English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1218-1228 DOI: 10.7536/PC210622 前一篇   后一篇

• 综述 •

零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)

张锦辉1,2, 张晋华1,2,*(), 梁继伟1,2, 顾凯丽1,2, 姚文婧1,2, 李锦祥1,2   

  1. 1.南京理工大学环境与生物工程学院 南京 210094
    2.化工污染控制与资源化江苏省高校重点实验室 南京 210094
  • 收稿日期:2021-06-24 修回日期:2021-07-20 出版日期:2022-05-24 发布日期:2021-07-29
  • 通讯作者: 张晋华
  • 基金资助:
    国家自然科学基金项目(51708416); 中央高校基本科研业务费专项资金(30919011267); 污染控制与资源化研究国家重点实验室开放课题(PCRRF19005); 南京理工大学大型仪器开放基金项目资助

Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021

Jinhui Zhang1,2, Jinhua Zhang1,2(), Jiwei Liang1,2, Kaili Gu1,2, Wenjing Yao1,2, Jinxiang Li1,2   

  1. 1. School of Environmental and Biological Engineering, Nanjing University of Science and Technology,Nanjing 210094, China
    2. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing 210094, China
  • Received:2021-06-24 Revised:2021-07-20 Online:2022-05-24 Published:2021-07-29
  • Contact: Jinhua Zhang
  • Supported by:
    National Natural Science Foundation of China(51708416); Fundamental Research Founds for the Central Universities(30919011267); State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF19005); Open Founds for Large-Scale Instruments and Equipment of Nanjing University of Science and Technology.

应用零价铁(ZVI)去除水中(类)金属(含氧)离子是近年来研究的热点。在ZVI除污染过程中,同步提升ZVI除污的反应活性与电子效率对该技术进一步推广应用至关重要。本文综述了近十年(2011-2021年)ZVI的提升技术,主要涉及硫化、外加弱磁场、投加Fe2+、投加氧化剂以及其他新型技术。从不同体系广谱研究以及单一体系具体研究的角度,系统分析了这些技术对ZVI去除含氧水体中(类)金属(含氧)离子的反应活性、去除容量、电子效率的提升表现及作用机制。最后,对ZVI技术未来的研究方向作出了展望,以期促进ZVI技术的进一步完善与发展。本文有望为增强零价铁去除污染物的实际效能提供新的探索方向并完备相关理论基础。

The application of the zerovalent iron (ZVI) for water treatment of metal(loid) (oxyan)ions has been a research hotspot in recent years. In practical applications, how to simultaneously improve the reactivity and electron efficiency of contaminants sequestration by ZVI are highly critical for the progress in ZVI-based technology. This review summarizes the improvements of ZVI technologies proposed in the past 10 years (2011—2021), including the sulfidation, weak magnetic field (WMF), dosing of Fe2+ and oxidants, along with other novel technologies. In addition, the performances (e.g., reactivity, removal capacity and electronic efficiency) and mechanisms of these technologies for contaminants removal are summarized and compared. The enhanced performance of ZVI technology should be complementarily analyzed not only from the broad-spectrum studies of different systems but also from the specific study of a single system. Finally, in order to promote the further improvement and development of ZVI technology, the future research direction of ZVI technology is outlooked. This review is expected to provide a new research direction and a complete theoretical basis for improving the performances of ZVI technology in real environmental application.

Contents

1 Introduction

2 Methods for enhancing reactivity of ZVI

2.1 Sulfidation

2.2 Addition of divalent metal cation

2.3 Weak magnetic field

2.4 Premagnetization

2.5 Addition of oxidants

2.6 Novel enhanced methods

2.7 Summary

3 Methods for enhancing electron efficiency of ZVI

3.1 Sulfidation

3.2 Addition of divalent metal cation

3.3 Addition of oxidants

3.4 Weak magnetic field

3.5 Summary

4 Mechanisms of the enhanced technologies

5 Conclusion and outlook

()
图1 标准条件下Fe0/H2O体系Eh-pH曲线([Fe]tot = 10-4 mol·L-1)
Fig. 1 Eh-pH diagram for Fe0/H2O system at 298.15 K and 101.3 KPa. [Fe]tot = 10-4 mol·L-1
图2 (a) 硫化[15,42,43,45⇓⇓ ~48], (b) WMF[11,45,48⇓⇓ ~51]及(c) 预磁化[14,52]对ZVI去除水中(类)金属(含氧)离子反应速率常数的影响
Fig. 2 Summary of rate constants for sequestration of metal(loids) (oxyan)ions with and without (a) sulfidation[15,42,43,45⇓⇓ ~48], (b) WMF[11,45,48⇓⇓ ~51], (c) premagnetization[14,52] by ZVI
图3 投加Fe2+[34, 48]、投加H2O2[48]、WMF/Fe2+体系[45]对ZVI去除水中(类)金属(含氧)离子反应速率常数的影响
Fig. 3 Summary of rate constants for sequestration of metal(loids) (oxyan)ions with and without addition of Fe2+[34, 48], addition of H2O2[48] and coupled effects of WMF and Fe2+[45] by ZVI
图4 4种提升技术对ZVI去除水中(类)金属(含氧)离子去除容量的影响[34,44,47,48,51,71]
Fig. 4 Summary of removal capacity for sequestration of metal(loids) (oxyan)ions with and without sulfidation, addition of divalent metal cations, addition of H2O2 and WMF by ZVI[34,44,47,48,51,71]
图5 (a) 二价金属阳离子[34,44,47,48,71], (b) 硫化[46⇓~48], WMF[48,51]及H2O2[48]对ZVI去除水中(类)金属(含氧)离子电子效率的影响
Fig. 5 Summary of electron efficiency for sequestration of metal(loids) (oxyan)ions with and without (a) addition of divalent metal cations[34,44,47,48,71], (b) sulfidation[46⇓~48], WMF[48,51] and addition of H2O2[48] by ZVI
图6 4种提升技术促进零价铁除去除水中(类)金属(含氧)离子机制示意图
Fig. 6 Schematic illustration of the promotion mechanism for the performance of metal(loids) (oxyan)ions sequestration in ZVI/Fe2+, ZVI/H2O2, S-ZVI, and ZVI/WMF system
[1]
Gillham R W, O’Hannesin S F. Ground Water, 1994, 32(6): 958.

doi: 10.1111/j.1745-6584.1994.tb00935.x     URL    
[2]
Matheson L J, Tratnyek P G. Environ. Sci. Technol., 1994, 28(12): 2045.

doi: 10.1021/es00061a012     pmid: 22191743
[3]
Wang S C, Song Y D, Sun Y K. Progress in Chemistry, 2019, 31(2/3): 422.
(王舒畅, 宋亚丹, 孙远奎. 化学进展, 2019, 31(2/3): 422.)

doi: 10.7536/PC180726    
[4]
Yang S Y, Zheng D, Chang S Y, Shi C. Prog. Chem., 2016, 28(5): 754.
(杨世迎, 郑迪, 常书雅, 石超. 化学进展, 2016, 28(5): 754.)

doi: 10.7536/PC151047    
[5]
Qiu X H, Fang Z Q. Progress in Chemistry, 2010, 22(2/3): 291.
(邱心泓, 方战强. 化学进展, 2010, 22(2/3): 291.)
[6]
Agrawal A, Tratnyek P G. Environ. Sci. Technol., 1996, 30(1): 153.

doi: 10.1021/es950211h     URL    
[7]
Zhang J H, Cheng Z Y, Yang X G, Luo J Q, Li H Z, Chen H M, Zhang Q, Li J X. Chem. Eng. J., 2020, 393: 124779.

doi: 10.1016/j.cej.2020.124779     URL    
[8]
Wang S C, Song Y D, Sun Y K. Environ. Technol. Innov., 2018, 11: 339.

doi: 10.1016/j.eti.2018.06.014     URL    
[9]
Morales J, Hutcheson R, Cheng I F. J. Hazard. Mater., 2002, 90(1): 97.

pmid: 11777595
[10]
Guo X J, Yang Z, Dong H Y, Guan X H, Ren Q D, Lv X, Jin X. Water Res., 2016, 88: 671.

doi: 10.1016/j.watres.2015.10.045     URL    
[11]
Liang L P, Guan X H, Shi Z, Li J L, Wu Y N, Tratnyek P G. Environ. Sci. Technol., 2014, 48(11): 6326.

doi: 10.1021/es500958b     URL    
[12]
Feng P, Guan X H, Sun Y K, Choi W, Qin H J, Wang J M, Qiao J L, Li L N. J. Environ. Sci., 2015, 31: 175.

doi: 10.1016/j.jes.2014.10.017     URL    
[13]
Liang L P, Sun W, Guan X H, Huang Y Y, Choi W, Bao H L, Li L N, Jiang Z. Water Res., 2014, 49: 371.

doi: 10.1016/j.watres.2013.10.026     URL    
[14]
Li J X, Qin H J, Guan X H. Environ. Sci. Technol., 2015, 49(24): 14401.

doi: 10.1021/acs.est.5b04215     URL    
[15]
Huang S S, Xu C H, Shao Q Q, Wang Y H, Zhang B L, Gao B Y, Zhou W Z, Tratnyek P G. Chem. Eng. J., 2018, 338: 539.

doi: 10.1016/j.cej.2018.01.033     URL    
[16]
Yang K L, Zhou J S, Lv D, Sun Y, Lou Z M, Xu X H. Progress in Chemistry, 2017, 29(11): 1407.
(杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华. 化学进展, 2017, 29(11): 1407.)

doi: 10.7536/PC170634    
[17]
Tang J, Tang L, Feng H P, Dong H R, Zhang Y, Liu S S, Zeng G M. Acta Chimica Sin., 2017, 75(6): 575.
(汤晶, 汤琳, 冯浩朋, 董浩然, 章毅, 刘思诗, 曾光明. 化学学报, 2017, 75(6): 575.)

doi: 10.6023/A17020045    
[18]
Noubactep C. Environ. Technol., 2008, 29(8): 909.

doi: 10.1080/09593330802131602     pmid: 18724646
[19]
Li J X, Dou X M, Qin H J, Sun Y K, Yin D Q, Guan X H. Water Res., 2019, 148: 70.

doi: 10.1016/j.watres.2018.10.025     URL    
[20]
Guan X H, Sun Y K, Qin H J, Li J X, Lo I M C, He D, Dong H R. Water Res., 2015, 75: 224.

doi: 10.1016/j.watres.2015.02.034     URL    
[21]
Gu K L, Li H Z, Zhang J H, Li J X. Progress in Chemistry, 2021, 33 (10): 1812.
(顾凯丽, 李浩贞, 张晋华, 李锦祥. 化学进展, 2021, 33 (10): 1812.)
[22]
Li J X, Qin H J, Zhang X Y, Guan X H. Acta Chimica Sinica, 2017, 75(6): 544.

doi: 10.6023/A17010007     URL    
(李锦祥, 秦荷杰, 张雪莹, 关小红. 化学学报, 2017, 75(6): 544.)

doi: 10.6023/A17010007    
[23]
Liu Y Q, Phenrat T, Lowry G V. Environ. Sci. Technol., 2007, 41(22): 7881.

doi: 10.1021/es0711967     URL    
[24]
Liu H, Wang Q, Wang C, Li X Z. Chem. Eng. J., 2013, 215-216: 90.
[25]
Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39(5): 1338.

doi: 10.1021/es049195r     URL    
[26]
Xin J, Tang F L, Yan J, La C H, Zheng X L, Liu W. Sci. Total. Environ., 2018, 626: 638.

doi: 10.1016/j.scitotenv.2018.01.115     URL    
[27]
Kadar E, Tarran G A, Jha A N, Al-Subiai S N. Environ. Sci. Technol., 2011, 45(8): 3245.

doi: 10.1021/es1029848     URL    
[28]
Henn K W, Waddill D W. Remediat. J., 2006, 16(2): 57.
[29]
Huang Y H, Zhang T C. Water Res., 2005, 39(9): 1751.

pmid: 15899273
[30]
Wang Y L, Lin D H. Progress in Chemistry, 2017, 29(9): 1072.
(王艳龙, 林道辉. 化学进展, 2017, 29(9): 1072.)

doi: 10.7536/PC170526    
[31]
Tang S, Wang X M, Mao Y Q, Zhao Y, Yang H W, Xie Y F. Water Res., 2015, 73: 342.

doi: 10.1016/j.watres.2015.01.027     URL    
[32]
Sun Y K, Li J X, Huang T L, Guan X H. Water Res., 2016, 100: 277.

doi: 10.1016/j.watres.2016.05.031     URL    
[33]
Flury B, Frommer J, Eggenberger U, Mäder U, Nachtegaal M, Kretzschmar R. Environ. Sci. Technol., 2009, 43(17): 6786.

doi: 10.1021/es803526g     URL    
[34]
Qin H J, Li J X, Yang H Y, Pan B C, Zhang W M, Guan X H. Environ. Sci. Technol., 2017, 51(9): 5090.

doi: 10.1021/acs.est.6b04832     URL    
[35]
Fan S F, Xin J, Huang J Y, Rong W L, Zheng X L. Progress in Chemistry, 2018, 30(7): 1035.
(范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 化学进展, 2018, 30(7): 1035.)

doi: 10.7536/PC171106    
[36]
Tang F L, Xin J, Zheng T Y, Zheng X L, Yang X P, Kolditz O. Chem. Eng. J., 2017, 324: 324.

doi: 10.1016/j.cej.2017.04.144     URL    
[37]
Yang S Y, Ren T F, Zhang Y X, Zheng D, Xin J. Progress in Chemistry, 2017, 29(4): 388.
(杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, 29(4): 388.)

doi: 10.7536/PC170133    
[38]
Lipczynska-Kochany E, Harms S, Milburn R, Sprah G, Nadarajah N. Chemosphere, 1994, 29(7): 1477.

pmid: 22454977
[39]
Kim E J, Kim J H, Azad A M, Chang Y S. ACS Appl. Mater. Interfaces, 2011, 3(5): 1457.

doi: 10.1021/am200016v     URL    
[40]
Fan D M, Lan Y, Tratnyek P G, Johnson R L, Filip J, O’Carroll D M, Nunez Garcia A, Agrawal A. Environ. Sci. Technol., 2017, 51(22): 13070.

doi: 10.1021/acs.est.7b04177     URL    
[41]
Gu Y W, Gong L, Qi J L, Cai S C, Tu W X, He F. Water Res., 2019, 159: 233.

doi: 10.1016/j.watres.2019.04.061     URL    
[42]
Wang Y H, Shao Q Q, Huang S S, Zhang B L, Xu C H. J. Clean Prod., 2018, 191: 436.

doi: 10.1016/j.jclepro.2018.04.217     URL    
[43]
Li J X, Zhang X Y, Liu M C, Pan B C, Zhang W M, Shi Z, Guan X H. Environ. Sci. Technol., 2018, 52(5): 2988.

doi: 10.1021/acs.est.7b06502     URL    
[44]
Qiao J L, Song Y D, Sun Y K, Guan X H. Chem. Eng. J., 2018, 353: 246.

doi: 10.1016/j.cej.2018.07.113     URL    
[45]
Xu C H, Zhang B L, Zhu L J, Lin S, Sun X P, Jiang Z, Tratnyek P G. Environ. Sci. Technol., 2016, 50(3): 1483.

doi: 10.1021/acs.est.5b05360     URL    
[46]
Li H Z, Zhang J H, Gu K L, Li J X. J. Hazard. Mater., 2021, 409: 124498.

doi: 10.1016/j.jhazmat.2020.124498     URL    
[47]
Fan P, Sun Y K, Zhou B X, Guan X H. Environ. Sci. Technol., 2019, 53(24): 14577.

doi: 10.1021/acs.est.9b04956     URL    
[48]
Fan P, Li L N, Sun Y K, Qiao J L, Xu C H, Guan X H. Water Res., 2019, 159: 375.

doi: 10.1016/j.watres.2019.05.037     URL    
[49]
Xu H Y, Sun Y K, Li J X, Li F M, Guan X H. Environ. Sci. Technol., 2016, 50(15): 8214.

doi: 10.1021/acs.est.6b01763     URL    
[50]
Li J L, Bao H L, Xiong X M, Sun Y K, Guan X H. Sep. Purif. Technol., 2015, 151: 276.

doi: 10.1016/j.seppur.2015.07.056     URL    
[51]
Li J X, Sun Y K, Zhang X Y, Guan X H. J. Hazard. Mater., 2020, 400: 123330.

doi: 10.1016/j.jhazmat.2020.123330     URL    
[52]
Li J X, Shi Z, Ma B, Zhang P P, Jiang X, Xiao Z J, Guan X H. Environ. Sci. Technol., 2015, 49(17): 10581.

doi: 10.1021/acs.est.5b02699     URL    
[53]
Gu Y W, Wang B B, He F, Bradley M J, Tratnyek P G. Environ. Sci. Technol., 2017, 51(21): 12653.

doi: 10.1021/acs.est.7b03604     URL    
[54]
Wu Y, Wang Y, Qiu R L, Yang X. Prog. Chem., 2018, 30(4): 420.

doi: 10.7536/PC170745    
(吴洋, 王玉, 仇荣亮, 杨欣. 化学进展, 2018, 30(4): 420.)

doi: 10.7536/PC170745    
[55]
Huang Y H, Tang C L, Zeng H. Chem. Eng. J., 2012, 200-202: 257.
[56]
Yoon I H, Kim K W, Bang S, Kim M G. Appl. Catal. B: Environ., 2011, 104(1/2): 185.

doi: 10.1016/j.apcatb.2011.02.014     URL    
[57]
Tang C L, Huang Y H, Zeng H, Zhang Z Q. Water Res., 2014, 67: 166.

doi: 10.1016/j.watres.2014.09.016     URL    
[58]
Tang C L, Huang Y H, Zeng H, Zhang Z Q. Chem. Eng. J., 2014, 244: 97.

doi: 10.1016/j.cej.2014.01.059     URL    
[59]
Doong R A, Lai Y L. Chemosphere, 2006, 64(3): 371.

doi: 10.1016/j.chemosphere.2005.12.038     URL    
[60]
Liu T X, Li X M, Waite T D. Environ. Sci. Technol., 2013, 47(23): 13712.

doi: 10.1021/es403709v     URL    
[61]
Liu T X, Li X M, Waite T D. Environ. Sci. Technol., 2013, 47(13): 7350.

doi: 10.1021/es400362w     URL    
[62]
Liu T X, Li X M, Waite T D. Environ. Sci. Technol., 2014, 48(24): 14564.

doi: 10.1021/es503777a     URL    
[63]
Sun Y K, Guan X H, Wang J M, Meng X G, Xu C H, Zhou G M. Environ. Sci. Technol., 2014, 48(12): 6850.

doi: 10.1021/es5003956     URL    
[64]
Jiang X, Qiao J L, Lo I M C, Wang L, Guan X H, Lu Z P, Zhou G M, Xu C H. J. Hazard. Mater., 2015, 283: 880.

doi: 10.1016/j.jhazmat.2014.10.044     pmid: 25464332
[65]
Aziz F, Pandey P, Chandra M, Khare A, Rana D S, Mavani K R. J. Magn. Magn. Mater., 2014, 356: 98.

doi: 10.1016/j.jmmm.2013.12.037     URL    
[66]
Li X, Zhou M H, Pan Y W, Xu L T. Chem. Eng. J., 2017, 307: 1092.

doi: 10.1016/j.cej.2016.08.140     URL    
[67]
Guo X J, Yang Z, Liu H, Lv X, Tu Q S, Ren Q D, Xia X H, Jing C Y. Sep. Purif. Technol., 2015, 146: 227.

doi: 10.1016/j.seppur.2015.03.059     URL    
[68]
Hu Y, Peng X, Ai Z H, Jia F L, Zhang L Z. Environ. Sci. Technol., 2019, 53(14): 8333.

doi: 10.1021/acs.est.9b01999     URL    
[69]
Li M Q, Mu Y, Shang H, Mao C L, Cao S Y, Ai Z H, Zhang L Z. Appl. Catal. B: Environ., 2020, 263: 118364.

doi: 10.1016/j.apcatb.2019.118364     URL    
[70]
Li M Q, Shang H, Li H, Hong Y F, Ling C C, Wei K, Zhou B, Mao C L, Ai Z H, Zhang L Z. Angew. Chem. Int. Ed., 2021, 60(31): 17115.

doi: 10.1002/anie.202104586     URL    
[71]
Ling J F, Qiao J L, Song Y D, Sun Y K. Chem. Eng. J., 2019, 378: 122124.

doi: 10.1016/j.cej.2019.122124     URL    
[72]
Rajajayavel S R C, Ghoshal S. Water Res., 2015, 78: 144.

doi: 10.1016/j.watres.2015.04.009     pmid: 25935369
[73]
Fan D M, O’Brien Johnson G, Tratnyek P G, Johnson R L. Environ. Sci. Technol., 2016, 50(17): 9558.

doi: 10.1021/acs.est.6b02170     URL    
[74]
Kim D H, Kim J, Choi W. J. Hazard. Mater., 2011, 192(2): 928.

doi: 10.1016/j.jhazmat.2011.05.075     URL    
[75]
Hug S J, Leupin O. Environ. Sci. Technol., 2003, 37(12): 2734.

doi: 10.1021/es026208x     URL    
[76]
Hug S J, Canonica L, Wegelin M, Gechter D, von Gunten U. Environ. Sci. Technol., 2001, 35(10): 2114.

pmid: 11393995
[77]
Ullah S, Guo X J, Luo X Y, Zhang X Y, Leng S W, Ma N, Faiz P. Front. Environ. Sci. Eng., 2020, 14(5): 1.

doi: 10.1007/s11783-019-1180-x     URL    
[78]
Li Y M, Guo X J, Dong H Y, Luo X Y, Guan X H, Zhang X Y, Xia X H. Chem. Eng. J., 2018, 345: 432.

doi: 10.1016/j.cej.2018.03.187     URL    
[79]
Yang Z, Shan C, Zhang W M, Jiang Z, Guan X H, Pan B C. Water Res., 2016, 106: 461.

doi: S0043-1354(16)30782-5     pmid: 27764696
[80]
Li J X, Qin H J, Zhang W X, Shi Z, Zhao D Y, Guan X H. Sep. Purif. Technol., 2017, 176: 40.

doi: 10.1016/j.seppur.2016.11.075     URL    
[81]
Sun Y K, Hu Y H, Huang T L, Li J X, Qin H J, Guan X H. Environ. Sci. Technol., 2017, 51(7): 3742.

doi: 10.1021/acs.est.6b06117     URL    
[1] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[2] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[3] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[4] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[5] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[6] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[7] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[8] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[9] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[10] 顾凯丽, 李浩贞, 张晋华, 李锦祥. 硫化零价铁去除水中污染物的效能及交互机制[J]. 化学进展, 2021, 33(10): 1812-1822.
[11] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[12] 王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019, 31(2/3): 422-432.
[13] 郑亚楠, 王丹. 金属调控蛋白的结构、性质及应用[J]. 化学进展, 2019, 31(10): 1372-1383.
[14] 范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 基于零价铁的地下水化学还原修复体系中的电子转移有效性和电子竞争机制[J]. 化学进展, 2018, 30(7): 1035-1046.
[15] 吴洋, 王玉, 仇荣亮, 杨欣. 应用零价铁基材料还原和催化氧化降解多溴联苯醚[J]. 化学进展, 2018, 30(4): 420-428.