English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 87-96 DOI: 10.7536/PC200446 前一篇   后一篇

• 综述 •

SLIPS功能表面的制备及应用

袁思成1, 林丹1, 张曦光1, 汪怀远1,*()   

  1. 1 天津大学化工学院 化学工程联合国家重点实验室 天津 300350
  • 收稿日期:2020-04-23 修回日期:2020-07-03 出版日期:2021-01-24 发布日期:2020-10-15
  • 通讯作者: 汪怀远
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家杰出青年科学基金项目(51925403); 国家自然科学基金重大研究计划项目(91934302); 国家自然科学基金项目(21676052); 国家自然科学基金项目(21606042)

Fabrication and Application of Slippery Liquid Infused Porous Functional Surface

Sicheng Yuan1, Dan Lin1, Xiguang Zhang1, Huaiyuan Wang1,*()   

  1. 1 State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University,Tianjin 300350, China
  • Received:2020-04-23 Revised:2020-07-03 Online:2021-01-24 Published:2020-10-15
  • Contact: Huaiyuan Wang
  • Supported by:
    the National Science Foundation for Distinguished Young Scholars of China(51925403); Major Research plan of the National Natural Science Foundation of China(91934302); and the National Natural Science Foundation of China(21676052); and the National Natural Science Foundation of China(21606042)

仿猪笼草唇叶结构的滑移功能表面(SLIPS)是通过将全氟液体、硅油或离子液体等润滑油注入到提前构建好的含有多孔或分级粗糙结构基底制备得到。由于毛细作用力和范德华力,动态油膜能够稳定锁定在粗糙基底中。所得到SLIPS的化学均相表面和特殊的液-固结合界使其展现出优异的液体排斥性、自修复性和高压稳定性等,并在近十年内成为表界面领域内研究热点。其应用领域主要包含防冻、防腐、防海洋污染和实现高透明性材料等,并在液体运输,太阳能电池表面和深海防污等领域展现出巨大应用前景。本文介绍了近五年来SLIPS主要制备与调控方法,还对其在防覆冰,防海洋生物污染与防菌,防腐和透明性等领域新的研究进展进行了阐述。最后,对滑移表面在未来的制备与应用所面临的挑战进行了展望。

Nepenthes-inspired Slippery Liquid-Infused Porous Surface(SLIPS) is prepared by injecting lubricating oil like perfluorinated liquid, silicone oil or ionic liquid into a pre-constructed substrate that contains porous or hierarchical rough structures. Due to the capillary force and van der Waals force, the dynamic oil film can be stably locked in the rough substrate. SLIPS exhibits excellent liquid repulsion, self-healing properties, high-pressure stability because of chemically homogeneous surface and unique liquid-solid combined interface, and it has become a research focus in the field of surface interfaces in the past decade. Its application fields mainly include anti-icing, anti-corrosion, anti-marine fouling, high transparency materials, etc. Therefore, it exhibits tremendous application prospects in liquid transportation, solar cell surface, deep-sea anti-fouling, etc. After introducing the main methods of constructing the micro/nano structures required by SLIPS, the research progress in the fields of anti-icing, anti-marine pollution and anti-bacteria, anti-corrosion and transparency in the past five years have also been described in detail. Finally, the prospects of SLIPS in future application fields and challenges are envisaged.

Contents

1 Introduction

2 Fabrication methods of SLIPS

2.1 Electrochemical method

2.2 Hydrothermal method

2.3 Spray/Spin/Dip coating

2.4 Lithography

2.5 Other Methods

3 Applications of SLIPS

3.1 Anti-icing and icephobic

3.2 Anti-marine biofouling

3.3 Anti-corrosion

3.4 Transparency

3.5 Other applications

4 Conclusion and outlook

()
图1 (a)在软钢上构建Zn-Ni-Co复合涂层后注油得到SLIPS[16] ;(b)Ti片上通过二次氧化得到孔状结构[18]
Fig. 1 (a)The fabrication of SLIPS via infusing oil into Zn-Ni-Co composite coating on mile steel[16] ;(b)TiO2 porous structure generated by two-step anodization[18]
图2 (a)离子液体注入纳米阵列结构得到的SLIPS对热水的排斥性[27] ;(b)ZnO与PDMS在紫外光照下发生化学键合产生Zn-O-Si键[26]
Fig. 2 (a)The SLIPS fabricated by impregnating hydrophobic ionic liquids into the nanocone-like arrays exhibited hot water repellency[27] ;(b)Zn-O-Si bond formed by chemical bonding between ZnO and PDMS under UV illumination[26]
图3 (a)水热法合成羟基磷灰石纳米线后喷涂得到三维网状结构[29] ;(b)旋涂苯基三乙氧基硅烷溶液至紫外线/臭氧处理的基板上[30]
Fig. 3 (a)The hydroxyapatite nanowire fabricated by hydrothermal method was sprayed to obtain 3D-network structures[29] ;(b)Phenyltriethoxysilane solution was spun coated on UV/O3 treated substrate[30]
图4 (a)在PET上采用全飞秒激光技术构造了大量的突起和孔[31] ;(b)在316L不锈钢上利用纳秒光纤激光构建了规整的微米级阵列[32]
Fig. 4 (a)The construction of abundant protrusions and pores on PET surface by femtosecond laser ablation[31] (b)Hierarchical micro/nano structures were generated on 316L stainless steel with nanosecond laser ablation[32]
图5 (a)SLIPS具有防覆冰和光照除冰的性质[52] ;(b)SLIPS与表面上形成的冰或霜接触时,防冻液会通过孔分泌出来,导致冰或霜融化[53]
Fig. 5 Fig. 5 (a)The properties of anti-icing and de-icing under sunlight of SLIPS[52] ;(b)Antifreeze liquid of SLIPS is secreted through the pores in response to contact with ice or frost forming on the surface, which results in melting of the ice or frost[53]
图6 (a)采用真空浸渍法注油得到的SLIPS[71] ;(b)“三明治”结构的SLIPS具有优异的防腐效果[75]
Fig. 6 Fig. 6 (a)The infused oil layer of SLIPS via vacuum impregnation method[71] ;(b)The‘sandwiched’SLIPS possesses exceptional anti-corrosion property[75]
[1]
Nishimoto S, Bhushan B. RSC Adv., 2013, 3( 3): 671.

doi: 10.1039/C2RA21260A     URL    
[2]
Li X M, Reinhoudt D, Crego-Calama M. Chem. Soc. Rev., 2007, 36( 8): 1350.

doi: 10.1039/b602486f     URL    
[3]
Tong W , Xiong D S . Journal of Inorganic Materials , 2019, 34( 11): 1133.

doi: 10.15541/jim20180591     URL    
佟威, 熊党生. 无机材料学报, 2019, 34( 11): 1133.

doi: 10.15541/jim20180591     URL    
[4]
Jiang W , Yang C , Yuan S J , Liang B . Chemical Industry and Engineering Progress , 2019, 38( 1): 344.
蒋炜, 杨超, 袁绍军, 梁斌. 化工进展, 2019, 38( 1): 344.
[5]
Yong J, Chen F, Yang Q, Huo J, Hou X. Chem. Soc. Rev., 2017, 46( 14): 4168.

doi: 10.1039/C6CS00751A     URL    
[6]
Chu Z, Seeger S. Chem. Soc. Rev., 2014, 43( 8): 2784.

doi: 10.1039/C3CS60415B     URL    
[7]
Sahoo B , Yoon K , Seo J , Lee T . Coatings , 2018, 8( 2): 8020047.
[8]
Sun Y , Guo Z . Nanoscale Horiz ., 2019, 4( 1): 52.

doi: 10.1039/C8NH00223A     URL    
[9]
Su B, Tian Y, Jiang L. J. Am. Chem. Soc., 2016, 138( 6): 1727.

doi: 10.1021/jacs.5b12728     URL    
[10]
Wen L , Tian Y , Jiang L . Angew. Chem. Int. Ed ., 2015, 54( 11): 3387.

doi: 10.1002/anie.201409911     URL    
[11]
Wei C Q , Yan J , Tang H , Zhang Q H , Zhan X L , Chen F Q . Progress in Chemistry , 2016, 28( 1): 9.

doi: 10.7536/PC150748     URL    
韦存茜, 严杰, 唐浩, 张庆华, 詹晓力, 陈丰秋. 化学进展, 2016, 28( 1): 9.

doi: 10.7536/PC150748     URL    
[12]
An G M , Ling S Q , Wang Z W , Luan L , Wu T Z . Progress in Chemistry , 2015, 27( 12): 1705.

doi: 10.7536/PC150630     URL    
安光明, 凌世全, 王智伟, 栾琳, 吴天准. 化学进展, 2015, 27( 12): 1705.

doi: 10.7536/PC150630     URL    
[13]
Wu D Q , Zhang D W , Liu B , Li X G . Surface Technology , 2019, 48( 1): 90.
吴德权, 张达威, 刘贝, 李晓刚. 表面技术, 2019, 48( 1): 90.
[14]
Bauer U , Federle W . Plant Signaling Behav ., 2009, 4( 11): 1019.

doi: 10.4161/psb.4.11.9664     URL    
[15]
Wong T S, Kang S H, Tang S K, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature , 2011, 477( 7365): 443.

doi: 10.1038/nature10447     URL    
[16]
Xiang T, Zhang M, Sadig H R, Li Z, Zhang M, Dong C, Yang L, Chan W, Li C. Chem. Eng. J., 2018, 345: 147.

doi: 10.1016/j.cej.2018.03.137     URL    
[17]
Wang P, Li T, Zhang D. Corros. Sci., 2017, 128: 110.

doi: 10.1016/j.corsci.2017.09.003     URL    
[18]
Xu Y, Liu M. Surf. Coat. Technol., 2016, 307: 332.

doi: 10.1016/j.surfcoat.2016.08.091     URL    
[19]
Huang C, Guo Z. J Bionic Eng. , 2019, 16( 5): 769.

doi: 10.1007/s42235-019-0096-2     URL    
[20]
Zhang J , Gu C , Tu J . ACS Appl. Mater. Interfaces , 2017, 9( 12): 11247.

doi: 10.1021/acsami.7b00972     URL    
[21]
Song F , Wu C , Chen H , Liu Q , Liu J , Chen R , Li R , Wang J . RSC Adv ., 2017, 7( 70): 44239.

doi: 10.1039/C7RA04816E     URL    
[22]
Togasawa R, Ohnuki F, Shiratori S. ACS Appl. Nano Mater., 2018, 1( 4): 1758.

doi: 10.1021/acsanm.8b00199     URL    
[23]
Ma W, Higaki Y, Otsuka H, Takahara A. Chem. Commun., 2013, 49( 6): 597.

doi: 10.1039/C2CC37576A     URL    
[24]
Jing X, Guo Z. Nanoscale , 2019, 11( 18): 8870.

doi: 10.1039/C9NR01556F     URL    
[25]
Gao X , Wen G , Guo Z . New J. Chem ., 2019, 43( 42): 16656.

doi: 10.1039/C9NJ04429A     URL    
[26]
Jing X, Guo Z. ACS Appl. Mater. Interfaces , 2019, 11( 39): 35949.

doi: 10.1021/acsami.9b08885     URL    
[27]
Wang X Q, Gu C D, Wang L Y, Zhang J L, Tu J P. Chem. Eng. J. , 2018, 343: 561.

doi: 10.1016/j.cej.2018.03.045     URL    
[28]
Yuan S, Zhang X, Lin D, Xu F, Li Y, Wang H. Prog. Org. Coat., 2020, 142: 105563.
[29]
Wang D , Guo Z . New J. Chem ., 2020, 44( 11): 4529.

doi: 10.1039/C9NJ06277G     URL    
[30]
Togasawa R, Tenjimbayashi M, Matsubayashi T, Moriya T, Manabe K, Shiratori S. ACS Appl. Mater. Interfaces , 2018, 10( 4): 4198.

doi: 10.1021/acsami.7b15689     URL    
[31]
Yong J , Huo J , Yang Q , Chen F , Fang Y , Wu X , Liu L , Lu X , Zhang J , Hou X . Adv. Mater. Interfaces , 2018, 5( 7): 1701479.

doi: 10.1002/admi.v5.7     URL    
[32]
Yang Z, Liu X, Tian Y. Prog. Org. Coat., 2020, 138: 105313.
[33]
Che P , Heng L , Jiang L . Adv. Funct. Mater. , 2017, 27( 22): 1606199.

doi: 10.1002/adfm.201606199     URL    
[34]
Zhu G H, Cho S H, Zhang H, Zhao M, Zacharia N S. Langmuir , 2018, 34( 16): 4722.

doi: 10.1021/acs.langmuir.8b00335     URL    
[35]
Wang G , Guo Z . Nanoscale , 2019, 11( 47): 22615.

doi: 10.1039/C9NR06934H     URL    
[36]
Li Q, Guo Z. J. Mater. Chem. A , 2018, 6( 28): 13549.

doi: 10.1039/C8TA03259A     URL    
[37]
Wilson P W , Lu W , Xu H , Kim P , Kreder M J , Alvarenga J , Aizenberg J . Phys. Chem. Chem. Phys ., 2013, 15( 2): 581.

doi: 10.1039/C2CP43586A     URL    
[38]
Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano , 2012, 6( 8): 6569.

doi: 10.1021/nn302310q     URL    
[39]
Liu Q, Yang Y, Huang M, Zhou Y, Liu Y, Liang X. Appl. Surf. Sci., 2015, 346: 68.

doi: 10.1016/j.apsusc.2015.02.051     URL    
[40]
Stone H A. ACS Nano , 2012, 6( 8): 6536.

doi: 10.1021/nn303372q     URL    
[41]
Zhang M, Yu J, Chen R, Liu Q, Liu J, Song D, Liu P, Gao L, Wang J. J. Alloys Compd. , 2019, 803: 51.

doi: 10.1016/j.jallcom.2019.06.241     URL    
[42]
Zhang S, Huang J, Cheng Y, Yang H, Chen Z, Lai Y. Small , 2017, 13( 48): 1701867.

doi: 10.1002/smll.v13.48     URL    
[43]
Subramanyam S B, Rykaczewski K, Varanasi K K. Langmuir , 2013, 29( 44): 13414.

doi: 10.1021/la402456c     URL    
[44]
Wang N, Xiong D, Pan S, Wang K, Shi Y, Deng Y. New J. Chem., 2017, 41( 4): 1846.

doi: 10.1039/C6NJ02824A     URL    
[45]
Wei C, Jin B, Zhang Q, Zhan X, Chen F. J. Alloys Compd., 2018, 765: 721.

doi: 10.1016/j.jallcom.2018.06.041     URL    
[46]
Wang N , Xiong D , Lu Y , Pan S , Wang K , Deng Y , Shi Y . J. Phys. Chem. C , 2016, 120( 20): 11054.

doi: 10.1021/acs.jpcc.6b04778     URL    
[47]
Dou R , Chen J , Zhang Y , Wang X , Cui D , Song Y , Jiang L , Wang J . ACS Appl. Mater. Interfaces , 2014, 6( 10): 6998.

doi: 10.1021/am501252u     URL    
[48]
Yamazaki T, Tenjimbayashi M, Manabe K, Moriya T, Nakamura H, Nakamura T, Matsubayashi T, Tsuge Y, Shiratori S. Ind. Eng. Chem. Res., 2019, 58( 6): 2225.

doi: 10.1021/acs.iecr.8b05927     URL    
[49]
Liu B, Zhang K, Tao C, Zhao Y, Li X, Zhu K, Yuan X. RSC Adv., 2016, 6( 74): 70251.

doi: 10.1039/C6RA11383D     URL    
[50]
Chatterjee R , Beysens D , Anand S . Adv. Mater. , 2019, 31( 17): 1807812.

doi: 10.1002/adma.v31.17     URL    
[51]
Latthe S S, Sutar R S, Bhosale A K, Nagappan S, Ha C S, Sadasivuni K K, Liu S, Xing R. Prog. Org. Coat., 2019, 137: 105373.
[52]
Zhang G, Zhang Q, Cheng T, Zhan X, Chen F. Langmuir , 2018, 34( 13): 4052.

doi: 10.1021/acs.langmuir.8b00286     URL    
[53]
Sun X, Damle V G, Liu S, Rykaczewski K. Adv. Mater. Interfaces , 2015, 2( 5): 1400479.

doi: 10.1002/admi.201400479     URL    
[54]
Liu X, Chen H, Zhao Z, Yan Y, Zhang D. Surf. Coat. Technol., 2019, 374: 889.

doi: 10.1016/j.surfcoat.2019.06.077     URL    
[55]
Xiao L , Li J , Mieszkin S , Di Fino A , Clare A S , Callow M E , Callow J A , Grunze M , Rosenhahn A , Levkin P A . ACS Appl. Mater. Interfaces , 2013, 5( 20): 10074.

doi: 10.1021/am402635p     URL    
[56]
Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS Appl. Mater. Interfaces , 2014, 6( 15): 13299.

doi: 10.1021/am503150y     URL    
[57]
Wang P, Zhang D, Lu Z. Colloids Surf. B , 2015, 136: 240.

doi: 10.1016/j.colsurfb.2015.09.019     URL    
[58]
Leslie D C , Waterhouse A , Berthet J B , Valentin T M , Watters A L , Jain A , Kim P , Hatton B D , Nedder A , Donovan K , Super E H , Howell C , Johnson C P , Vu T L , Bolgen D E , Rifai S , Hansen A R , Aizenberg M , Super M , Aizenberg J , Ingber D E . Nat. Biotechnol ., 2014, 32( 11): 1134.

doi: 10.1038/nbt.3020     URL    
[59]
Li J, Kleintschek T, Rieder A, Cheng Y, Baumbach T, Obst U, Schwartz T, Levkin P A. ACS Appl. Mater. Interfaces , 2013, 5( 14): 6704.

doi: 10.1021/am401532z     URL    
[60]
Epstein A K, Wong T S, Belisle R A, Boggs E M, Aizenberg J. Proc. Natl. Acad. Sci. U. S. A., 2012, 109( 33): 13182.
[61]
Manna U , Raman N , Welsh M A , Zayas-Gonzalez Y M , Blackwell H E , Palecek S P , Lynn D M . Adv. Funct. Mater ., 2016, 26( 21): 3599.

doi: 10.1002/adfm.v26.21     URL    
[62]
Awad T S , Asker D , Hatton B D . ACS Appl. Mater. Interfaces , 2018, 10( 27): 22902.

doi: 10.1021/acsami.8b03788     URL    
[63]
Basu S, Hanh B M, Isaiah Chua J Q, Daniel D, Ismail M H, Marchioro M, Amini S, Rice S A, Miserez A. J. Colloid Interface Sci., 2020, 568: 185.

doi: 10.1016/j.jcis.2020.02.049     URL    
[64]
Yang S, Qiu R, Song H, Wang P, Shi Z, Wang Y. Appl. Surf. Sci., 2015, 328: 491.

doi: 10.1016/j.apsusc.2014.12.067     URL    
[65]
Qiu R, Zhang Q, Wang P, Jiang L, Hou J, Guo W, Zhang H. Colloids Surf. A , 2014, 453: 132.

doi: 10.1016/j.colsurfa.2014.04.035     URL    
[66]
Deng R, Shen T, Chen H L, Lu J X, Yang H C, Li W H. J. Mater. Chem. A , 2020, 8( 16): 7536.

doi: 10.1039/D0TA02000A     URL    
[67]
Song T, Liu Q, Liu J, Yang W, Chen R, Jing X, Takahashi K, Wang J. Appl. Surf. Sci., 2015, 355: 495.

doi: 10.1016/j.apsusc.2015.07.140     URL    
[68]
Wang P, Lu Z, Zhang D. Corros. Sci., 2015, 93: 159.

doi: 10.1016/j.corsci.2015.01.015     URL    
[69]
Wang P , Zhang D , Lu Z , Sun S . ACS Appl. Mater. Interfaces , 2016, 8( 2): 1120.

doi: 10.1021/acsami.5b08452     URL    
[70]
Song T, Liu Q, Zhang M, Chen R, Takahashi K, Jing X, Liu L, Wang J. RSC Adv., 2015, 5( 86): 70080.

doi: 10.1039/C5RA11263J     URL    
[71]
Wu D, Zhang D, Ye Y, Ma L, Minhas B, Liu B, Terryn H A, Mol J M C, Li X. Chem. Eng. J., 2019, 368: 138.

doi: 10.1016/j.cej.2019.02.163     URL    
[72]
Liu M, Hou Y, Li J, Tie L, Guo Z. Chem. Eng. J., 2018, 337: 462.

doi: 10.1016/j.cej.2017.12.118     URL    
[73]
Shi Z, Xiao Y, Qiu R, Niu S, Wang P. Surf. Coat. Technol., 2017, 330: 102.

doi: 10.1016/j.surfcoat.2017.09.053     URL    
[74]
Ma Q, Wang W, Dong G. Colloids Surf., A, 2019, 577: 17.
[75]
Tenjimbayashi M, Nishioka S, Kobayashi Y, Kawase K, Li J, Abe J, Shiratori S. Langmuir , 2018, 34( 4): 1386.

doi: 10.1021/acs.langmuir.7b03913     URL    
[76]
Okada I, Shiratori S. ACS Appl. Mater. Interfaces , 2014, 6( 3): 1502.

doi: 10.1021/am404077h     URL    
[77]
Yun K H , Kim D , Jeong Y K , Yun D J , Park W I , Jung H , Lee S . J. Appl. Phys ., 2019, 126( 12): 125304.

doi: 10.1063/1.5116038     URL    
[78]
Wang Z , Guo Z . Nanoscale , 2018, 10( 42): 19879.

doi: 10.1039/C8NR07608A     URL    
[79]
Xiao Y, Zhao J, Qiu R, Shi Z, Niu S, Wang P. Prog. Org. Coat., 2018, 123: 47.
[80]
Men X, Shi X, Ge B, Li Y, Zhu X, Li Y, Zhang Z. Chem. Eng. J., 2016, 296: 458.

doi: 10.1016/j.cej.2016.03.129     URL    
[81]
Chen L, Geissler A, Bonaccurso E, Zhang K. ACS Appl. Mater. Interfaces , 2014, 6( 9): 6969.

doi: 10.1021/am5020343     URL    
[82]
Yu C, Zhu X, Li K, Cao M, Jiang L. Adv. Funct. Mater., 2017, 27( 29): 1701605.

doi: 10.1002/adfm.v27.29     URL    
[83]
Li Q, Wu D, Guo Z. Soft Matter , 2019, 15( 34): 6803.

doi: 10.1039/C9SM01167F     URL    
[84]
Lafuma A, QuÉrÉ D. EPL(Europhysics Letters), 2011, 96( 5): 56001.
[85]
Gulfam R, Zhang P. Renewable Energy , 2019, 143: 922.

doi: 10.1016/j.renene.2019.05.055     URL    
[86]
Wang Y , Zhang H , Liu X , Zhou Z . J. Mater. Chem. A , 2016, 4( 7): 2524.

doi: 10.1039/C5TA09936F     URL    
[87]
Solomon B R, Khalil K S, Varanasi K K. Langmuir , 2014, 30( 36): 10970.

doi: 10.1021/la5021143     URL    
[88]
Rosenberg B J , Van Buren T , Fu M K , Smits A J . Phys. Fluids , 2016, 28( 1): 015103.

doi: 10.1063/1.4939272     URL    
[89]
Lee S J , Kim H N , Choi W , Yoon G Y , Seo E . Soft Matter , 2019, 15( 42): 8459.

doi: 10.1039/C9SM01576K     URL    
[90]
Chen X , Wen G , Guo Z . Mater. Horiz ., 2020, 7( 7): 1697.

doi: 10.1039/D0MH00088D     URL    
[91]
Williams M K, Weiser E S, Fesmire J E, Grimsley B W, Smith T M, Brenner J R, Nelson G L. Polym. Adv. Technol. , 2005, 16( 2/3): 167.

doi: 10.1002/(ISSN)1099-1581     URL    
[92]
Tenjimbayashi M , Togasawa R , Manabe K , Matsubayashi T , Moriya T , Komine M , Shiratori S . Adv. Funct. Mater ., 2016, 26( 37): 6693.

doi: 10.1002/adfm.v26.37     URL    
[93]
Krumpfer J W, McCarthy T J. Langmuir , 2011, 27( 18): 11514.

doi: 10.1021/la202583w     URL    
[94]
Shang B , Chen M , Wu L . ACS Appl. Mater. Interfaces , 2018, 10( 37): 31777.

doi: 10.1021/acsami.8b10838     URL    
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[3] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[4] 王静, 于浩迪, 王俊坤, 袁玲, 任林, 高庆宇. 活性人工游泳体的螺旋运动[J]. 化学进展, 2023, 35(2): 206-218.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[7] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[8] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[9] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[10] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[11] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[12] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[13] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[14] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[15] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
阅读次数
全文


摘要

SLIPS功能表面的制备及应用