
[91] Guiochon G, Tarafder A. J. Chromatogr. A, 2011, 1218: 1037.
[92] Yan T Q, Orihuela C, Swanson D. Chirality, 2008, 20: 139.
[93] Qian-Cutrone J, Dasgupta B, Kozlowski E S, Dalterio R, Wang-Iverson D, Vrudhula V M. J. Pharm. Biomed. Anal., 2008, 48: 1120.
[94] Yan T Q, Orihuela C, Preston J P, Xia F. Chirality, 2010, 22: 922.
[95] Gahm K H, Tan H, Liu J, Barnhart W, Eschelbach J, Notari S, Thomas S, Semin D, Cheetham J. J. Pharm. Biomed. Anal., 2008, 46: 831.
[96] Rajendran A. Curr. Opin. Chem. Eng., 2013, 2: 263.
[97] Kaemmerer H, Horvath Z, Lee J W, Kaspereit M, Arnell R, Hedberg M, Herschend B, Jones M J, Larson K, Lorenz H, Seidel-Morgensten A. Org. Process Res. Dev., 2012, 16: 331.
[98] Langermann J, Kaspereit M, Shakeri M, Lorenz H, Hedberg M, Jones M J, Larson K, Herschend B, Arnell R, Temmel E, Bäckvall J E, Kienle A, Seidel-Morgenstern A. Org. Process Res. Dev., 2012, 16: 343.
[99] Chen J, Duan R, Chen W, Zhang J, Luo X G, Li J, Bai Z W. Curr. Anal. Chem., 2013, 9: 128.
[100] Tamura K, Sam N S M, Ikai T, Okamoto Y, Yashima E. Bull. Chem. Soc. Jpn., 2011, 84: 741.
[101] Han Y, Zhou Z, Wu H, Nie H, Lei R, Bai Y, Liu H. J. Chromatogr. A, 2012, 1235: 125.
[102] [KG*2]Kasprzyk-Hordern B. Chem. Soc. Rev., 2010, 39: 4466.

[1] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[2] 刘传富,张爱萍,李维英,孙润仓. 纤维素在新型绿色溶剂离子液体中的溶解及其应用*[J]. 化学进展, 2009, 21(09): 1800-1806.
[3] 高永峰,袁金颖,隋晓锋,周密,蔡志楠. 纤维素及其衍生物的高压静电纺丝*[J]. 化学进展, 2009, 21(0708): 1553-1559.
[4] 李莉,字敏,任朝兴,袁黎明. 气相色谱手性固定相研究进展*[J]. 化学进展, 2007, 19(0203): 393-403.
[5] 何永祝,庞浩,廖兵. 纤维素衍生物手性固定相研究进展[J]. 化学进展, 2006, 18(0708): 957-965.
[6] 黄勇. 纤维素及其衍生物液晶研究新进展[J]. 化学进展, 1997, 9(02): 209-.