English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2033-2055 DOI: 10.7536/PC200955 前一篇   后一篇

• 综述 •

基于Ti3C2-MXene的太阳能界面水汽转换

徐佑森1, 张振1,2,*(), 唐彪1,*(), 周国富1,2,3   

  1. 1 华南师范大学华南先进光电子研究院 广东省光信息材料与技术重点实验室&彩色动态电子纸显示技术研究所 广州 510006
    2 国家绿色光电子国际联合研究中心华南师范大学-荷兰埃因霍温理工大学 响应型材料与器件集成国际联合实验室 广州 510006
    3 深圳市国华光电研究院 深圳 518110
  • 收稿日期:2020-09-28 修回日期:2020-10-21 出版日期:2021-11-20 发布日期:2020-12-22
  • 通讯作者: 张振, 唐彪
  • 基金资助:
    广东省自然科学基金-面上项目(1914050005542); 广东省科学技术厅-海外名师项目(191900014); 教育部“长江学者和创新团队发展计划”(IRT_17R40); 广州市科技计划(2019050001); 广东省光信息材料与技术重点实验室(2017B030301007); 云南院士专家工作站和闪思科技ScienceK资助

Ti3C2-MXene for Interfacial Solar Steam Generation

Yousen Xu1, Zhen Zhang1,2(), Biao Tang1(), Guofu Zhou1,2,3   

  1. 1 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University,Guangzhou 510006, China
    2 SCNU-TUE Joint Lab of Device Integrated Responsive Materials(DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
    3 Academy of Shenzhen Guohua Optoelectronics, Shenzhen 518110, China
  • Received:2020-09-28 Revised:2020-10-21 Online:2021-11-20 Published:2020-12-22
  • Contact: Zhen Zhang, Biao Tang
  • Supported by:
    Natural Science Foundation of Guangdong Province(1914050005542); Department of Science and Technology of Guangdong Province(191900014); Program for Chang Jiang Scholars and Innovative Research Teams in Universities(IRT_17R40); Science and Technology Program of Guangzhou(2019050001); Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(2017B030301007); 111 Project and Yunnan expert workstation and ScienceK Ltd.

水资源匮乏是现代化发展中面临的全球性问题,太阳能界面水汽转换(Interfacial Solar Steam Generation, ISSG)是一种高效、绿色、低成本进行海水淡化和废水处理的方法。ISSG使用绿色的太阳能作为热源,通过光热转换并将热限制在水气界面上以高效产生蒸气,然后经过冷凝收集获得清洁水。设计和构筑具有强光吸收的光热转换材料是ISSG的技术核心。Ti3C2-MXene是一种新型二维碳化钛材料,具有比表面积大、水分散性好和光热转换效率高等优点,在ISSG领域具有巨大的应用潜力。本文介绍了ISSG技术和MXene,总结了光热转换材料的设计原则,论述了Ti3C2-MXene复合材料在ISSG领域的研究进展,其中包括二维MXene薄膜、三维MXene气凝胶和水凝胶、生物基-MXene复合材料的构筑和性能等,并分析了Ti3C2-MXene所面临的挑战和发展前景。

Interfacial Solar Steam Generation(ISSG) is a promising technology for seawater desalination and wastewater treatment, providing an efficient, green, and low-cost method to address the globally water shortage issue. ISSG employs the green and wide-spread solar energy as the energy resource and localizes the heat converted from sunlight at the water-air interface, leading to an enhanced interfacial temperature and solar steam generation efficiency. Designing and fabricating the photothermal conversion materials with high light absorption is the key for ISSG technology. Ti3C2-MXene is a recently developed two-dimensional titanium carbide and possesses many fascinating properties, such as large specific surface area, well water-dispersibility, and high photothermal conversion ability. Therefore, Ti3C2-MXene shows promising potentials as photothermal conversion material for ISSG. The application of Ti3C2-MXene in ISSG attracts much attention and becomes one of the hottest topics in recent years. In this review, we first introduce the ISSG technology, MXene, general principles for designing photothermal materials, and then elaborate the recent research progress of Ti3C2-MXene composites for ISSG, including the design and fabrication of two-dimensional MXene films, three-dimensional MXene hydrogels or aerogels, bio-based MXene nanocomposites, etc. In the end, the promising prospects and challenges of Ti3C2-MXene for ISSG applications are discussed.

Contents

1 Introduction

1.1 Interfacial solar steam generation

1.2 Design and example analysis of material system in ISSG

1.3 Ti3C2-MXene

1.4 Applications of Ti3C2-MXene for ISSG

2 Research progress of Ti3C2 in interfacial solar steam generation

2.1 Two-dimensional MXene membrane

2.2 Three-dimensional MXene composite material

2.3 Bio-based and biomimetic MXene nanocomposites

3 Development prospects and challenges

4 Conclusion and outlook

()
图1 (a)rGO-MWCNTs复合薄膜[59];CVPD制备PPy薄膜(b)[60]、三明治(c)[60]和蘑菇结构[62](d)的太阳能界面水汽转换材料体系
Fig. 1 (a) rGO-MWCNTs membrane[59]. Copyright 2018, Royal Society of Chemistry;(b) PPy membrane made from CVPD[60]. Solar steam generation system of sandwich(c)[60] and mushroom structure(d)[62]. Copyright 2018, John Wiley and Sons. Copyright 2017, John Wiley and Sons
图2 M2AX、M3AX2和M4AX3晶体结构的示意图[73.]
Fig. 2 Schematics of M2AX, M3AX2 and M4AX3 crystal structures[73]. Copyright 2017, Springer Nature
图3 SEM图像:刻蚀前的Ti3AlC2(a,c,e,i,k);HF刻蚀制备的Ti3C2-MXene(b)[96];HCl/LiF刻蚀制备的Ti3C2-MXene(d)[97];NaHF2(f)、KHF2(g)和NH4HF2(h)刻蚀制备的Ti3C2-MXene[98];浓碱法刻蚀制备的Ti3C2-MXene(j)[99];NaOH和H2SO4刻蚀制备的Ti3C2-MXene(l)[100];HR-TEM图像:电化学刻蚀制备前(m)后(n)的Ti3AlC2[101]
Fig. 3 SEM images of Ti3AlC2 before etching(a, c, e, i, k); HF etching prepared Ti3C2-MXene[96](b). Copyright 2012, American Chemical Society; HCl/LiF etching prepared Ti3C2-MXene[97](d). Copyright 2019, John Wiley and Sons; NaHF2(f), KHF2(g) and NH4HF2(h) etching prepared Ti3C2-MXene[98]. Copyright 2017, Elsevier; Concentrated alkali etching prepared Ti3C2-MXene[99](j). Copyright 2018, WILEY-VCH; NaOH/H2SO4 etching prepared Ti3C2-MXene[100](l). Copyright 2014, Royal Society of Chemistry; HR-TEM images of Ti3AlC2 before(m) and after(n) electrochemical etching[101]. Copyright 2018, WILEY-VCH
表1 Ti3C2-MXene复合材料在太阳能水汽转换的部分参数
Table 1 Summary of Ti3C2-MXene for solar steam generation
图4 (a)抗菌Ti3C2-MXene/纤维素薄膜;(b)由PS和CMF组成的材料体系;(c)1 Sun下纯水、rGO/纤维素薄膜和Ti3C2-MXene/纤维素薄膜的水蒸发速率和光热水汽转换效率;(d)不同光照强度下Ti3C2-MXene/纤维素薄膜的水蒸发速率和光热水汽转换效率;rGO/纤维素薄膜和Ti3C2-MXene/纤维素薄膜对大肠杆菌(e,g)和金黄色葡萄球菌(f,h)的抗菌效果[112]
Fig. 4 (a) Antibacterial Ti3C2-MXene/ cellulose membrane;(b) system composed of PS and CMF;(c) water evaporation rates and solar steam efficiency of bulk water, rGO/cellulose, and Ti3C2-MXene/cellulose membranes under the solar illumination of 1 sun;(d) water evaporation rates of Ti3C2-MXene/cellulose membrane under the solar illumination of different intensities; antibacterial performance of rGO/cellulose and Ti3C2-MXene/cellulose membranes for E. coli (e, g) and S. aureus(f, h)[112]. Copyright 2019, American Chemical Sociey
图5 (a)疏水d-Ti3C2膜的制备过程和(b)材料体系结构;亲、疏水d-Ti3C2膜经过24 h海水淡化前(c,e)和后(d,f)的照片;亲水(g)和疏水d-Ti3C2膜(h)太阳能海水淡化过程;(i)海水淡化前后四种主要离子浓度的变化;(j)有机溶液和重金属离子的净化效率[54]
Fig. 5 (a) Fabrication process and(b) system architecture of the hydrophobic d-Ti3C2 membrane; optical photographs of the hydrophilic and hydrophobic d-Ti3C2 membranes before(c, e) and after(d, f) 24 h solar desalination; solar desalination process of(g) hydrophilic and(h) hydrophobic d-Ti3C2 membranes;(i) measured salinity of four primary ions before and after solar desalination;(j) organic and heavy metal ion rejection performance[54]. Copyright 2018, Royal Society of Chemistry
图6 (a)制作PDA@MXene光吸收层和(b)材料体系结构的示意图;(c)1 Sun下不同样品的水量变化;(d)不同样品在不同光强照射下的水蒸发速率和(e)光热水汽转换效率[113]
Fig. 6 Schematic illustration of the(a) fabrication of PDA@MXene light absorption layer and(b) system architecture;(c) mass change of water with different samples under the solar illumination of 1 sun;(d) water evaporation rates and(e) solar steam efficiency of different samples under different solar illumination intensities[113]. Copyright 2019, Springer Nature
图7 (a)CAM膜的(b)T形太阳能界面水汽转换装置示意图;(c)海水淡化前后离子浓度比较显示出的盐净化效率[114]
Fig. 7 Schematic illustration of(b) T-shaped solar steam generation setup based(a) CAM membrane;(c) salt rejection rate revealed by ion concentration comparison before and after desalination[114]. Copyright 2020, John Wiley and Sons
图8 水凝胶诱导的水活化[61]
Fig. 8 Hydrogel-induced water activation[61]. Copyright 2019, AAAS
图9 (a)树木将水从根部输送到树干顶部的示意图,树中垂直排列的微通道提供的开放通道有利于水的运输和蒸汽的逸出。右边为木材顶部和横截面(底部)的SEM图;(b)TIH的制备过程示意图;(c)TIH的原理图:水通过垂直排列的通道运输(右下)以及水分子与分子网格(右上)的相互作用调节水分蒸发焓和水分蒸发焓;(d)海水淡化前后四种主要离子的浓度;(e)水净化前后BB和RhB水溶液的紫外-可见光谱[49]
Fig. 9 (a) Schematic diagram of water being transferred from root to top of trunk by tree, open channels provided by vertically aligned microchannels in tree are beneficial to water transport and vapor release. The scanning electron microscopy(SEM) images on the right are the top view(top) and cross-section(bottom) of wood;(b) schematic illustration of the preparation process of TIH;(c) schematic of the TIH, water transport through vertically aligned channels(lower right) and the water evaporation enthalpy can be tuned by the interaction between water molecules and molecular mesh(upper right);(d) the concentration of four main ions in seawater before and after desalination;(e) UV-vis spectroscopy of BB and RhB aqueous solutions before and after water purification[49]. Copyright 2020, WILEY-VCH
图10 (a)Janus VA-MXA的制备过程;Janus VA-MXA的(b)俯视、(c)侧视和(d)断面图像;(e)Janus VA-MXA上层的SEM图像[53]
Fig. 10 (a) Fabrication process of a Janus VA-MXA; digital photograph of the(b) top view,(c) side view and(d) the fracture face of the as-prepared Janus VA-MXA;(e)SEM image of the upper layer of prepared Janus VA-MXA[53]. Copyright 2020, American Society Chemistry
图11 (a)CMA基于协同光热和电热转换的全天候蒸气生成系统的概念图;(b)CMA的制造工艺示意图;(c)标准海水样品中四种主要离子在蒸发前后的浓度测量;(d)在0.5 Sun和5 V电压供电的组合下,CMA的水分蒸发稳定性超过20个周期,内嵌:水在第一周期和第20周期的质量变化;(e)太阳能电池将阳光转化为电力并将其存储到电池中,以便进一步为CMA供电的示意图;(f)一套大规模蒸气发电系统的光学照片;(g)上午9:00至下午23:00,SC-B组件的充电电流密度;(h)有无SC-B组件,CMA的水蒸发速率[128]
Fig. 11 (a) Conceptual schematic of the all-weather steam generation system based on the synergistic photo-thermal and electro-thermal conversion of CMA;(b) schematic illustration for the fabrication process of CMA;(c) the measured concentrations of four primary ions in a standard seawater sample before(original) and after evaporation desalination;(d) the water evaporation durability performance of CMA under the combined solar illumination of 0.5 sun and voltage supply of 5 V over 20 cycles, and insets of(d) are the mass change of water with the CMA in the 1st cycle and 20th cycle;(e) schematic illustration showing that the solar cells convert sunlight into electricity and store it into battery for further powering the steam generator;(f) optical photographs of a set of large-scale steam generation system;(g) the charging current density of SC-B components at different times from 9:00 am to 23:00 pm;(h) the water evaporation rates at different times in two situations, that is with SC-B or without SC-B[128]. Copyright 2019, Royal Society of Chemistry)
图12 (a~c)GMA制备过程示意图;(d)立在芦笋顶端的超轻GMA的图像[129]
Fig. 12 (a~c) Schematic illustration of the fabrication process of GMA;(d) digital image of the ultralight GMA standing on the tip of Asparagus Fern leaves[129]. Copyright 2020, Elsevier
图13 以GMA-3为基础进行的工作:(a)太阳能驱动界面海水淡化装置示意图;(b)太阳能驱动界面海水淡化前后人工海水中5种离子浓度变化;(c)1 Sun光强照射下,在纯水和海水中进行30个周期稳定性试验,每个周期30 min;(d)太阳能驱动的水净化前后,人工废水中7种主要金属离子的浓度变化;太阳能驱动的水净化前后,GMA对自然湖水(武汉沙湖)和人工细菌溶液(大肠杆菌)的(e)灭菌结果和(f)数据,(e)内嵌图为大肠杆菌溶液的照片;太阳能驱动的水净化(g,h)前后,油/水混合乳液的光学显微镜图像,(h)内嵌图为油/水混合乳液在净化前(左)和净化后(右)的照片;(i)对油/水混合乳液进行太阳能驱动的水净化稳定性试验;(j)油/水混合乳液净化后的水纯度[129]
Fig. 13 GMA-3 based work(a) schematic illustration of a designed solar-driven interfacial desalination still;(b) concentrations of five primary ions in the artificial seawater before and after solar driven desalination;(c) endurance tests in pure water and seawater for 30 cycles under 1 sun, Each cycle is 30 mins;(d) concentrations of seven primary metal ions in artificial wastewater before and after solar-driven purification;(e) sterilization results and(f) performance of natural lake water(Sha Lake, Wuhan) and artificial bacterial solution(E. coli) before and after solar-driven interfacial evaporation, respectively. Inset of(e), the photograph of E. coli solution;(g, h) optical microscopy images of emulsified oil/water mixtures before and after solar-driven separation, Inset of(h), the photograph of emulsified oil/water mixtures before(left) and after(right) separation;(i) the cyclic test of solar-driven water purification for emulsified oil/water mixtures;(j) the water purity of emulsified oil/water mixtures after purification[129]. Copyright 2020, Elsevier
图14 (a)3D CMF@d-Ti3C2的制备工艺图;(b)基于3D CMF@d-Ti3C2的太阳能界面转换材料体系;1 Sun下3D CMF@d-Ti3C2和二维d-Ti3C2膜的(c)水量变化与对应的(d)光热水汽转换效率[51]
Fig. 14 (a) Schematic illustration of the fabrication procedures of the 3D CMF@d-Ti3C2;(b) the 3D CMF@d-Ti3C2 based solar evaporator;(c) mass change of water through evaporation and the corresponding(d) solar to vapor conversion efficiency of the 3D CMF@d-Ti3C2 and the 2D d-Ti3C2 membrane[51]. Copyright 2019, World Scientific Publishing Co. Pte Ltd
图15 (a)HF刻蚀法制备Ti3C2-MXene的工艺图;(b)3DMAs的制备工艺图;(c)嵌入EPE的材料体系结构;(d)盐度为20的标准海水样品中的4种主要离子在水净化前后的测量浓度变化;甲基蓝(MB)和甲基橙(MO)溶液在水净化前后(e,f)的吸收光谱图,(e,f)内嵌图为MB和MO水净化前后照片;(g)太阳能界面海水淡化和废水净化后,金属离子和有机染料的净化率[130]
Fig. 15 (a) HF etching process diagram for preparation of Ti3C2-MXene;(b) preparation process diagram of 3DMAs;(c) embedded EPE architecture;(d) the measured concentrations of four primary ions in a standard seawater sample with salinity of 20 before(original) and after evaporation; absorption spectra of methylene blue(MB) and methyl orange(MO) solutions before evaporation(black line) and corresponding condensed pure water after evaporation(red line), respectively(e, f), inset in(e, f) is the optical photographs of MB and MO before and after evaporation;(g) metal ion and organic dye rejection performance undergoing solar seawater desalination and wastewater purification[130]. Copyright 2019, Royal Society of Chemistry
图16 (a)Ti3C2-Wood的制备工艺图;在50 ℃的太平洋水中浸泡后(b)普通木材和(c)Ti3C2-wood的储存模量随时间的变化[135]
Fig. 16 (a) Preparation process diagram of Ti3C2-Wood; storage modulus versus time of(b) wood and(c) Ti3C2-wood after soaking in the Pacific water for a certain time at 50 ℃[135]. Copyright 2020, American Society Chemistry
图17 (a)西非加蓬蝰蛇的照片;(b)黑色背部鳞片的照片(左)和SEM图像(右),黑色鳞片表面覆盖着密集的微冠结构;(c)黑色鳞片的高倍SEM图像,微冠结构上有支化的纳米结构;(d)G1 MXene纳米涂层的照片(左,比例尺:1 cm)和SEM图像(右,比例尺:10 μm);(e)分层MXene纳米涂层的SEM图像(比例尺:30 μm);(f)具有宽带光吸收和增强光热性能的仿生MXene纳米涂层示意图;(g)用于高效光热转换的仿生MXene纳米涂层ISSG材料装置的示意图[136]
Fig. 17 (a) Digital photograph of Bitis rhinoceros, the West African Gaboon viper;(b) digital photograph(left) and SEM image(right) of the black dorsal scales of Bitis rhinoceros, the surface of the black scales was covered with intensive microcrest structures;(c) high magnitude SEM image of the black scale, branched nanoridges were present on the microcrest structures;(d) digital photograph(left, scale bar 1 cm) and SEM image(right, scale bar 10 μm) of the G1 MXene nanocoating;(e) SEM image of the hierarchical MXene nanocoating(scale bar 30 μm);(f) schematic illustration of the biomimetic MXene nanocoating with broadband light absorption and enhanced light-to-heat performance;(g) schematic illustration of the solar steam-generation device with the bioinspired MXene nanocoating for high solar-thermal conversion[136]. Copyright 2019, WILEY-VCH
图18 (a)仿生三维球形结构的太阳能界面水汽转换材料;(b)Co3O4/Ti3C2-MXene光吸收层的制备图; (c)1 Sun光强照射下,不同光照角度的三维CM-0.1/织物球体的水分蒸发重量随时间的变化;(d)二维和三维结构的水汽转换材料的水蒸发速率及相较于空白样品相应效率增强因子;(e)蒸发前模拟海水及冷凝水中Na+的重量百分比(1.4 wt%、3.5 wt%、4.1 wt%);(f)模拟的废水净化表现:MO(464 nm)和MB(663 nm)的吸收峰在冷凝水中消失;(g)ICP测定的重金属离子污水和冷凝水中Cu2+、Pb2+、Cd2+的离子浓度;(h)在1 Sun光强照射下,对三维 CM-0.1/织物球体进行循环太阳蒸发测试[137]
Fig. 18 (a) The biomimetic architectural structure of 3D spherical evaporator;(b) schematic illustration showing the stepwise preparation of Co3O4/ Ti3C2-MXene composites;(c) cumulative weight loss of 3D CM-0.1/fabric sphere through water evaporation over time under 1.0 sun illumination in different angles;(d) evaporation rate and corresponding enhancement factor of efficiency for 2D and 3D evaporator in comparison to the blank sample;(e) the weight percentage of Na+ of the condensed water evaporated from the simulated seawater(1.4 wt%, 3.5 wt%, 4.1 wt%);(f) simulated wastewater purified performance; the absorption peaks of MO(at 464 nm) and MB(at 663 nm) disappeared in the condensed water;(g) the ion concentration of Cu2+, Pb2+, and Cd2+ in heavy metal ion sewage and purified water obtained by ICP measurement;(h) the cycling solar evaporation measurements for 3D CM-0.1/fabric sphere under 1.0 sun illumination[137]. Copyright 2020, WILEY-VCH
[1]
Kumar D S, Askarunisa A, Kumar R M. Microprocess. Microsyst., 2020, 77: 103167.
[2]
Qin Y, Mueller N D, Siebert S, Jackson R B, AghaKouchak A, Zimmerman J B, Tong D, Hong C P, Davis S J. Nat. Sustain., 2019, 2(6): 515.

doi: 10.1038/s41893-019-0294-2     URL    
[3]
Rosa L, Chiarelli D D, Rulli M C, Dell’Angelo J, D’Odorico P. Sci. Adv., 2020, 6(18): 6031.
[4]
Delpasand M, Bozorg-Haddad O, Loáiciga H A. Sci. Total. Environ., 2020, 743: 140797.
[5]
Tao S L, Zhang H, Feng Y H, Zhu J L, Cai Q, Xiong X Y, Ma S H, Fang L Q, Fang W J, Tian D, Zhao X, Fang J Y. Front. Ecol. Environ., 2020, 18(4): 188.

doi: 10.1002/fee.v18.4     URL    
[6]
Dalin C, Qiu H G, Hanasaki N, Mauzerall D L, Rodriguez-Iturbe I. PNAS, 2015, 112(15): 4588.

doi: 10.1073/pnas.1504345112     URL    
[7]
Li B, Yang Z W, Xu X Y. J. Clean. Prod., 2019, 229: 818.

doi: 10.1016/j.jclepro.2019.04.405     URL    
[8]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Nature, 2008, 452(7185): 301.

doi: 10.1038/nature06599     URL    
[9]
Henthorne L, Boysen B. Desalination, 2015, 356: 129.

doi: 10.1016/j.desal.2014.10.039     URL    
[10]
Fritzmann C, Löwenberg J, Wintgens T, Melin T. Desalination, 2007, 216(1/3): 1.

doi: 10.1016/j.desal.2006.12.009     URL    
[11]
Kalogirou S A. Prog. Energy Combust. Sci., 2005, 31(3): 242.

doi: 10.1016/j.pecs.2005.03.001     URL    
[12]
Khawaji A D, Kutubkhanah I K, Wie J M. Desalination, 2008, 2211-3: 47.
[13]
Xu W C. Master Dissertation of Nanjing University, 2018.
(徐炜超. 南京大学硕士论文, 2018.)
[14]
Xiao G, Wang X H, Ni M J, Wang F, Zhu W J, Luo Z Y, Cen K F. Appl. Energy, 2013, 103: 642.

doi: 10.1016/j.apenergy.2012.10.029     URL    
[15]
Sharon H, Reddy K S. Renew. Sustain. Energy Rev., 2015, 41: 1080.

doi: 10.1016/j.rser.2014.09.002     URL    
[16]
Mashaly A F, Alazba A A, Al-Awaadh A M. Desalination Water Treat., 2016, 57(26): 12019.

doi: 10.1080/19443994.2015.1048738     URL    
[17]
Srithar K, Rajaseenivasan T, Karthik N, Periyannan M, Gowtham M. Renew. Energy, 2016, 90: 157.

doi: 10.1016/j.renene.2015.12.063     URL    
[18]
Arunkumar T, Velraj R, Denkenberger D C, Sathyamurthy R, Kumar K V, Ahsan A. Renew. Energy, 2016, 88: 391.

doi: 10.1016/j.renene.2015.11.051     URL    
[19]
Li S F, Liu Z H, Shao Z X, Xiao H S, Xia N. Appl. Energy, 2018, 213: 343.

doi: 10.1016/j.apenergy.2018.01.064     URL    
[20]
Krnac A, Araiz M, Rana S, Velardo J, Date A. Energy Procedia, 2019, 160: 246.

doi: 10.1016/j.egypro.2019.02.143     URL    
[21]
Wang G, Wang F S, Chen Z S, Hu P, Cao R F. Renew. Energy, 2019, 134: 284.

doi: 10.1016/j.renene.2018.11.009     URL    
[22]
Elashmawy M. Desalination, 2017, 411: 1.

doi: 10.1016/j.desal.2017.02.003     URL    
[23]
Hosseini A, Banakar A, Gorjian S. Desalination, 2018, 435: 45.

doi: 10.1016/j.desal.2017.12.031     URL    
[24]
Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G. Nat. Commun., 2014, 5(1): 4449.

doi: 10.1038/ncomms5449     URL    
[25]
Lin Y W, Xu H, Shan X L, Di Y S, Zhao A Q, Hu Y J, Gan Z X. J. Mater. Chem. A, 2019, 7(33): 19203.

doi: 10.1039/C9TA05935K     URL    
[26]
Zhu L L, Gao M M, Peh C K N, Ho G W. Nano Energy, 2019, 57: 507.

doi: 10.1016/j.nanoen.2018.12.046     URL    
[27]
Feng L, Huo P C, Liang Y Z, Xu T. Adv. Mater., 2019: 1903787.
[28]
Zhang P P, Liao Q H, Yao H Z, Huang Y X, Cheng H H, Qu L T. Energy Storage Mater., 2019, 18: 429.
[29]
Zhou J H, Gu Y F, Liu P F, Wang P F, Miao L, Liu J, Wei A Y, Mu X J, Li J L, Zhu J. Adv. Funct. Mater., 2019, 29(50): 1903255.
[30]
Cao S S, Jiang Q S, Wu X H, Ghim D, Gholami Derami H, Chou P I, Jun Y S, Singamaneni S. J. Mater. Chem. A, 2019, 7(42): 24092.

doi: 10.1039/C9TA06034K     URL    
[31]
Wang G, Fu Y, Ma X F, Pi W B, Liu D W, Wang X B. Carbon, 2017, 114: 117.

doi: 10.1016/j.carbon.2016.11.071     URL    
[32]
Wang Z Z, Ye Q X, Liang X B, Xu J L, Chang C, Song C Y, Shang W, Wu J B, Tao P, Deng T. J. Mater. Chem. A, 2017, 5(31): 16359.

doi: 10.1039/C7TA03262E     URL    
[33]
Zhao L Y, Wang P S, Tian J, Wang J H, Li L, Xu L Q, Wang Y, Fei X, Li Y. Sci. Total. Environ., 2019, 668: 153.

doi: 10.1016/j.scitotenv.2019.02.407     URL    
[34]
Yang J L, Pang Y S, Huang W X, Shaw S K, Schiffbauer J, Pillers M A, Mu X, Luo S R, Zhang T, Huang Y J, Li G X, Ptasinska S, Lieberman M, Luo T F. ACS Nano, 2017, 11(6): 5510.

doi: 10.1021/acsnano.7b00367     URL    
[35]
Zhang W, Zhang G, Ji Q H, Liu H J, Liu R P, Qu J H. ACS Appl. Mater. Interfaces, 2019, 11(10): 9974.

doi: 10.1021/acsami.8b21800     URL    
[36]
Jin Y, Chang J, Shi Y, Shi L, Hong S, Wang P. J. Mater. Chem. A, 2018, 6(17): 7942.

doi: 10.1039/C8TA00187A     URL    
[37]
Chen C J, Li Y J, Song J W, Yang Z, Kuang Y D, Hitz E, Jia C, Gong A, Jiang F, Zhu J Y, Yang B, Xie J, Hu L B. Adv. Mater., 2017, 29(30): 1701756.
[38]
Guo L P, Gong J, Song C Y, Zhao Y L, Tan B E, Zhao Q, Jin S B. ACS Energy Lett., 2020, 5(4): 1300.

doi: 10.1021/acsenergylett.0c00394     URL    
[39]
Fu Y, Wang G, Ming X, Liu X H, Hou B F, Mei T, Li J H, Wang J Y, Wang X B. Carbon, 2018, 130: 250.

doi: 10.1016/j.carbon.2017.12.124     URL    
[40]
Huo B B, Jiang D G, Cao X Y, Liang H, Liu Z, Li C W, Liu J Q. Carbon, 2019, 142: 13.

doi: 10.1016/j.carbon.2018.10.008     URL    
[41]
Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J. Adv. Mater., 2017, 29(5):1604031.
[42]
Li Y J, Gao T T, Yang Z, Chen C J, Kuang Y D, Song J W, Jia C, Hitz E M, Yang B, Hu L B. Nano Energy, 2017, 41: 201.

doi: 10.1016/j.nanoen.2017.09.034     URL    
[43]
Li C W, Jiang D G, Huo B B, Ding M C, Huang C C, Jia D D, Li H X, Liu C Y, Liu J Q. Nano Energy, 2019, 60: 841.

doi: 10.1016/j.nanoen.2019.03.087     URL    
[44]
Li W G, Li Z, Bertelsmann K, Fan D E. Adv. Mater., 2019, 31(29): e1900720.
[45]
Wang X, Liu Q, Wu S, Xu B, Xu H. Adv. Mater., 2019, 31: e1807716.
[46]
Zada I, Zhang W, Sun P, Imtiaz M, Iqbal N, Ghani U, Naz R, Zhang Y X, Li Y, Gu J J, Liu Q L, Pantelić D, Jelenković B, Zhang D. Appl. Mater. Today, 2020, 20: 100669.
[47]
Sun Z Z, Li W Z, Song W L, Zhang L C, Wang Z K. J. Mater. Chem. A, 2020, 8(1): 349.

doi: 10.1039/C9TA10898J     URL    
[48]
Qiao P Z, Wu J X, Li H Z, Xu Y C, Ren L P, Lin K, Zhou W. ACS Appl. Mater. Interfaces, 2019, 11(7): 7066.

doi: 10.1021/acsami.8b20665     URL    
[49]
Yu Z C, Wu P Y. Adv. Mater. Technol., 2020, 5(6): 2000065.
[50]
Zhao F, Zhou X Y, Shi Y, Qian X, Alexander M, Zhao X P, Mendez S, Yang R G, Qu L T, Yu G H. Nat. Nanotechnol., 2018, 13(6): 489.

doi: 10.1038/s41565-018-0097-z     pmid: 29610528
[51]
Ju M M, Yang Y W, Zhao J Q, Yin X T, Wu Y T, Que W X. J. Adv. Dielect., 2019, 9(6): 1950047.
[52]
Xu W Z, Xing Y, Liu J, Wu H P, Cui Y, Li D W, Guo D Y, Li C R, Liu A P, Bai H. ACS Nano, 2019, 13(7): 7930.

doi: 10.1021/acsnano.9b02331     URL    
[53]
Zhang Q, Yi G, Fu Z, Yu H T, Chen S, Quan X. ACS Nano, 2019, 13(11): 13196.

doi: 10.1021/acsnano.9b06180     pmid: 31633904
[54]
Zhao J Q, Yang Y W, Yang C H, Tian Y P, Han Y, Liu J, Yin X T, Que W X. J. Mater. Chem. A, 2018, 6(33): 16196.

doi: 10.1039/C8TA05569F     URL    
[55]
Finnerty C, Zhang L, Sedlak D L, Nelson K L, Mi B X. Environ. Sci. Technol., 2017, 51(20): 11701.

doi: 10.1021/acs.est.7b03040     pmid: 28892371
[56]
Chen R, Wang X, Gan Q M, Zhang T Q, Zhu K H, Ye M M. J. Mater. Chem. A, 2019, 7(18): 11177.

doi: 10.1039/C9TA02002K     URL    
[57]
Shan X L, Lin Y W, Zhao A Q, Di Y S, Hu Y J, Guo Y J, Gan Z X. Nanotechnology, 2019, 30(42): 425403.
[58]
Wang X Y, Xue J Z, Ma C F, He T, Qian H S, Wang B, Liu J W, Lu Y. J. Mater. Chem. A, 2019, 7(28): 16696.

doi: 10.1039/C9TA02210D     URL    
[59]
Wang Y C, Wang C Z, Song X J, Megarajan S K, Jiang H Q. J. Mater. Chem. A, 2018, 6(3): 963.

doi: 10.1039/C7TA08972D     URL    
[60]
Wang C Z, Wang Y C, Song X J, Huang M H, Jiang H Q. Adv. Sustainable Syst., 2019, 3(1): 1800108.
[61]
Zhou X Y, Zhao F, Guo Y H, Rosenberger B, Yu G H. Sci. Adv., 2019, 5(6): eaaw5484.

doi: 10.1126/sciadv.aaw5484     URL    
[62]
Xu N, Hu X Z, Xu W C, Li X Q, Zhou L, Zhu S N, Zhu J. Adv. Mater., 2017, 29(28): 1606762.
[63]
Lim E L, Yap C C, Jumali M H H, Teridi M A M, Teh C H. Nano Micro Lett., 2017, 10(2): 27.

doi: 10.1007/s40820-017-0182-0     URL    
[64]
Lee J, Kim J, Kim S, Min D H. Adv. Drug Deliv. Rev., 2016, 105: 275.

doi: 10.1016/j.addr.2016.06.001     URL    
[65]
Zheng S X, Tu Q S, Urban J J, Li S F, Mi B X. ACS Nano, 2017, 11(6): 6440.

doi: 10.1021/acsnano.7b02999     URL    
[66]
Yang K J, Pan T T, Hong S, Zhang K, Zhu X Y, Chen B L. Environ. Sci.: Nano, 2020, 7(8): 2373.
[67]
Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Xu G, Liu G P, Zeng J R, Zhang L J, Yang Y Z, Zhou G Q, Wu M H, Jin W Q, Li J Y, Fang H P. Nature, 2017, 550(7676): 380.

doi: 10.1038/nature24044     URL    
[68]
Zhou T Z, Wu C, Wang Y L, Tomsia A P, Li M Z, Saiz E, Fang S L, Baughman R H, Jiang L, Cheng Q F. Nat. Commun., 2020, 11(1): 2077.

doi: 10.1038/s41467-020-15991-6     URL    
[69]
Zedan A F, Moussa S, Terner J, Atkinson G, El-Shall M S. ACS Nano, 2013, 7(1): 627.

doi: 10.1021/nn304775h     URL    
[70]
Ni Y, Kan C X, Gao Q, Wei J J, Xu H Y, Wang C S. J. Phys. D: Appl. Phys., 2016, 49(5): 055302.
[71]
Zhou L, Tan Y L, Ji D X, Zhu B, Zhang P, Xu J, Gan Q Q, Yu Z F, Zhu J. Sci. Adv., 2016, 2(4): e1501227.

doi: 10.1126/sciadv.1501227     URL    
[72]
Liu T. Materials connect., 2019.
[73]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2): 1.
[74]
Xu J G, Zhao M Q, Wang Y C, Yao W, Chen C, Anasori B, Sarycheva A, Ren C G, Mathis T, Gomes L, Liang Z H, Gogotsi Y. ACS Energy Lett., 2016, 1(6): 1094.

doi: 10.1021/acsenergylett.6b00488     URL    
[75]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306     URL    
[76]
Zhang H, Wang L B, Chen Q, Li P, Zhou A G, Cao X X, Hu Q K. Mater. Des., 2016, 92: 682.

doi: 10.1016/j.matdes.2015.12.084     URL    
[77]
Zhang X H, Xue M Q, Yang X H, Wang Z P, Luo G S, Huang Z D, Sui X L, Li C S. RSC Adv., 2015, 5(4): 2762.

doi: 10.1039/C4RA13800G     URL    
[78]
Ciou J H, Li S H, Lee P S. Small, 2019, 15(38): e1903281.
[79]
Wang S H, Liu Y L, Lü Q F, Zhuang H P. J. Mol. Liq., 2020, 297: 111810.
[80]
Agresti A, Pazniak A, Pescetelli S, Di Vito A, Rossi D, Pecchia A, Auf der Maur M, Liedl A, Larciprete R, Kuznetsov, D V, Saranin D, Di Carlo A. Nat. Mater., 2019, 18: 1228.

doi: 10.1038/s41563-019-0478-1     pmid: 31501556
[81]
Fu H C, Ramalingam V, Kim H, Lin C H, Fang X S, Alshareef H N, He J H. Adv. Energy Mater., 2019, 9(22): 1900180.
[82]
Kim S J, Koh H J, Ren C G, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T. ACS Nano, 2018, 12(2): 986.

doi: 10.1021/acsnano.7b07460     URL    
[83]
Ma Y N, Yue Y, Zhang H, Cheng F, Zhao W Q, Rao J Y, Luo S J, Wang J, Jiang X L, Liu Z T, Liu N S, Gao Y H. ACS Nano, 2018, 12(4): 3209.

doi: 10.1021/acsnano.7b06909     URL    
[84]
Wang K L, Zheng B C, Mackinder M, Baule N, Qiao H, Jin H, Schuelke T, Fan Q H. Energy Storage Mater., 2019, 20: 299.
[85]
Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef H N. Adv. Energy Mater., 2018, 8(13): 1703043.
[86]
Wei S C, Xie Y, Xing Y D, Wang L C, Ye H Q, Xiong X, Wang S, Han K. J. Membr. Sci., 2019, 582: 414.

doi: 10.1016/j.memsci.2019.03.085     URL    
[87]
Li J, Li X, van der Bruggen B. Environ. Sci.: Nano, 2020, 7(5): 1289.
[88]
Yu L P, Bati A S R, Grace T S L, Batmunkh M, Shapter J G. Adv. Energy Mater., 2019, 9(31): 1901063.
[89]
Xiao R, Zhao C X, Zou Z Y, Chen Z P, Tian L, Xu H T, Tang H, Liu Q Q, Lin Z X, Yang X F. Appl. Catal. B: Environ., 2020, 268: 118382.
[90]
Attanayake N H, Abeyweera S C, Thenuwara A C, Anasori B, Gogotsi Y, Sun Y G, Strongin D R. J. Mater. Chem. A, 2018, 6(35): 16882.

doi: 10.1039/C8TA05033C     URL    
[91]
Wang P, Cui H, Wang C X. Nano Energy, 2019, 66: 104196.
[92]
Li Y, Tian X, Gao S P, Jing L, Li K R, Yang H T, Fu F F, Lee J Y, Guo Y X, Ho J S, Chen P Y. Adv. Funct. Mater., 2020, 30(5): 1907451.
[93]
Yun T, Kim H, Iqbal A, Cho Y S, Lee G S, Kim M K, Kim S J, Kim D, Gogotsi Y, Kim S O, Koo C M. Adv. Mater., 2020, 32(9): e1906769.
[94]
Jun B M, Kim S, Heo J, Park C M, Her N, Jang M, Huang Y, Han J, Yoon Y. Nano Res., 2019, 12(3): 471.

doi: 10.1007/s12274-018-2225-3     URL    
[95]
Zheng W, Sun Z M, Zhang P G, Tian W B, Wang Y, Zhang Y M. Cailiao Daobao, 2017, 31(9):14.
(郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31(9): 14.)
[96]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Borsoum M W. ACS Nano, 2012, 6(2):1322.

doi: 10.1021/nn204153h     URL    
[97]
Deng Y Q, Shang T X, Wu Z T, Tao Y, Luo C, Liang J C, Han D L, Lyu R Y, Qi C S, Lv W, Kang F Y, Yang Q H. Adv. Mater., 2019, 31(43): e1902432.
[98]
Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X. Mater. Des., 2017, 114: 161.

doi: 10.1016/j.matdes.2016.10.053     URL    
[99]
Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed., 2018, 57(21): 6115.

doi: 10.1002/anie.v57.21     URL    
[100]
Xie X H, Xue Y, Li L, Chen S G, Nie Y, Ding W, Wei Z D. Nanoscale, 2014, 6(19): 11035.

doi: 10.1039/C4NR02080D     URL    
[101]
Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L. Angew. Chem. Int. Ed., 2018, 57(47): 15491.

doi: 10.1002/anie.v57.47     URL    
[102]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970     URL    
[103]
Zijlstra P, Paulo P M R, Orrit M. Nat. Nanotechnol., 2012, 7(6): 379.

doi: 10.1038/nnano.2012.51     pmid: 22504707
[104]
Wang C L, Astruc D. Chem. Soc. Rev., 2014, 43(20): 7188.

doi: 10.1039/C4CS00145A     URL    
[105]
Xu D X, Li Z D, Li L S, Wang J. Adv. Funct. Mater., 2020, 30(47): 2000712.
[106]
Bakshi U A, Bakshi A V. Time Varying Fields and Maxwell’s Equations, 2009. 12.
[107]
Li R Y, Zhang L B, Shi L, Wang P. ACS Nano, 2017, 11(4): 3752.

doi: 10.1021/acsnano.6b08415     URL    
[108]
Rasool K, Helal M, Ali A, Ren C G, Gogotsi Y, Mahmoud K A. ACS Nano, 2016, 10(3): 3674.

doi: 10.1021/acsnano.6b00181     URL    
[109]
Wang X Z, He Y R, Liu X, Cheng G, Zhu J Q. Appl. Energy, 2017, 195: 414.

doi: 10.1016/j.apenergy.2017.03.080     URL    
[110]
Chang Y H, Wang Z G, Shi Y E, Ma X C, Ma L, Zhang Y Q, Zhan J H. J. Mater. Chem. A, 2018, 6(23): 10939.

doi: 10.1039/C8TA02700E     URL    
[111]
Li T T, Fang Q L, Lin H B, Liu F. J. Mater. Chem. A, 2019, 7(29): 17505.

doi: 10.1039/C9TA03865E     URL    
[112]
Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. ACS Appl. Mater. Interfaces, 2019, 11(40): 36589.

doi: 10.1021/acsami.9b10606     URL    
[113]
Zhao X, Zha X J, Tang L S, Pu J H, Ke K, Bao R Y, Liu Z Y, Yang M B, Yang W. Nano Res., 2020, 13(1): 255.

doi: 10.1007/s12274-019-2608-0     URL    
[114]
Fei J P, Koh S W, Tu W G, Ge J Y, Rezaeyan H, Hou S, Duan H W, Lam Y C, Li H. Adv. Sustainable Syst., 2020, 4(9): 2000102.
[115]
Zhao Y, Li Z H, Song S L, Yang K R, Liu H, Yang Z, Wang J C, Yang B, Lin Q. Adv. Funct. Mater., 2019, 29(31): 1901474.
[116]
Hou J, Liu M S, Zhang H C, Song Y L, Jiang X C, Yu A B, Jiang L, Su B. J. Mater. Chem. A, 2017, 5(25): 13138.

doi: 10.1039/C7TA03100A     URL    
[117]
Gupta M K, Martin J R, Dollinger B R, Hattaway M E, Duvall C L. Adv. Funct. Mater., 2017, 27(47): 1704107.
[118]
Wang P, Sun J F, Lou Z C, Fan F G, Hu K, Sun Y, Gu N. Adv. Mater., 2016, 28(48): 10801.

doi: 10.1002/adma.201603632     URL    
[119]
Wang J, Tang F, Wang Y, Lu Q P, Liu S Q, Li L D. ACS Appl. Mater. Interfaces, 2020, 12(1): 1558.

doi: 10.1021/acsami.9b18646     URL    
[120]
Yi-Zhou Z, Hyuck L K, Anjum D H, Rachid S, Qiu J, Hyunho K, Alshareef H N. Sci. Adv., 2018, 4: eaat0098.

doi: 10.1126/sciadv.aat0098     URL    
[121]
Kudo K, Ishida J, Syuu G, Sekine Y, Ikeda-Fukazawa T. J. Chem. Phys., 2014, 140(4): 044909.
[122]
Sekine Y, Ikeda-Fukazawa T. J. Chem. Phys., 2009, 130(3): 034501.
[123]
Wang T, Gunasekaran S. J. Appl. Polym. Sci., 2006, 101(5): 3227.

doi: 10.1002/(ISSN)1097-4628     URL    
[124]
Zhao F, Guo Y H, Zhou X Y, Shi W, Yu G H. Nat. Rev. Mater., 2020, 5(5): 388.

doi: 10.1038/s41578-020-0182-4     URL    
[125]
Zhang X, Zhao X Y, Xue T T, Yang F, Fan W, Liu T X. Chem. Eng. J., 2020, 385: 123963.
[126]
Liu J F, Yang H, Liu K Q, Miao R, Fang Y. ChemSusChem, 2020, 13(4): 749.

doi: 10.1002/cssc.v13.4     URL    
[127]
Pinto J, Athanassiou A, Fragouli D. J. Environ. Manag., 2018, 206: 872.

doi: 10.1016/j.jenvman.2017.11.060     URL    
[128]
Zhao X, Peng L M, Tang C Y, Pu J H, Zha X J, Ke K, Bao R Y, Yang M B, Yang W. Mater. Horiz., 2020, 7(3): 855.

doi: 10.1039/C9MH01443H     URL    
[129]
Ming X, Guo A K, Zhang Q, Guo Z Z, Yu F, Hou B F, Wang Y, Homewood K P, Wang X B. Carbon, 2020, 167: 285.

doi: 10.1016/j.carbon.2020.06.023     URL    
[130]
Zhao X, Zha X J, Pu J H, Bai L, Bao R Y, Liu Z Y, Yang M B, Yang W. J. Mater. Chem. A, 2019, 7(17): 10446.

doi: 10.1039/C9TA00176J     URL    
[131]
Wang Z, Yan Y T, Shen X P, Jin C D, Sun Q F, Li H Q. J. Mater. Chem. A, 2019, 7(36): 20706.

doi: 10.1039/c9ta04914b    
[132]
Liu K K, Jiang Q S, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. ACS Appl. Mater. Interfaces, 2017, 9(8): 7675.

doi: 10.1021/acsami.7b01307     URL    
[133]
Zhu M W, Li Y J, Chen F J, Zhu X Y, Dai J Q, Li Y F, Yang Z, Yan X J, Song J W, Wang Y B, Hitz E, Luo W, Lu M H, Yang B, Hu L B. Adv. Energy Mater., 2018, 8(4): 1701028.
[134]
Chen T J, Wu Z Z, Liu Z Y, Aladejana J T, Wang X A, Niu M, Wei Q H, Xie Y Q. ACS Appl. Mater. Interfaces, 2020, 12(17): 19511.

doi: 10.1021/acsami.0c01815     URL    
[135]
Ma N, Fu Q, Hong Y X, Hao X Y, Wang X G, Ju J, Sun J L. ACS Appl. Mater. Interfaces, 2020, 12(15): 18165.

doi: 10.1021/acsami.0c02481     URL    
[136]
Li K R, Chang T H, Li Z P, Yang H T, Fu F F, Li T T, Ho J S, Chen P Y. Adv. Energy Mater., 2019, 9(34): 1901687.
[137]
Lu Y, Fan D Q, Xu H L, Min H H, Lu C H, Lin Z X, Yang X F. Sol. RRL, 2020, 4(9): 2000232.
[138]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421     pmid: 27609888
[139]
Cao W T, Ma C, Tan S, Ma M G, Wan P B, Chen F. Nano Micro Lett., 2019, 11(1): 1.
[140]
Zhang C J, Pinilla S, McEvoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X H, Duesberg G S, Gogotsi Y, Nicolosi V. Chem. Mater., 2017, 29(11): 4848.

doi: 10.1021/acs.chemmater.7b00745     URL    
[141]
Li Z Y, Wang L B, Sun D D, Zhang Y D, Liu B Z, Hu Q K, Zhou A G. Mater. Sci. Eng.: B, 2015, 191: 33.

doi: 10.1016/j.mseb.2014.10.009     URL    
[142]
Fan Z M, Wang Y S, Xie Z M, Wang D L, Yuan Y, Kang H J, Su B L, Cheng Z J, Liu Y Y. Adv. Sci., 2018, 5(10): 1800750.
[143]
Wu Z T, Shang T X, Deng Y Q, Tao Y, Yang Q H. Adv. Sci., 2020, 7(7): 1903077.
[144]
Kang K M, Kim D W, Ren C G, Cho K M, Kim S J, Choi J H, Nam Y T, Gogotsi Y, Jung H T. ACS Appl. Mater. Interfaces, 2017, 9(51): 44687.

doi: 10.1021/acsami.7b10932     URL    
[145]
Ding L, Li L B, Liu Y C, Wu Y, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Nat. Sustain., 2020, 3(4): 296.

doi: 10.1038/s41893-020-0474-0     URL    
[146]
Rasool K, Pandey R P, Rasheed P A, Buczek S, Gogotsi Y, Mahmoud K A. Mater. Today, 2019, 30: 80.

doi: 10.1016/j.mattod.2019.05.017     URL    
[147]
Ronchi R M, Arantes J T, Santos S F. Ceram. Int., 2019, 45(15): 18167.

doi: 10.1016/j.ceramint.2019.06.114     URL    
[1] 郭星星, 高航, 殷立峰, 王思宇, 代云容, 冯传平. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4): 580-596.
[2] 陈瑞*, 王晶晶, 乔宏志. 有机光热转换材料及其在光热疗法中的应用[J]. 化学进展, 2017, 29(2/3): 329-336.