English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1509-1523 DOI: 10.7536/PC220347 前一篇   后一篇

• 综述 •

离子液体的凝聚态化学研究

刘亚伟, 张晓春, 董坤, 张锁江*()   

  1. 离子液体清洁过程北京市重点实验室 中国科学院绿色过程与工程重点实验室 多相复杂系统国家重点实验室 中国科学院过程工程研究所 北京 100190
  • 收稿日期:2022-04-01 修回日期:2022-05-06 出版日期:2022-07-24 发布日期:2022-06-24
  • 通讯作者: 张锁江
  • 基金资助:
    国家自然科学基金项目(21978293); 国家自然科学基金项目(21878296); 北京市自然科学基金项目(2202051)

Research of Condensed Matter Chemistry on Ionic Liquids

Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang()   

  1. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences,Beijing 100190, China
  • Received:2022-04-01 Revised:2022-05-06 Online:2022-07-24 Published:2022-06-24
  • Contact: Suojiang Zhang
  • Supported by:
    National Natural Science Foundation of China(21978293); National Natural Science Foundation of China(21878296); Beijing Municipal Natural Science Foundation(2202051)

离子液体是可以替代传统溶剂实现高效、低碳、清洁、循环新过程新技术的新型溶剂,在完成“双碳”目标中具有重要的应用价值。同时,离子液体是一种典型的“软凝聚态物质(软物质)”,对它的认识和应用依赖于对其内部多尺度微观结构的研究,这需要以“凝聚态化学”的思想作为未来的研究方向,即对离子液体体系的组成、结构、性质、功能及它们之间的内在关系进行多层次的研究,进而实现对实际应用体系中传递过程和反应过程的调控。在本文中,我们以“凝聚态化学”的视角简要综述了对离子液体的研究。首先介绍了离子液体的化学结构和物理性质,指出理解离子液体性质的变化必须要研究其内部的结构。然后,我们介绍了离子液体从分子层面到纳微尺度的结构,包括离子对、氢键、氢键网络、团簇、界面结构和纳米限域结构。最后,我们对离子液体“凝聚态化学”研究的未来进行了展望。

Ionic liquids are new solvents that can replace traditional solvents to achieve efficient, low-carbon, clean, recycling, novel processes and technologies, and have important application values in completing the “double carbon” goal. Meanwhile, ionic liquids are a kind of typical “soft condensed matter (soft matter)”, and their fundamental understandings and applications strongly depend on the study of their inner multi-scale microstructures, which requires the idea of “condensed matter chemistry” as the future research direction, that is, performing multi-level studies on the composition, structures, properties, functions and their relationships, and thus to regulate the transport and reaction processes in the real application systems. In this paper, we briefly review the research on ionic liquids from the perspective of “condensed matter chemistry”. At first, we introduce the chemical structures and physicochemical properties of ionic liquids, pointing out that it is necessary to study their inner structures to understand the changes in these properties. We then introduce the structures of ionic liquids from the molecular level to the nano-/micro-scale, including ion pairs, hydrogen bonds, hydrogen bond networks, clusters, interfacial structures, and nano-confined structures. Finally, the future of “condensed matter chemistry” research on ionic liquids is discussed.

Contents

1 Introduction

2 Chemical structure and physicochemical properties of ionic liquids

3 Ion pairs

4 Hydrogen bonds and Hydrogen bond networks

5 Clusters of ionic liquids

6 Interfacial ionic liquid

7 Nano-confined structures

8 Conclusion and outlook

()
图1 典型离子液体阳离子和阴离子的化学结构,R代表烷基链,亦可被其他基团取代,如烯烃、卤素等
Fig. 1 The chemical structure of cations and anions of typical ionic liquids. R stands for alkyl chains which can also be replaced by other groups, such as olefins, halogens, etc.
图2 阳离子-阴离子对的 (a) 形成, (b) 稳定和 (c) 解离示意图[62]
Fig. 2 Schematic diagram of (a) formation, (b) stabilization and (c) dissociation of cationic-anion pairs[62]. Copyright 2020 American Chemical Society.
图3 离子液体中各种类型的氢键[80]
Fig. 3 Various types of hydrogen bonds in ionic liquids[80]. Copyright 2022 American Chemical Society
图4 Z键和氢键网络。(a) 离子液体晶体中的锯齿状结构[80];(b) [C2mim][BF4]中的氢键网络[75]
Fig. 4 Z bonds and hydrogen bond network. (a) The zigzag configurations in different crystal ionic liquids[80]. Copyright 2022 American Chemical Society. (b) Hydrogen bond networks in [C2mim][BF4][75]. Copyright 2012 American Chemical Society
图5 离子液体团簇。(a) 具有不同长度烷基链的咪唑类离子液体的结构,红色和绿色分别表述离子液体极性和非极性聚集区域[87];(b) 不同含水量的[C8mim][NO3]水溶液的结构, x H 2 O为水分子的摩尔分数,黄色和红色分别表述极性和非极性聚集区域,蓝色为水[93]。(c) [C12mim][Br]在水溶液中形成囊泡的过程, t为时间,绿色为[C12mim]+离子,品红色为水[94]
Fig. 5 Clusters of ionic liquid system. (a) Structures of imidazole ionic liquids with different alkyl chains, red and green represent polar and non-polar aggregation regions of ionic liquid, respectively[87]. Copyright 2006 American Chemical Society. (b) Structures of [C8mim][NO3] aqueous solutions with different water content, x H 2 O is the molar fraction of water molecules, yellow and red represent polar and non-polar aggregation regions, respectively, and blue is water[93]. Copyright 2007 American Chemical Society. (c) The formation process of [C12mim][Br] vesicle in the aqueous solution, t is time, green is [C12mim]+ ion, magenta is water[94]. Copyright 2016 American Chemical Society
图6 不同浓度[C12mim][Br]在水溶液中团簇结构的透射电子显微镜图和分子模拟快照[95,96]
Fig. 6 TEM images and molecular simulation snapshots for clusters of [C12mim][Br] in aqueous solutions with different concentrations[95,96]. Copyright 2013 Royal Society of Chemistry. Copyright 2020 Elsevier
图7 离子液体的气-液/固-液界面。(a) 真空中具有不同长度烷基链的[Cnmim][NO3]层密度分布及模拟快照[86,103];(b) 带负电云母表面[Cnmim][TFSI]的密度分布和表面附近[C8mim][TFSI]的模拟快照[104]
Fig. 7 Gas-liquid/solid-liquid interfaces of ionic liquids. (a) The density profiles and a typical snapshot for slabs of [Cnmim][NO3] with different alkyl chains in the vacuum[86,103]. Copyright 2007 American Chemical Society. Copyright 2008 American Chemical Society. (b) The density profiles of [Cnmim][TFSI] on negatively charged mica surface and the snapshots of [C8mim][TFSI] near the surface[104]. Copyright 2012 Wiley
图8 电极表面的离子液体结构和金属表面超薄离子液体膜。(a) 离子液体双电层结构随电极表面负电量的变化及过程中界面阳离子有序结构的变化[113,115]。(b) 不同金属表面超薄离子液体膜的有序/无序结构[117⇓⇓~120]
Fig. 8 Ionic liquids on electrodes and ultra-thin ionic liquids films on metal surfaces. (a) The changes of the ionic liquid EDL structures with the number of negative charges on the electrodes and the changes of ordered structures of interfacial cations[113,115]. Copyright 2011 American Physical Society. Copyright 2015 Wiley. (b) Ordered/disordered structures of ultra-thin ionic liquid films on different metal surfaces[117⇓⇓~120]. Copyright 2020 Taylor & Francis. Copyright 2013 Beilstein Institute. Copyright 2020 American Chemical Society. Copyright 2020 American Chemical Society
图9 纳米限域空间内的离子液体。(a) 不同直径( D)单壁纳米管中的[Ch][ZnCl3][124]。(b) 不同直径的多壁碳纳米管中的[C4mim][PF6][125]。(c) 不同间距( H)的石墨烯片层中的[C2mim][TFSI][126]。(d) 两种MOF材料中的[C2mim][SCN],上图黑色区域显示孔道的连通性[127]
Fig. 9 Ionic liquids in different nano-confined spaces. (a) [Ch][ZnCl3] confined in single-wall nanotubes of different diameters ( D)[124]. Copyright 2009 American Chemical Society. (b) [C4mim][PF6] confined in multi-wall carbon nanotubes of different diameters[125]. Copyright 2010 American Chemical Society. (c) [C2mim] [TFSI] confined two graphene sheets of different spacing distances[126]. Copyright 2019 Royal Society of Chemistry. (d) [C2mim] [SCN] confined in the two MOFs. The black areas in top figures show the connectivity of nanochannels in the MOFs[127]. Copyright 2018 American Chemical Society
图10 限域离子液体的氢键。(a) [C4mim][PF6]在 D = 1.94 n m碳纳米管中平均氢键随温度的变[128]。(b) [C2mim][TFSI]在石墨烯片层中平均氢键随间距的变化[126]
Fig. 10 Hydrogen bonds in nano-confined ionic liquids. (a) The average number of hydrogen bonds as a function of the temperature in [C4mim][PF6] confined in the carbon nanotube of D = 1.94 nm[128]. Copyright 2011 American Chemical Society. (b) The average number of hydrogen bonds as a function of the spacing distance in [C2mim][TFSI] confined in two graphene sheets[126]. Copyright 2019 Royal Society of Chemistry
[1]
Earle M J, Seddon K R. Pure Appl. Chem., 2000, 72: 1391.

doi: 10.1351/pac200072071391     URL    
[2]
Rogers R D, Seddon KR. Science, 2003, 302: 792.

pmid: 14593156
[3]
Rosen B A, Salehi-Khojin A, Thorson M R, Zhu W, Whipple D T, Kenis P J A, Masel R I. Science, 2011, 334: 643.

doi: 10.1126/science.1209786     URL    
[4]
Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A. Science, 2016, 353: 467.

doi: 10.1126/science.aaf4767     URL    
[5]
Li F, Mocci F, Zhang X, Ji X, Laaksonen A. Chinese J. Chem. Eng., 2021, 31: 75.

doi: 10.1016/j.cjche.2020.10.029     URL    
[6]
Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat. Mater., 2009, 8: 621.

doi: 10.1038/nmat2448     URL    
[7]
Lian C, Liu H, Li C, Wu J. AIChE J., 2019, 65: 804.

doi: 10.1002/aic.16467     URL    
[8]
Wang X, Salari M, Jiang D, Chapman Varela J, Anasori B, Wesolowski D J, Dai S, Grinstaff M W, Gogotsi Y. Nat. Rev. Mater., 2020, 5: 787.

doi: 10.1038/s41578-020-0218-9     URL    
[9]
De Gennes P G. Angew. Chemie Int. Ed., 1992, 31: 842.

doi: 10.1002/anie.199208421     URL    
[10]
De Gennes P G. Soft Matter, 2005, 1: 16.

doi: 10.1039/b419223k     URL    
[11]
Dong K, Liu X, Dong H, Zhang X, Zhang S. Chem. Rev., 2017, 117: 6636.

doi: 10.1021/acs.chemrev.6b00776     pmid: 28488441
[12]
Anderson P W. Science, 1972, 177: 393.

pmid: 17796623
[13]
Service R F. Science, 2012, 335: 1167.

doi: 10.1126/science.335.6073.1167     pmid: 22403368
[14]
Xu R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155     URL    
[15]
Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2019, 6: 191.

doi: 10.1093/nsr/nwy128     URL    
[16]
Zhen M, Yu J, Dai S. Adv. Mater., 2010, 22: 261.

doi: 10.1002/adma.200900603     URL    
[17]
Huang J F, Luo H, Dai S. J. Electrochem. Soc., 2006, 153: J9.

doi: 10.1149/1.2150161     URL    
[18]
Luo H. ECS Proc. Vol., 2004, 2004-24: 340.
[19]
He Z, Alexandridis P. Phys. Chem. Chem. Phys., 2015, 17: 18238.

doi: 10.1039/C5CP01620G     URL    
[20]
Maton C, De Vos N, Stevens C V. Chem. Soc. Rev., 2013, 42: 5963.

doi: 10.1039/c3cs60071h     URL    
[21]
Aparicio S, Atilhan M, Karadas F. Ind. Eng. Chem. Res., 2010, 49: 9580.

doi: 10.1021/ie101441s     URL    
[22]
Holbrey J D, Seddon K R. J. Chem. Soc. Dalt. Trans., 1999: 2133.
[23]
Ohno H. Solid State Ionics, 2002, 154/155: 303.

doi: 10.1016/S0167-2738(02)00526-X     URL    
[24]
BonẐte P, Dias A P, Papageorgiou N, Kalyanasundaram K, Grätzel M. Inorg. Chem., 1996, 35: 1168.

doi: 10.1021/ic951325x     URL    
[25]
Xu W, Cooper E I, Angell C A. J. Phys. Chem. B, 2003, 107: 6170.

doi: 10.1021/jp0275894     URL    
[26]
Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Green Chem., 2001, 3: 156.

doi: 10.1039/b103275p     URL    
[27]
Crosthwaite J M, Muldoon M J, Dixon J K, Anderson J L, Brennecke J F. J. Chem. Thermodyn., 2005, 37: 559.

doi: 10.1016/j.jct.2005.03.013     URL    
[28]
Radhakrishnan R, Gubbins K E, Sliwinska-Bartkowiak M. J. Chem. Phys., 2002, 116: 1147.

doi: 10.1063/1.1426412     URL    
[29]
Chen S, Wu G, Sha M, Huang S. J. Am. Chem. Soc., 2007, 129: 2416.

doi: 10.1021/ja067972c     URL    
[30]
Kanakubo M, Hiejima Y, Minami K, Aizawa T, Nanjo H. Chem. Commun., 2006: 1828.
[31]
Yonekura R, Grinstaff M W. Phys. Chem. Chem. Phys., 2014, 16: 20608.

doi: 10.1039/c4cp02594f     pmid: 25155840
[32]
Okoturo O O, VanderNoot T J. J. Electroanal. Chem., 2004, 568: 167.

doi: 10.1016/j.jelechem.2003.12.050     URL    
[33]
Feng G, Chen M, Bi S, Goodwin Z A H, Postnikov E B, Brilliantov N, Urbakh M, Kornyshev A A. Phys. Rev. X, 2019, 9: 21024.
[34]
Matsumoto R, Thompson M W, Cummings PT. J. Phys. Chem. B, 2019.
[35]
Dimeglio J L, Rosenthal J. J. Am. Chem. Soc., 2013, 135: 8798.

doi: 10.1021/ja4033549     URL    
[36]
Kalhoff J, Eshetu G G, Bresser D, Passerini S. ChemSusChem, 2015, 8: 2154.

doi: 10.1002/cssc.201500284     pmid: 26075350
[37]
Taige M A, Hilbert D, Schubert T J S. Zeitschrift fur Phys. Chemie, 2012, 226: 129.

doi: 10.1524/zpch.2012.0161     URL    
[38]
Zhou Y, Ghaffari M, Lin M, Xu H, Xie H, Koo CM, Zhang QM. RSC Adv., 2015, 5: 71699.

doi: 10.1039/C5RA14016A     URL    
[39]
Berrod Q, Ferdeghini F, Judeinstein P, Genevaz N, Ramos R, Fournier A, Dijon J, Ollivier J, Rols S, Yu D, Mole R A, Zanotti J-M. Nanoscale, 2016, 8: 7845.

doi: 10.1039/c6nr01445c     pmid: 27021047
[40]
Earle M J, Esperança J M S S, Gilea M A, Lopes J N C, Rebelo L P N, Magee J W, Seddon K R, Widegren J A. Nature, 2006, 439: 831.

doi: 10.1038/nature04451     URL    
[41]
Han X, Armstrong D W. Acc. Chem. Res., 2007, 40: 1079.

doi: 10.1021/ar700044y     URL    
[42]
Kong L, Huang W, Wang X. J. Phys. D. Appl. Phys., 2016, 49: 225301.

doi: 10.1088/0022-3727/49/22/225301     URL    
[43]
Steinrück H P, Wasserscheid P. Catal. Letters, 2015, 145: 380.

doi: 10.1007/s10562-014-1435-x     URL    
[44]
Zeng S, Zhang X, Bai L, Zhang X, Wang H, Wang J, Bao D, Li M, Liu X, Zhang S. Chem. Rev., 2017, 117: 9625.

doi: 10.1021/acs.chemrev.7b00072     URL    
[45]
Wang S, Mahurin S M, Dai S, Jiang D E. ACS Appl. Mater. Interfaces, 2021, 13: 17511.

doi: 10.1021/acsami.1c01242     URL    
[46]
Navalpotro P, Neves C M S S, Palma J, Freire M G, Coutinho J A P, Marcilla R. Adv. Sci., 2018, 5: 1.
[47]
Berthod A, Ruiz-Ángel MJ, Carda-Broch S. J. Chromatogr. A, 2018, 1559: 2.

doi: S0021-9673(17)31406-1     pmid: 28958758
[48]
Ishii Y, Matubayasi N, Watanabe G, Kato T, Washizu H. Sci. Adv., 2021, 7: eabf0669.

doi: 10.1126/sciadv.abf0669     URL    
[49]
Law G, Watson PR. Langmuir, 2001, 17: 6138.

doi: 10.1021/la010629v     URL    
[50]
Dzyuba S V, Bartsch R A. ChemPhysChem, 2002, 3: 161.

doi: 10.1002/1439-7641(20020215)3:2【-逻*辑*与-】lt;161::AID-CPHC161【-逻*辑*与-】gt;3.0.CO;2-3     URL    
[51]
Hunt P A, Gould I R. J. Phys. Chem. A, 2006, 110: 2269.

doi: 10.1021/jp0547865     URL    
[52]
Hunt P A, Kirchner B, Welton T. Chem. - A Eur. J., 2006, 12: 6762.

doi: 10.1002/chem.200600103     URL    
[53]
Dong K, Zhang S, Wang D, Yao X. J. Phys. Chem. A, 2006, 110: 9775.

pmid: 16884211
[54]
Izgorodina E I. Phys. Chem. Chem. Phys., 2011, 13: 4189.

doi: 10.1039/c0cp02315a     pmid: 21283896
[55]
Izgorodina E I, MacFarlane D R. J. Phys. Chem. B, 2011, 115: 14659.

doi: 10.1021/jp208150b     URL    
[56]
Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M. J. Phys. Chem. B, 2005, 109: 16474.

doi: 10.1021/jp0533628     URL    
[57]
Avent A G, Chaloner P A, Day M P, Seddon K R, Welton T. J. Chem. Soc. Dalt. Trans., 1994: 3405.
[58]
Bhargava B L, Balasubramanian S. J. Chem. Phys., 2007, 127: 114510.

doi: 10.1063/1.2772268     URL    
[59]
Dommert F, Wendler K, Berger R, Delle Site L, Holm C. ChemPhysChem, 2012, 13: 1625.

doi: 10.1002/cphc.201100997     URL    
[60]
Schmidt J, Krekeler C, Dommert F, Zhao Y, Berger R, Site LD, Holm C. J. Phys. Chem. B, 2010, 114: 6150.

doi: 10.1021/jp910771q     URL    
[61]
Doherty B, Zhong X, Gathiaka S, Li B, Acevedo O. J. Chem. Theory Comput., 2017, 13: 6131.

doi: 10.1021/acs.jctc.7b00520     pmid: 29112809
[62]
Nordness O, Brennecke J F. Chem. Rev., 2020, 120: 12873.

doi: 10.1021/acs.chemrev.0c00373     pmid: 33026798
[63]
Weingärtner H, Knocks A, Schrader W, Kaatze U. J. Phys. Chem. A, 2001, 105: 8646.

doi: 10.1021/jp0114586     URL    
[64]
Weingärtner H. Curr. Opin. Colloid Interface Sci., 2013, 18: 183.

doi: 10.1016/j.cocis.2013.04.001     URL    
[65]
Lee A A, Vella D, Perkin S, Goriely A. J. Phys. Chem. Lett., 2015, 6: 159.

doi: 10.1021/jz502250z     URL    
[66]
Lynden-Bell R M. Phys. Chem. Chem. Phys., 2010, 12: 1733.

doi: 10.1039/b916987c     pmid: 20145837
[67]
Del PÓpolo M G, Mullan C L, Holbrey J D, Hardacre C, Ballone P. J. Am. Chem. Soc., 2008, 130: 7032.

doi: 10.1021/ja710841n     URL    
[68]
Fumino K, Wulf A, Ludwig R. Angew. Chem. Int. Ed., 2008, 47: 8731.

doi: 10.1002/anie.200803446     URL    
[69]
Katsyuba S A, Vener M V,., Zvereva E E, Fei Z, Scopelliti R, Laurenczy G, Yan N, Paunescu E, Dyson P J. J. Phys. Chem. B, 2013, 117: 9094.

doi: 10.1021/jp405255w     URL    
[70]
Roth C, Peppel T, Fumino K, Köckerling M, Ludwig R. Angew. Chem. Int. Ed., 2010, 49: 10221.

doi: 10.1002/anie.201004955     URL    
[71]
Santos C S, Murthy N S, Baker G A, Castner E W. J. Chem. Phys., 2011, 134.
[72]
Hardacre C, Holbrey J D, McMath S E J, Bowron D T, Soper A K. J. Chem. Phys., 2003, 118: 273.

doi: 10.1063/1.1523917     URL    
[73]
Köddermann T, Paschek D, Ludwig R. ChemPhysChem, 2007, 8: 2464.

pmid: 17943710
[74]
Ludwig R. Phys. Chem. Chem. Phys., 2008, 10: 4333.

doi: 10.1039/b803572e     pmid: 18633554
[75]
Dong K, Song Y, Liu X, Cheng W, Yao X, Zhang S. J. Phys. Chem. B, 2012, 116: 1007.

doi: 10.1021/jp205435u     URL    
[76]
Meot-Ner Mautner M. Chemical Reviews, 2012, 112: PR22.

doi: 10.1021/cr200430n     URL    
[77]
Fumino K, Wulf A, Ludwig R. Phys. Chem. Chem. Phys., 2009, 11: 8790.

doi: 10.1039/b905634c     URL    
[78]
Fumino K, Reimann S, Ludwig R. Phys. Chem. Chem. Phys., 2014, 16: 21903.

doi: 10.1039/C4CP01476F     URL    
[79]
Hunt P A, Ashworth C R, Matthews R P. Chem. Soc. Rev., 2015, 44: 1257.

doi: 10.1039/C4CS00278D     URL    
[80]
Wang Y, He H, Wang C, Lu Y, Dong K, Huo F, Zhang S. JACS Au, 2022, 2: 543.

doi: 10.1021/jacsau.1c00538     URL    
[81]
Kelley S P, Smetana V, Mudring A V, Rogers R D. J. Coord. Chem., 2021, 74: 117.

doi: 10.1080/00958972.2021.1876851     URL    
[82]
Zhao H, Heintz R A, Dunbar K R, Rogers RD. J. Am. Chem. Soc., 1996, 118: 12844.

doi: 10.1021/ja962504w     URL    
[83]
Mukai T, Nishikawa K. Chem. Lett., 2009, 38: 402.

doi: 10.1246/cl.2009.402     URL    
[84]
Dong K, Zhang S, Wang Q. Sci. China Chem., 2015, 58: 495.

doi: 10.1007/s11426-014-5147-2     URL    
[85]
Brela M Z, Kubisiak P, Eilmes A. J. Phys. Chem. B, 2018, 122: 9527.

doi: 10.1021/acs.jpcb.8b05839     URL    
[86]
Wang Y, Jiang W, Yan T, Voth GA. Acc. Chem. Res., 2007, 40: 1193.

doi: 10.1021/ar700160p     URL    
[87]
Canongia Lopes J N A, Pádua A A H. J. Phys. Chem. B, 2006, 110: 3330.

doi: 10.1021/jp056006y     URL    
[88]
Xiao D, Rajian J R, Hines L G, Li S, Bartsch R A, Quitevis EL. J. Phys. Chem. B, 2008, 112: 13316.

doi: 10.1021/jp804417t     URL    
[89]
Fukuda S, Takeuchi M, Fujii K, Kanzaki R, Takamuku T, Chiba K, Yamamoto H, Umebayashi Y, Ishiguro S. J. Mol. Liq., 2008, 143: 2.

doi: 10.1016/j.molliq.2008.02.012     URL    
[90]
Schulz P S, Schneiders K, Wasserscheid P. Tetrahedron Asymmetry, 2009, 20: 2479.

doi: 10.1016/j.tetasy.2009.10.010     URL    
[91]
Kennedy D F, Drummondt C J. J. Phys. Chem. B, 2009, 113: 5690.

doi: 10.1021/jp900814y     URL    
[92]
Bernardes C E S, Minas Da Piedade M E, Canongia Lopes J N. J. Phys. Chem. B, 2011, 115: 2067.

doi: 10.1021/jp1113202     URL    
[93]
Jiang W, Wang Y, Voth G A. J. Phys. Chem. B, 2007, 111: 4812.

doi: 10.1021/jp067142l     URL    
[94]
Liu X, Zhou G, Huo F, Wang J, Zhang S. J. Phys. Chem. C, 2016, 120: 659.

doi: 10.1021/acs.jpcc.5b08977     URL    
[95]
Liu X, Yao X, Wang Y, Zhang S. Particuology, 2020, 48: 55.

doi: 10.1016/j.partic.2018.08.003     URL    
[96]
Wang H, Zhang L, Wang J, Li Z, Zhang S. Chem. Commun., 2013, 49: 5222.

doi: 10.1039/c3cc41908h     URL    
[97]
Takamuku T, Honda Y, Fujii K, Kittaka S. Anal. Sci., 2008, 24: 1285.

doi: 10.2116/analsci.24.1285     URL    
[98]
Zhao Y, Chen X, Wang X. J. Phys. Chem. B, 2009, 113: 2024.

doi: 10.1021/jp810613c     URL    
[99]
Zhang J, Han B, Li J, Zhao Y, Yang G. Angew. Chemie - Int. Ed., 2011, 50: 9911.

doi: 10.1002/anie.201103956     URL    
[100]
Chandran A, Prakash K, Senapati S. J. Am. Chem. Soc., 2010, 132: 12511.

doi: 10.1021/ja1055005     pmid: 20707337
[101]
Su Q, Qi Y, Yao X, Cheng W, Dong L, Chen S, Zhang S. Green Chem., 2018, 20: 3232.

doi: 10.1039/C8GC01038B     URL    
[102]
Bhargava B L, Klein M L. Mol. Phys., 2009, 107: 393.

doi: 10.1080/00268970902810283     URL    
[103]
Jiang W, Wang Y, Yan T, Voth G A. J. Phys. Chem. C, 2008, 112: 1132.

doi: 10.1021/jp077643m     URL    
[104]
Payal R S, Balasubramanian S. ChemPhysChem, 2012, 13: 1764.

doi: 10.1002/cphc.201100871     URL    
[105]
Sloutskin E, Ocko B M, Tamam L, Kuzmenko I, Gog T, Deutsch M. J. Am. Chem. Soc., 2005, 127: 7796.

pmid: 15913369
[106]
Bhargava B L, Balasubramanian S. J. Am. Chem. Soc., 2006, 128: 10073.

pmid: 16881635
[107]
Qian C, Ding B, Wu Z, Ding W, Huo F, He H, Wei N, Wang Y, Zhang X. Ind. Eng. Chem. Res., 2019, 58: 20109.

doi: 10.1021/acs.iecr.9b04480     URL    
[108]
Hayes R, Warr G G, Atkin R. Phys. Chem. Chem. Phys., 2010, 12: 1709.

doi: 10.1039/b920393a     URL    
[109]
Elbourne A, Voïtchovsky K, Warr GG, Atkin R. Chem. Sci., 2015, 6: 527.

doi: 10.1039/c4sc02727b     pmid: 28936307
[110]
Segura J J, Elbourne A, Wanless E J, Warr G G, Voïtchovsky K, Atkin R. Phys. Chem. Chem. Phys., 2013, 15: 3320.

doi: 10.1039/c3cp44163f     pmid: 23361257
[111]
Black J M, Baris Okatan M, Feng G, Cummings P T, Kalinin S V,., Balke N. Nano Energy, 2015, 15: 737.

doi: 10.1016/j.nanoen.2015.05.037     URL    
[112]
Lauw Y, Horne M D, Rodopoulos T, Lockett V, Akgun B, Hamilton W A, Nelson A R J. Langmuir, 2012, 28: 7374.

doi: 10.1021/la3005757     URL    
[113]
Bazant M Z, Storey B D, Kornyshev A A. Phys. Rev. Lett., 2011, 106: 6.
[114]
Elbourne A, McDonald S, Voïchovsky K, Endres F, Warr G G, Atkin R. ACS Nano, 2015, 9: 7608.

doi: 10.1021/acsnano.5b02921     pmid: 26051040
[115]
Wen R, Rahn B, Magnussen O M. Angew. Chemie - Int. Ed., 2015, 54: 6062.

doi: 10.1002/anie.201501715     URL    
[116]
Fedorov M V, Kornyshev A A. Electrochim. Acta, 2008, 53: 6835.

doi: 10.1016/j.electacta.2008.02.065     URL    
[117]
Lexow M, Maier F, Steinrück H P. Adv. Phys. X, 2020, 5: 1761266.
[118]
Uhl B, Buchner F, Alwast D, Wagner N, Jürgen Behm R. Beilstein J. Nanotechnol., 2013, 4: 903.

doi: 10.3762/bjnano.4.102     URL    
[119]
Buchner F, Bozorgchenani M, Uhl B, Farkhondeh H, Bansmann J, Behm R J. J. Phys. Chem. C, 2015, 119: 16649.

doi: 10.1021/acs.jpcc.5b03765     URL    
[120]
Meusel M, Lexow M, Gezmis A, Schötz S, Wagner M, Bayer A, Maier F, Steinrück HP. ACS Nano, 2020, 14: 9000.

doi: 10.1021/acsnano.0c03841     URL    
[121]
Zhang S, Lv Y, He H, Huo F, Wang Y, Zhang X, Dong K. The Chinese Journal of Process Engineering, 2017, 17: 883.
[122]
Zhang S, Wang Y, He H, Huo F, Lu Y, Zhang X, Dong K. Green Energy Environ., 2017, 2: 329.

doi: 10.1016/j.gee.2017.09.001     URL    
[123]
Zhang S, Zhang J, Zhang Y, Deng Y. Chem. Rev., 2017, 117: 6755.

doi: 10.1021/acs.chemrev.6b00509     URL    
[124]
Chen S, Kobayashi K, Miyata Y, Imazu N, Saito T, Kitaura R, Shinohara H. J. Am. Chem. Soc., 2009, 131: 14850.

doi: 10.1021/ja904283d     URL    
[125]
Singh R, Monk J, Hung F R. J. Phys. Chem. C, 2010, 114: 15478.

doi: 10.1021/jp1058534     URL    
[126]
Wang C, Wang Y, Lu Y, He H, Huo F, Dong K, Wei N, Zhang S. Phys. Chem. Chem. Phys., 2019, 21: 12767.

doi: 10.1039/C9CP00732F     URL    
[127]
Vicent-Luna J M, GutiÉrrez-Sevillano J J, Hamad S, Anta J, Calero S. ACS Appl. Mater. Interfaces, 2018, 10: 29694.

doi: 10.1021/acsami.8b11842     URL    
[128]
Dou Q, Sha M, Fu H, Wu G. J. Phys. Chem. C, 2011, 115: 18946.

doi: 10.1021/jp201447g     URL    
[129]
Wang Y, Huo F, He H, Zhang S. Phys. Chem. Chem. Phys., 2018, 20: 17773.

doi: 10.1039/C8CP02408A     URL    
[130]
Ren W, Tan X, Chen X, Zhang G, Zhao K, Yang W, Jia C, Zhao Y, Smith S C, Zhao C. ACS Catal., 2020, 10: 13171.

doi: 10.1021/acscatal.0c03873     URL    
[131]
Wu N, Ji X, Xie W, Liu C, Feng X, Lu X. Langmuir, 2017, 33: 11719.

doi: 10.1021/acs.langmuir.7b02204     URL    
[132]
Chen D, Ying W, Guo Y, Ying Y, Peng X. ACS Appl. Mater. Interfaces, 2017, 9: 44251.

doi: 10.1021/acsami.7b15762     URL    
[133]
Chen D, Wang W, Ying W, Guo Y, Meng D, Yan Y, Yan R, Peng X. J. Mater. Chem. A, 2018, 6: 16566.

doi: 10.1039/C8TA04753G     URL    
[134]
Ying W, Cai J, Zhou K, Chen D, Ying Y, Guo Y, Kong X, Xu Z, Peng X. ACS Nano, 2018, 12: 5385.

doi: 10.1021/acsnano.8b00367     pmid: 29874039
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[3] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[4] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[5] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[6] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[7] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[10] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[13] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[14] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[15] 袁思成, 林丹, 张曦光, 汪怀远. SLIPS功能表面的制备及应用[J]. 化学进展, 2021, 33(1): 87-96.
阅读次数
全文


摘要

离子液体的凝聚态化学研究