中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1152-1158 DOI: 10.7536/PC200755 Previous Articles   Next Articles

• Review •

Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery

Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang*()   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Contact: Youxiang Wang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key Research and Development Project(2020YFE0204400); National Natural Science Foundation of China(51873186)
Richhtml ( 35 ) PDF ( 1023 ) Cited
Export

EndNote

Ris

BibTeX

The polymeric microneedles, which has excellent mechanical property and biocompatibility, can pierce the stratum corneum in a minimally-invasive manner and result in efficient transdermal delivery of drugs. Thereby the polymeric microneedles can effectively treat various diseases, such as diabetes, cancer, obesity, eye diseases and so on. How to control the release behavior of the loaded drug is the key point in the polymeric microneedles. Stimuli-responsive polymeric microneedles, as an emerging technology for on-demand drug delivery, can achieve topical accurate release of drugs according to the change of the external environment or the physiological signal in cutaneous environment, making it the current research hotspot in transdermal drug delivery. At present, stimuli-responsive polymeric microneedles are always designed based on light response, pH response, enzyme response and glucose response. This paper reviews the recent researches of the stimuli-responsive polymeric microneedles in detail. Challenges and prospects of stimuli-responsive polymeric microneedles are also discussed.

Contents

1 Introduction

2 Types of drug-loaded polymeric microneedles

3 Applications of stimuli-responsive polymeric microneedles in transdermal drug delivery system

3.1 Tumor treatment

3.2 Diabetes treatment

3.3 Obesity treatment

3.4 Treatment of other diseases

4 Conclusion and outlook

Fig. 1 The scheme of microneedle patch modified with pH-responsive transition layers and gene-loaded layers by layer-by-layer assembly. (A) p53 DNA loaded microneedle patch. (B) Microneedle patch in subcutaneous tissue. (C) Structure of multilayer film. (D) p53 DNA release in acidic environment of skin[37]
Fig. 2 The scheme of the glucose-responsive insulin delivery system using hypoxia and H2O2dual-sensitive microneedle[45]
Fig. 3 The scheme of the SOMA localization and injection[57]
[1]
Ye Y Q, Yu J C, Wen D, Kahkoska A R, Gu Z. Adv. Drug Deliv. Rev., 2018, 127:106.

doi: 10.1016/j.addr.2018.01.015
[2]
Prausnitz M R, Langer R. Nat. Biotechnol., 2008, 26(11):1261.

doi: 10.1038/nbt.1504 pmid: 18997767
[3]
Pham Q D, Björklund S, Engblom J, Topgaard D, Sparr E. J. Control. Release, 2016, 232:175.

doi: 10.1016/j.jconrel.2016.04.030
[4]
Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy S D, Soler V, Fournié P, Malecaze F. Invest. Ophthalmol. Vis. Sci., 2016, 57(2):594.

doi: 10.1167/iovs.13-12595
[5]
Lambricht L, Lopes A, Kos S, Sersa G, Préat V, Vandermeulen G. Expert. Opin. Drug Deliv., 2016, 13(2):295.

doi: 10.1517/17425247.2016.1121990 pmid: 26578324
[6]
Wang H L, Fan P F, Guo X S, Tu J, Ma Y, Zhang D. Chin. Phys. B, 2016, 25(12):124314.

doi: 10.1088/1674-1056/25/12/124314
[7]
Kim Y C, Park J H, Prausnitz M R. Adv. Drug Deliv. Rev., 2012, 64(14):1547.

doi: 10.1016/j.addr.2012.04.005
[8]
Singh P, Carrier A, Chen Y L, Lin S J, Wang J L, Cui S F, Zhang X. J. Control. Release, 2019, 315:97.

doi: 10.1016/j.jconrel.2019.10.022
[9]
Dharadhar S, Majumdar A, Dhoble S, Patravale V. Drug Dev. Ind. Pharm., 2019, 45(2):188.

doi: 10.1080/03639045.2018.1539497 pmid: 30348022
[10]
Pu X Q, Ju X J, Xie R, Wang W, Liu Z, Chu L Y. CIESC J., 2020, 71(1):43.
( 蒲兴群, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 化工学报, 2020, 71(1):43.)
[11]
Zhao X, Li X F, Zhang P, Wang Y X. Prog. Chem., 2017, 12:1518.
( 赵笑, 李欣芳, 张鹏, 王幽香. 化学进展, 2017, 12:1518.)
[12]
Li W, Terry R N, Tang J, Feng M R, Schwendeman S P, Prausnitz M R. Nat. Biomed. Eng., 2019, 3(3):220.

doi: 10.1038/s41551-018-0337-4
[13]
Kim M, Jung B, Park J H. Biomaterials, 2012, 33(2):668.

doi: 10.1016/j.biomaterials.2011.09.074
[14]
Chen M C, Ling M H, Wang K W, Lin Z W, Lai B H, Chen D H. Biomacromolecules, 2015, 16(5):1598.

doi: 10.1021/acs.biomac.5b00185
[15]
Chen M C, Ling M H, Lai K Y, Pramudityo E. Biomacromolecules, 2012, 13(12):4022.

doi: 10.1021/bm301293d
[16]
Liu S, Wu D, Quan Y S, Kamiyama F, Kusamori K, Katsumi H, Sakane T, Yamamoto A. Mol. Pharmaceutics, 2016, 13(1):272.

doi: 10.1021/acs.molpharmaceut.5b00765
[17]
Tas C, Joyce J C, Nguyen H X, Eangoor P, Knaack J S, Banga A K, Prausnitz M R. J. Control. Release, 2017, 268:159.

doi: 10.1016/j.jconrel.2017.10.021
[18]
Chen M C, Ling M H, Kusuma S J. Acta Biomater., 2015, 24:106.

doi: 10.1016/j.actbio.2015.06.021
[19]
Ling M H, Chen M C. Acta Biomater., 2013, 9(11):8952.

doi: 10.1016/j.actbio.2013.06.029
[20]
Peng M. Theranostics, 2020, 10(10):4557.

doi: 10.7150/thno.38069 pmid: 32292515
[21]
Wei T, Yu Q, Chen H. Adv. Healthcare Mater., 2019, 8(3):1970007.

doi: 10.1002/adhm.v8.3
[22]
Li Q L, Xu S H, Zhou H, Wang X, Dong B, Gao H, Tang J, Yang Y W. ACS Appl. Mater. Interfaces, 2015, 7(51):28656.

doi: 10.1021/acsami.5b10534
[23]
Yan R, Liu X Y, Xiong J J, Feng Q Y, Xu J H, Wang H B, Xiao K. RSC Adv., 2020, 10(23):13889.

doi: 10.1039/D0RA01241F
[24]
Yu J C, Zhang Y Q, Kahkoska A R, Gu Z. Curr. Opin. Biotechnol., 2017, 48:28.

doi: 10.1016/j.copbio.2017.03.001
[25]
Miller K D, Nogueira L, Mariotto A B, Rowland J H, Yabroff K R, Alfano C M, Jemal A, Kramer J L, Siegel R L. CA: A Cancer J. Clin., 2019, 69(5):363.

doi: 10.3322/caac.v69.5
[26]
Pourhanifeh M H, Mahdavinia M, Reiter R J, Asemi Z. J. Cell. Physiol., 2019, 234(8):12142.

doi: 10.1002/jcp.28129 pmid: 30618091
[27]
Wang C, Fan Q, Gu Z, Liu Z. Sci. Technol. Rev., 2018, 36(22):96.
( 汪超, 范亲, 顾臻, 刘庄. 科技导报, 2018, 36(22):96.)
[28]
Dai Y L, Xu C, Sun X L, Chen X Y. Chem. Soc. Rev., 2017, 46(12):3830.

doi: 10.1039/C6CS00592F
[29]
Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. ACS Nano, 2015, 9(1):16.

doi: 10.1021/nn5062029 pmid: 25469470
[30]
Moon S, Wang Y H, Edens C, Gentsch J R, Prausnitz M R, Jiang B M. Vaccine, 2013, 31(34):3396.

doi: 10.1016/j.vaccine.2012.11.027
[31]
Riley R S, June C H, Langer R, Mitchell M J. Nat. Rev. Drug Discov., 2019, 18(3):175.

doi: 10.1038/s41573-018-0006-z
[32]
Ke C J, Lin Y J, Hu Y C, Chiang W L, Chen K J, Yang W C, Liu H L, Fu C C, Sung H W. Biomaterials, 2012, 33(20):5156.

doi: 10.1016/j.biomaterials.2012.03.056
[33]
Giusti F, Martella A, Bertoni L, Seidenari S. Pediatr. Dermatol., 2001, 18(2):93.

pmid: 11358544
[34]
Duong H T T, Yin Y, Thambi T, Nguyen T L, Phan V H G, Lee M S, Lee J E, Kim J, Jeong J H, Lee D S. Biomaterials, 2018, 185:13.

doi: 10.1016/j.biomaterials.2018.09.008
[35]
Ye Y Q, Wang J Q, Hu Q Y, Hochu G M, Xin H L, Wang C, Gu Z. ACS Nano, 2016, 10(9):8956.

doi: 10.1021/acsnano.6b04989
[36]
Wang C, Ye Y Q, Hochu G M, Sadeghifar H, Gu Z. Nano Lett., 2016, 16(4):2334.

doi: 10.1021/acs.nanolett.5b05030
[37]
Li X F, Xu Q N, Zhang P, Zhao X, Wang Y X. J. Control. Release, 2019, 314:72.

doi: 10.1016/j.jconrel.2019.10.016
[38]
Chen M C, Lin Z W, Ling M H. ACS Nano, 2016, 10(1):93.

doi: 10.1021/acsnano.5b05043
[39]
Chen G J, Yu J C, Gu Z. J. Diabetes Sci. Technol., 2019, 13(1):41.

doi: 10.1177/1932296818778607
[40]
Stumvoll M, Goldstein B J, van Haeften T W. Lancet, 2005, 365(9467):1333.

pmid: 15823385
[41]
Mulvihill E E. Peptides, 2018, 100:158.

doi: S0196-9781(17)30369-8 pmid: 29412815
[42]
Yu J C, Zhang Y Q, Bomba H, Gu Z. Bioeng. Transl. Med., 2016, 1(3):323.

doi: 10.1002/btm2.v1.3
[43]
Yu J C, Zhang Y Q, Yan J J, Kahkoska A R, Gu Z. Int. J. Pharm., 2018, 544(2):350.

doi: 10.1016/j.ijpharm.2017.11.064
[44]
Yu J C, Zhang Y Q, Ye Y Q, DiSanto R, Sun W J, Ranson D, Ligler F S, Buse J B, Gu Z. PNAS, 2015, 112(27):8260.

doi: 10.1073/pnas.1505405112
[45]
Yu J C, Qian C G, Zhang Y Q, Cui Z, Zhu Y, Shen Q D, Ligler F S, Buse J B, Gu Z. Nano Lett., 2017, 17(2):733.

doi: 10.1021/acs.nanolett.6b03848
[46]
Wang J Q, Ye Y Q, Yu J C, Kahkoska A R, Zhang X D, Wang C, Sun W J, Corder R D, Chen Z W, Khan S A, Buse J B, Gu Z. ACS Nano, 2018, 12(3):2466.

doi: 10.1021/acsnano.7b08152
[47]
Chen W, Tian R, Xu C, Yung B C, Wang G H, Liu Y J, Ni Q Q, Zhang F W, Zhou Z J, Wang J J, Niu G, Ma Y, Fu L W, Chen X Y. Nat. Commun., 2017, 8(1):1.

doi: 10.1038/s41467-016-0009-6
[48]
Chen S Y, Matsumoto H, Moro-Oka Y, Tanaka M, Miyahara Y, Suganami T, Matsumoto A. Adv. Funct. Mater., 2019, 29(7):1970044.

doi: 10.1002/adfm.v29.7
[49]
Yu J C, Wang J Q, Zhang Y Q, Chen G J, Mao W W, Ye Y Q, Kahkoska A R, Buse J B, Langer R, Gu Z. Nat. Biomed. Eng., 2020, 4(5):499.

doi: 10.1038/s41551-019-0508-y
[50]
Xu B, Cao Q Y, Zhang Y, Yu W J, Zhu J Y, Liu D P, Jiang G H. ACS Biomater. Sci. Eng., 2018, 4(7):2473.

doi: 10.1021/acsbiomaterials.8b00626
[51]
Wu J, Cohen P, Spiegelman B M. Genes Dev., 2013, 27(3):234.

doi: 10.1101/gad.211649.112
[52]
Than A, Liang K, Xu S H, Sun L, Duan H W, Xi F N, Xu C J, Chen P. Small Methods, 2017, 1(11):1700269.

doi: 10.1002/smtd.v1.11
[53]
Dangol M, Kim S, Li C G, Fakhraei Lahiji S, Jang M, Ma Y H, Huh I, Jung H. J. Control. Release, 2017, 265:41.

doi: 10.1016/j.jconrel.2017.03.400
[54]
Zhang Y Q, Liu Q M, Yu J C, Yu S J, Wang J Q, Qiang L, Gu Z. ACS Nano, 2017, 11(9):9223.

doi: 10.1021/acsnano.7b04348 pmid: 28914527
[55]
Zhang Y Q, Yu J C, Wang J Q, Hanne N J, Cui Z, Qian C G, Wang C, Xin H L, Cole J H, Gallippi C M, Zhu Y, Gu Z. Adv. Mater., 2017, 29(4):1604043.

doi: 10.1002/adma.v29.4
[56]
Chi J J, Zhang X X, Chen C W, Shao C M, Zhao Y J, Wang Y. Bioact. Mater., 2020, 5(2):253.
[57]
Abramson A, Caffarel-Salvador E, Khang M, Dellal D, Silverstein D, Gao Y, Frederiksen M R, Vegge A, Hubálek F, Water J J, Friderichsen A V, Fels J, Kirk R K, Cleveland C, Collins J, Tamang S, Hayward A, Landh T, Buckley S T, Roxhed N, Rahbek U, Langer R, Traverso G. Science, 2019, 363(6427):611.

doi: 10.1126/science.aau2277 pmid: 30733413
[58]
Abramson A, Caffarel-Salvador E, Soares V, Minahan D, Tian R Y, Lu X Y, Dellal D, Gao Y, Kim S, Wainer J, Collins J, Tamang S, Hayward A, Yoshitake T, Lee H C, Fujimoto J, Fels J, Frederiksen M R, Rahbek U, Roxhed N, Langer R, Traverso G. Nat. Med., 2019, 25(10):1512.

doi: 10.1038/s41591-019-0598-9 pmid: 31591601
[59]
Babaee S, Pajovic S, Kirtane A R, Shi J Y, Caffarel-Salvador E, Hess K, Collins J E, Tamang S, Wahane A V, Hayward A M, Mazdiyasni H, Langer R, Traverso G. Sci. Transl. Med., 2019, 11(488):eaau8581.

doi: 10.1126/scitranslmed.aau8581
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[3] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[4] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[5] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[6] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[7] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[8] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[9] Zicheng Li, Gongke Li*, Yuling Hu*. Stimuli-Responsive Polymers in Biomedical Applications [J]. Progress in Chemistry, 2017, 29(12): 1480-1487.
[10] Xiao Zhao, Xinfang Li, Peng Zhang, Youxiang Wang*. Research of Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2017, 29(12): 1518-1525.
[11] Wang Yun, Feng Anchao, Yuan Jinying. Application of Stimuli-Responsive Polymer in Catalyst Systems of Gold Nanoparticles [J]. Progress in Chemistry, 2016, 28(7): 1054-1061.
[12] Liang Jiamei, Feng Anchao, Yuan Jinying. Synthesis and Controllable Drug Release of Stimuli-Responsive Star Polymer [J]. Progress in Chemistry, 2015, 27(5): 522-531.
[13] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[14] Wang Jun, Zhang Afang. Peptide-Mediated Supramolecular Helical Polymers [J]. Progress in Chemistry, 2015, 27(10): 1413-1424.
[15] Liao Rongqiang, Liu Manshuo, Liao Xiali, Yang Bo. Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers [J]. Progress in Chemistry, 2015, 27(1): 79-90.