English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2270-2282 DOI: 10.7536/PC201145 前一篇   后一篇

• 综述 •

锂电池中的凝胶聚合物电解质

杨琪1,2, 邓南平2,*(), 程博闻2, 康卫民1,2,*()   

  1. 1 天津工业大学纺织科学与工程学院 天津 300387
    2 天津工业大学分离膜与膜过程国家重点实验室 天津 300387
  • 收稿日期:2020-12-01 修回日期:2021-01-26 出版日期:2021-03-04 发布日期:2021-03-04
  • 通讯作者: 邓南平, 康卫民
  • 基金资助:
    国家自然科学基金项目(51973157); 国家自然科学基金项目(51673148); 国家自然科学基金项目(51678411); 国家博士后科研基金(2019M651047); 天津市科技计划(19PTSYJC00010)

Gel Polymer Electrolytes in Lithium Batteries

Qi Yang1,2, Nanping Deng2(), Bowen Cheng2, Weimin Kang1,2()   

  1. 1 School of Textile Science and Engineering, Tiangong University,Tianjin 300387, China
    2 State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University,Tianjin 300387, China
  • Received:2020-12-01 Revised:2021-01-26 Online:2021-03-04 Published:2021-03-04
  • Contact: Nanping Deng, Weimin Kang
  • Supported by:
    the National Natural Science Foundation of China(51973157); the National Natural Science Foundation of China(51673148); the National Natural Science Foundation of China(51678411); the China Postdoctoral Science Foundation(2019M651047); the Science and Technology Plans of Tianjin(19PTSYJC00010)

锂电池目前在人们生活中已经得到广泛应用,但是传统的液体电解质沸点低且易泄漏,容易引起锂枝晶生长和安全问题。凝胶聚合物电解质(GPEs)的状态介于液态电解质和固态电解质之间,不仅可以作为电解质,还可以作为隔膜,这样可以减少液体电解质的泄漏以及改善固体电解质的界面电阻。本文综述了锂电池中制备不同类型的GPEs的方法,如溶液浇铸法、相转化法、原位聚合法、UV(紫外)固化法和静电纺丝法等,重点总结了不同纤维基的GPEs(聚(偏二氟乙烯)(PVDF)、聚(偏二氟乙烯-共六氟丙烯)(PVDF- HFP)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯腈(PAN)和聚间亚苯基间苯二甲酰胺(PMIA))在锂电池中的运用,并通过对不同基质的改性来改善电解质的离子电导率,阻碍锂枝晶的生长。最后,本文对锂电池中GPEs的未来发展前景进行了展望,讨论和提出的策略将为今后高性能锂电池的实际应用提供更多的途径。

Lithium batteries have been widely used. However, traditional liquid electrolyte applied in the cell bring about unsatisfactory growth of lithium dendrite and safety problems due to its leak and low boiling point. Gel polymer electrolytes (GPEs) are intermediate substance between liquid electrolyte and solid electrolyte, which can act as not only electrolyte, but also battery separator, which reduce leakage risk of liquid electrolytes and high interface resistance of solid electrolytes. In the review, the preparation methods of different types of GPEs in lithium batteries, such as solution casting, phase conversion, in-situ polymerization, UV(ultraviolet) curing and electrospinning methods are concluded, and the applications of different fibers-based GPEs (poly (vinylidenefluoride, PVDF), poly (vinylidene fluoride-co-hexafluoropropene, PVDF-HFP), polymethyl methacrylate (PMMA), poly acrylonitrile (PAN) and poly-m-phenyleneisophthalamide (PMIA)) in lithium batteries are emphatically summarized. Finally, we conclude with an outlook section to provide some insights on the future prospects of GPEs in lithium batteries. The discussion and proposed strategies in the review will offer more avenues to the practical application of lithium batteries with high electrochemical performance in the future.

Contents

1 Introduction

2 Preparation methods of GPEs

2.1 Solution casting method

2.2 Phase inversion method

2.3 In-situ polymerization technology

2.4 UV curing technology

2.5 Electrospining method

3 GPEs in lithium ion batteries

3.1 GPEs based on PVDF

3.2 GPEs based on PVDF-HFP

3.3 GPEs based on PMMA

3.4 GPEs based on PAN

3.5 GPEs based on PMIA

3.6 Others

4 Conclusion and outlook

()
图1 锂离子电池充放电原理图[1]
Fig.1 The Schematic diagram of charging and discharging of lithium ion battery[1]
图2 PP负载的POSS-(C3H6Cl)8/PVDF GPE膜的制备过程[36]
Fig.2 Preparation of POSS-(C3H6Cl)8/PVDF GPE membrane supported by PP[36]
图3 原始PVDF和PVDF/石墨烯聚合物电解质的SEM图像:(a~c)原始PVDF,(d~f)PVDF/石墨烯,(a、d)俯视图,(b、e)横视图,(c、f)仰视图[39]
Fig.3 SEM images of pristine PVDF and PVDF/graphene polymer electrolyte: (a~c) pristine PVDF, (d~f) PVDF/graphene, (a, d) top view, (b, e) cross-section view, (c, f) bottom view[39]
图4 (a)微球形成的示意图;(b)微球对GPE性能的影响[41]
Fig.4 (a) Schematic representations of the formation of microspheres; (b) the effects of microspheres on the GPE properties[41]
图5 动力学图示演示了(a)0%、(b)30%和(c)50% LiSnOS凝胶电解质混合电池的充电状态[65].
Fig.5 The schematic kinetic presentation to demonstrate the charging state of hybrid batteries with (a) 0%, (b) 30%, and (c) 50% LiSnOS in the gel electrolyte[65]
图6 PVDF-HFP/LLZO复合分离器的微观结构[53]
Fig.6 The proposed microstructure of the PVDF-HFP/LLZO composite separator[53]
图7 PHP@PHL纤维的TEM图[34]
Fig.7 TEM diagram of PHP@PHL fiber[34]
图8 凝胶聚合物电解质的制备程序:(a)在电池组件上原位聚合,用于锂电池;(b)在隔膜上原位聚合,用于LSV测量;(c)用于电导率和LSV测量的自支撑膜[67]
Fig.8 Preparation procedure for gel polymer electrolytes: (a) in situ polymerized on cell components for use in lithium-ion cells;(b) in situ polymerized on separator for use in LSV measurements; (c) self-standing membrane for use in conductivity and LSV measurements[67]
图9 原始PAN膜(a、b、c)和PAN/OMMT(d、e、f)的SEM图像:俯视图(a、d),仰视图(b、e),横截面(c、f)[16]
Fig.9 SEM images of pristine PAN membrane (a, b, c) and PAN/OMMT membrane (d, e, f): upper view (a, d), bottom view (b, e), cross section (c, f)[16]
图10 相转化法的相关机制[26]
Fig.10 The related illustrations of phase inversion method[26]
图11 纤维素/聚乙二醇GPE的锂离子传输机理原理图[27]
Fig.11 The schematic of lithium-ion transporting mechanism of cellulose/PEG GPE[27]
图12 (a)GPE@LFP阴极和GPE@LFP//CGPE//Li电池制备路线示意图;(b)GPE@LFP阴极和(c)GPE@LFP//CGPE//Li电池微观模型;(d)LFP阴极的SEM图像;(e)GPE@LFP阴极;(f)GPE@LFP阴极的TEM图像[88]
Fig.12 (a) Schematic illustration for the preparation route of GPE@LFP cathode and GPE@LFP//CGPE//Li cell; microscopic model of (b) GPE@LFP cathode and (c) GPE@LFP//CGPE//Li cell; SEM images of (d) LFP cathode; (e) GPE@LFP cathode; f) TEM images of GPE@LFP cathode[88]
[1]
Wang Q S, Mao B B, Stoliarov S I, Sun J H. Prog. Energy Combust. Sci., 2019, 73: 95.
[2]
Fan L Z, Wang X L, Long F, Wang X. Solid State Ion., 2008, 179(27/32): 1772.
[3]
Shao D S, Yang L, Luo K L, Chen M F, Zeng P, Liu H, Liu L, Chang B B, Luo Z G, Wang X Y. Chem. Eng. J., 2020, 389: 124300.
[4]
Hu Z Y, Chen J J, Guo Y, Zhu J J, Qu X X, Niu W W, Liu X K. J. Membr. Sci., 2020, 599: 117827.
[5]
Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horiz., 2016, 3(6): 487.
[6]
Verdier N, Lepage D, Zidani R, PrÉbÉ A, AymÉ-Perrot D, Pellerin C, DollÉ M, Rochefort D. ACS Appl. Energy Mater., 2020, 3(1): 1099.
[7]
Li W Y, Pang Y, Zhu T C, Wang Y G, Xia Y Y. Solid State Ion., 2018, 318: 82.
[8]
Nagajothi A J, Kannan R, Rajashabala S. Polym. Bull., 2017, 74(12): 4887.
[9]
Wang Q S, Wen Z Y, Jin J, Guo J, Huang X, Yang J H, Chen C H. Chem. Commun., 2016, 52(8): 1637.
[10]
Han D D, Wang Z Y, Pan G L, Gao X P. ACS Appl. Mater. Interfaces, 2019, 11(20): 18427.
[11]
Hao X J, Wenren H Y, Wang X L, Xia X H, Tu J P. J. Colloid Interface Sci., 2020, 558: 145.
[12]
Natarajan A, Stephan A M, Chan C H, Kalarikkal N, Thomas S. J. Appl. Polym. Sci., 2017, 134(11): 44594.
[13]
Xia Y, Liang Y F, Xie D, Wang X L, Zhang S Z, Xia X H, Gu C D, Tu J P. Chem. Eng. J., 2019, 358: 1047.
[14]
Wang X L, Hao X J, Cai D, Zhang S Z, Xia X H, Tu J P. Chem. Eng. J., 2020, 382: 122714.
[15]
Liang Y F, Xia Y, Zhang S Z, Wang X L, Xia X H, Gu C D, Wu J B, Tu J P. Electrochimica Acta, 2019, 296: 1064.
[16]
He C F, Liu J Q, Cui J Q, Li J, Wu X F. Solid State Ion., 2018, 315: 102.
[17]
He C F, Liu J Q, Li J, Zhu F F, Zhao H J. J. Membr. Sci., 2018, 560: 30.
[18]
Tan L, Deng Y Y, Cao Q, Jing B, Wang X Y, Liu Y W. Ionics, 2019, 25(8): 3673.
[19]
Liu B, Huang Y, Huang Y X, Deng X H, Song A, Lin Y H, Wang M S, Li X, Wu Y P, Cao H J. J. Appl. Electrochem., 2019, 49(12): 1167.
[20]
Marzantowicz M, Dygas J R, Krok F, Tomaszewska A, Z·ukowska G Z, Florjańczyk Z, Zygadło-Monikowska E. Electrochimica Acta, 2010, 55(19): 5446.
[21]
Huang B Y, Wang Z X, Chen L Q, Xue R J, Wang F S. Solid State Ion., 1996, 91(3/4): 279.
[22]
Ding C F, Huang L B, Guo Y R, Lan J L, Yu Y H, Fu X W, Zhong W H, Yang X P. Energy Storage Mater., 2020, 27: 25.
[23]
Das R, Pattanayak A J, Swain S K. 2018, 205.
[24]
Chen H Y, Xu P, Chen L, Li X L, Ding Y S. Mater. Lett., 2020, 277: 128391.
[25]
Shen Y Q, Zeng F L, Zhou X Y, Wang A B, Wang W K, Yuan N Y, Ding J N. J. Energy Chem., 2020, 48: 267.
[26]
Liu B, Huang Y, Cao H J, Zhao L, Huang Y X, Song A M, Lin Y H, Li X, Wang M S. J. Membr. Sci., 2018, 545: 140.
[27]
Zhao L Z, Fu J C, Du Z, Jia X B, Qu Y Y, Yu F, Du J, Chen Y. J. Membr. Sci., 2020, 593: 117428.
[28]
Nirmale T C, Karbhal I, Kalubarme R S, Shelke M V, Varma A J, Kale B B. ACS Appl. Mater. Interfaces, 2017, 9(40): 34773.
[29]
Lei B, Yang J, Xu Z X, Su S S, Wang D, Jiang J H, Feng J. Chem. Commun., 2018, 54(96): 13567.
[30]
Shao D S, Wang X Y, Li X L, Luo K L, Yang L, Liu L, Liu H. J. Solid State Electrochem., 2019, 23(10): 2785.
[31]
Paran SMR, Karimi M, Saeb MR. F. 2019,355.
[32]
Li Hongqiang, Ge Huiqin, Zhao Jianshe, Wang Jingwu, Zeng Xingrong. Paint. Coat. Ind., 2007, 37(7): 1.
( 李红强, 葛会勤, 赵建设, 王经武, 曾幸荣. 涂料工业, 2007, 37(7): 1.)
[33]
Liu R P, Wu Z R, He P, Fan H Y, Huang Z Y, Zhang L, Chang X S, Liu H, Wang C G, Li Y T. J. Materiomics, 2019, 5(2): 185.
[34]
Liu X X, Ren Y F, Zhang L, Zhang S J. Front. Chem., 2019, 7:421.
[35]
Jamalpour S, Ghahramani M, Ghaffarian S R, Javanbakht M. Polymer, 2020, 195: 122427.
[36]
Zhang Q, Liu Y, Ma J Y, Zhang M, Ma X Y, Chen F. Colloids Surf. A: Physicochem. Eng. Aspects, 2019, 580: 123750.
[37]
David B. Cordes PDL, and Franck Rataboul. Chem. Rev., 2010, 110:2081.
[38]
Zhang M, Ma X Y, Liu Y, Ma J Y, Chen F, Zhang Q. Ionics, 2019, 25(6): 2595.
[39]
Liu J Q, Wu X F, He J Y, Li J, Lai Y Q. Electrochimica Acta, 2017, 235: 500.
[40]
Xiao Q, Deng C, Wang Q, Zhang Q J, Yue Y, Ren S J. ACS Omega, 2019, 4(1): 95.
[41]
Zuo X X, Ma X D, Wu J H, Deng X, Xiao X, Liu J S, Nan J M. Electrochimica Acta, 2018, 271: 582.
[42]
Wei H R, Rodriguez K, Renneckar S, Vikesland P J. Environ. Sci.: Nano, 2014, 1(4): 302.
[43]
Pan R J, Cheung O, Wang Z H, Tammela P, Huo J X, Lindh J, Edström K, Str􀱼mme M, Nyholm L. J. Power Sources, 2016, 321: 185.
[44]
Xu J L, Liu Y W, Cao Q, Jing B, Wang X Y, Tan L. J. Chem. Sci., 2019, 131(6): 1.
[45]
Wu N, Jing B, Cao Q, Wang X Y, Kuang H, Wang Q. J. Appl. Polym. Sci., 2012, 125(4): 2556.
[46]
Lee Y Y, Liu Y Y. Electrochimica Acta (2017).
[47]
Wu X M, Liu Y, Yang Q L, Wang S, Hu G H, Xiong C X. Ionics, 2017, 23(9): 2319.
[48]
Zeng Z, Yu J, Guo Z X, Li Y. Front. Chem. China, 2006, 1(4): 459.
[49]
Mani S, Khabaz F, Godbole R V, Hedden R C, Khare R. J. Phys. Chem. B, 2015, 119(49): 15381.
[50]
Wang Q J, Song W L, Fan L Z, Shi Q. J. Power Sources, 2015, 279: 405.
[51]
Rocco A. Solid State Ion., 2004, 166(1/2): 115.
[52]
Li Y, Wong K W, Ng K M. Chem. Commun., 2016, 52(23): 4369.
[53]
Shi X Y, Sun Q W, Boateng B, Niu Y H, Han Y D, Lv W, He W D. J. Power Sources, 2019, 414: 225.
[54]
Borzutzki K, Thienenkamp J, Diehl M, Winter M, Brunklaus G. J. Mater. Chem. A, 2019, 7(1): 188.
[55]
Li Y H, Sun Z J, Shi L, Lu S Y, Sun Z H, Shi Y C, Wu H, Zhang Y F, Ding S J. Chem. Eng. J., 2019, 375: 121925.
[56]
Guo P L, Su A Y, Wei Y J, Liu X K, Li Y, Guo F F, Li J, Hu Z Y, Sun J Q. ACS Appl. Mater. Interfaces, 2019, 11(21): 19413.
[57]
Zhang P F, Li M T, Yang B L, Fang Y X, Jiang X G, Veith G M, Sun X G, Dai S. Adv. Mater., 2015, 27(48): 8088.
[58]
Zhou D, Liu R L, Zhang J, Qi X G, He Y B, Li B H, Yang Q H, Hu Y S, Kang F Y. Nano Energy, 2017, 33: 45.
[59]
Kuo P L, Tsao C H, Hsu C H, Chen S T, Hsu H M. J. Membr. Sci., 2016, 499: 462.
[60]
Shen X, Hua H M, Li H, Li R Y, Hu T X, Wu D Z, Zhang P, Zhao J B. Polymer, 2020, 201: 122568.
[61]
Kou Z Y, Liu C J, Miao C, Mei P, Yan X M, Xiao W. Ionics, 2020, 26(4): 1729.
[62]
Antunes R A, de Oliveira M C L, Ett G, Ett V. J. Power Sources, 2011, 196(6): 2945.
[63]
Yi T F, Qiu L Y, Mei J, Qi S Y, Cui P, Luo S H, Zhu Y R, Xie Y, He Y B. Sci. Bull., 2020, 65(7): 546.
[64]
Kou Z Y, Miao C, Wang Z Y, Xiao W. Solid State Ion., 2019, 343: 115090.
[65]
Kuo D H, Lo R, Hsueh T H, Jan D J, Su C H. J. Power Sources, 2019, 429: 89.
[66]
Zhang J Q, Sun B, Xie X Q, Kretschmer K, Wang G X. Electrochimica Acta, 2015, 183: 56.
[67]
Hosseinioun A, Paillard E. J. Membr. Sci., 2020, 594: 117456.
[68]
Hosseinioun A, Nürnberg P, Schönhoff M, Diddens D, Paillard E. RSC Adv., 2019, 9(47): 27574.
[69]
Wang Y F, Sun M, Liu W L, Ren M M, Kong F G, Wang S J, Wang X Q, Peng D, Sun J L. Ionics, 2019, 25(8): 3695.
[70]
Zhang Z P, Gu A J, Liang G Z, Ren P G, Xie J Q, Wang X L. Polym. Degrad. Stab., 2007, 92(11): 1986.
[71]
Huang Y X, Huang Y, Liu B, Cao H J, Zhao L, Song A, Lin Y H, Wang M S, Li X, Zhang Z P. Electrochimica Acta, 2018, 286: 242.
[72]
Lan Z, Wu J H, Wang D B, Hao S C, Lin J M, Huang Y F. Sol. Energy, 2006, 80(11): 1483.
[73]
Wu J H, Lan Z, Wang D B, Hao S C, Lin J M, Huang Y F, Yin S, Sato T. Electrochimica Acta, 2006, 51(20): 4243.
[74]
Cao J, Wang L, Fang M, Shang Y M, Deng L F, Yang J P, Li J J, Chen H, He X M. Electrochimica Acta, 2013, 114: 527.
[75]
Liao Y H, Sun C J, Hu S J, Li W S. Electrochimica Acta, 2013, 89: 461.
[76]
Tseng Y H, Lin Y H, Subramani R, Su Y H, Lee Y L, Jan J S, Chiu C C, Hou S S, Teng H. J. Power Sources, 2020, 480: 228802.
[77]
Zhai Y Y, Wang N, Mao X, Si Y, Yu J Y, Al-Deyab S S, El-Newehy M, Ding B. J. Mater. Chem. A, 2014, 2(35): 14511.
[78]
Kang W M, Deng N P, Ma X M, Ju J G, Li L, Liu X H, Cheng B W. Electrochimica Acta, 2016, 216: 276.
[79]
Zhao H J, Deng N P, Ju J G, Li Z J, Kang W M, Cheng B W. Mater. Lett., 2019, 236: 101.
[80]
Zhao H J, Deng N P, Kang W M, Li Z J, Wang G, Cheng B W. Energy Storage Mater., 2020, 26: 334.
[81]
Zhao H J, Deng N P, Kang W M, Cheng B W. Chem. Eng. J., 2020, 390: 124571.
[82]
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev., 2011, 40(7): 3941.
[83]
Du Z, Su Y Z, Qu Y Y, Zhao L Z, Jia X B, Mo Y, Yu F, Du J, Chen Y. Electrochimica Acta, 2019, 299: 19.
[84]
Yu F, Zhang H B, Zhao L Z, Sun Z P, Li Y L, Mo Y, Chen Y. Carbohydr. Polym., 2020, 246: 116622.
[85]
Gou J R, Liu W Y, Tang A M. Polymer, 2020, 208: 122943.
[86]
Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater., 2018, 10: 85.
[87]
Long L Z, Wang S J, Xiao M, Meng Y Z. J. Mater. Chem. A, 2016, 4(26): 10038.
[88]
Zhang S Z, Xia X H, Xie D, Xu R C, Xu Y J, Xia Y, Wu J B, Yao Z J, Wang X L, Tu J P. J. Power Sources, 2019, 409: 31.
[89]
Zheng J Y, Yang Y W, Feng X M, Li X, Zhen X M, Chen W H, Zhao Y F. React. Funct. Polym., 2020, 149: 104535.
[90]
Ai G, Dai Y L, Ye Y F, Mao W F, Wang Z H, Zhao H, Chen Y L, Zhu J F, Fu Y B. Nano Energy 2015, 16: 28.
[91]
Xu Z Q, Li W L, Chen Z, Wang D X, Feng T T, Potapenko H, Wu M Q. Macromol. Mater. Eng., 2019, 304(1): 1800477.
[92]
Filippin A N, Sanchez-Valencia J R, Idígoras J, Macias-Montero M, Alcaire M, Aparicio F J. Advanced Materials Interfaces, 2017, 4:1601233.
[93]
Xue Z G, He D, Xie X L. J. Mater. Chem. A, 2015, 3(38): 19218.
[94]
Jin L, Ahmed F, Ryu T, Yoon S, Zhang W, Lee Y, Kim D, Jang H, Kim W. Membranes, 2019, 9(11): 139.
[95]
Liu M, Wang Y, Li M, Li G Q, Li B, Zhang S T, Ming H, Qiu J Y, Chen J H, Zhao P C. Electrochimica Acta, 2020, 354: 136622.
[1] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[2] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[3] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[4] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[5] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[6] 张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 钠基固体电解质及其在能源上的应用[J]. 化学进展, 2019, 31(1): 210-222.
[7] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[8] 张恒, 郑丽萍, 聂进, 黄学杰, 周志彬. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26(06): 1005-1020.
[9] 崔孟忠,李竹云,张洁,冯圣玉. 硅氧烷基聚合物电解质*[J]. 化学进展, 2008, 20(12): 1987-1997.
[10] 冯旭,何向明,蒲薇华,万春荣,姜长印. 锂电池正极材料FeS2[J]. 化学进展, 2008, 20(0203): 396-404.
[11] 程琥 李涛 杨勇 . 锂/聚合物电解质电化学固/固界面的研究[J]. 化学进展, 2006, 18(05): 542-549.
[12] 凌志军,何向明,李建军,姜长印,万春荣. 锂离子聚合物常温固体电解质的研究进展[J]. 化学进展, 2006, 18(04): 459-466.
[13] 赵峰,钱新明,汪尔康,董绍俊. 离子导电聚合物电解质的研究*[J]. 化学进展, 2002, 14(05): 374-.
[14] 王庆伟,谢德民. 凝胶电解质的研究进展[J]. 化学进展, 2002, 14(03): 167-.
阅读次数
全文


摘要