中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 882-894 DOI: 10.7536/PC191019 Previous Articles   Next Articles

• Review •

Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres

Meng Mu1,2, Xuewen Ning1, Xinjie Luo1, Yujun Feng1,**()   

  1. 1. State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
    2. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
  • Received: Online: Published:
  • Contact: Yujun Feng
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21273223); National Natural Science Foundation of China(U1762218)
Richhtml ( 73 ) PDF ( 1189 ) Cited
Export

EndNote

Ris

BibTeX

Polymer microspheres are considered to be the typical soft materials which are widely used in catalysis, drug delivery, biosensing, microreactors, chemical separation and coating fields because of their unique properties, such as the micro-scale, diffusion, penetration and ease of modification. In order to meet the requirement for use in hostile environments, stimuli-responsive microspheres whose properties significantly change in response to the minor variation of environmental conditions have been developed. This paper reviews the diverse fabrication strategies and morphologies of the responsive polymer microspheres which are sensitive to temperature, pH, magnetic field, ionic strength, light and CO2 stimulus, respectively. The relevant stimuli-response mechanisms, applications and the demerits of the responsive microspheres are summarized and discussed, then the potential applications and future prospects of the sensitive microspheres are also analyzed.

Contents

1 Introduction

2 Stimuli-responsive Polymer Microspheres

2.1 Fabrication of polymer microspheres

2.2 Temperature-responsive polymer microspheres

2.3 pH-responsive polymer microspheres

2.4 Magnetic field-responsive polymer microspheres

2.5 Ionic strength-responsive polymer microspheres

2.6 Light-responsive polymer microspheres

2.7 CO2-responsive polymer microspheres

3 Conclusion and outlook

Fig.1 Schematic representation of polymer microspheres with diverse morphologies
Table 1 The fabrication strategies for polymer microspheres
Fig.2 The temperature-responsive change in the catalytic performance of microspheres. (a) and (b) represent the scheme for the fabrication of microspheres, and the catalytic performance of microspheres at different temperature, re-spectively; (c) The change in UV spectra of the reaction products during the reduction reaction, at different temper-atures[60]
Fig.3 The temperature-induced release of the fluorescent dye loaded in particles. (a) Scheme for the temperature-induced release of 2,6-NDS loaded in (P2VPH+/S O 3 2 ? )-PNIPAM particles; (b) The change in dispersity of particles system in response to temperature; (c) The fluorescence spectra of 2,6-NDS released from particles at different temperatures[62]
Fig.4 Fig.4 pH-sensitive microspheres used for regulating Pickering emulsion. (a) Scheme for the preparation and the pH response of PTBAEMA microspheres; (b) pH induced change in particle size; (c) and (d) represent pH regulated formation/breakup transition of Pickering emulsion[68]
Fig.5 (a)Schematic preparation of magnetic responsive microspheres via microfluidic protocol;(b) and(c) represent the magnetic responsive transition of microspheres dispersions;(d) the magnetization curves of hollow microspheres[77]
Fig.6 CO2-regulated emulsification of polymer materials. (a) Scheme for the fabrication and CO2-responsiveness of PS latex; (b) Snapshot of CO2-induced dispersion/precipitation transition of PS latex[100]
Fig.7 The selective adsorption and release of dye, regulated by CO2. (a) Scheme for the fabrication of P(AM-DEAEMA) microspheres. (b) Scheme for the selective adsorption and release of dye in response to C O 2 [ 104 ]
[1]
Seaton A , Donaldson K . Lancet, 2005,365:923. doi: 10.1016/S0140-6736(05)71061-8 https://www.ncbi.nlm.nih.gov/pubmed/15766981

pmid: 15766981
[2]
Whitesides G M . Small, 2005,1:172. doi: 10.1002/smll.200400130 https://www.ncbi.nlm.nih.gov/pubmed/17193427

pmid: 17193427
[3]
Li K , Liu B . Chem. Soc. Rev., 2014,43:6570. doi: 10.1039/c4cs00014e https://www.ncbi.nlm.nih.gov/pubmed/24792930

pmid: 24792930
[4]
Landfester K , Montenegro R , Scherf U , Güntner R , Asawapirom U , Patil S , Neher D , Kietzke T . Adv. Mater., 2002,14:651. doi: 10.1002/(ISSN)1521-4095 http://doi.wiley.com/10.1002/%28ISSN%291521-4095
[5]
Rozenberg B A , Tenne R . Prog. Polym. Sci., 2008,33:40. doi: 10.1016/j.progpolymsci.2007.07.004 https://linkinghub.elsevier.com/retrieve/pii/S0079670007001001
[6]
Ujjwal R R , Sharma T , Sangwai J S , Ojha U . J. Appl. Polym. Sci., 2017,134:44648.
[7]
Kadir M A , Kim S J , Ha E J , Cho H Y , Kim B S , Choi D , Lee S G , Kim B G , Kim S W , Paik H J . Adv. Funct. Mater., 2012,22:4032. doi: 10.1002/adfm.v22.19 http://doi.wiley.com/10.1002/adfm.v22.19
[8]
Jiang X E , Musyanovych A , Röcker C , Landfester K , Mailänder V , Nienhaus G U . Nanoscale, 2011,3:2028. doi: 10.1039/c0nr00944j https://www.ncbi.nlm.nih.gov/pubmed/21409242

pmid: 21409242
[9]
Sun Y G , Xia Y N . Science, 2002,298:2176. doi: 10.1126/science.1077229 https://www.ncbi.nlm.nih.gov/pubmed/12481134

pmid: 12481134
[10]
Bing X , Kozlovskaya V , Kharlampieva E . J. Mater. Chem. B, 2017,5:9. doi: 10.1039/c6tb02746f https://www.ncbi.nlm.nih.gov/pubmed/32263432

pmid: 32263432
[11]
Valencia P M , Farokhzad O C , Karnik R , Langer R . Nature Nanotech., 2012,7:623. doi: 10.1038/nnano.2012.168 https://doi.org/10.1038/nnano.2012.168
[12]
Morton S W , Herlihy K P , Shopsowitz K E , Deng Z J , Chu K S , Bowerman C J , Desimone J M , Hammond P T . Adv. Mater., 2013,25:4707. doi: 10.1002/adma.201302025 https://www.ncbi.nlm.nih.gov/pubmed/23813892

pmid: 23813892
[13]
Asua J M . Prog. Polym. Sci., 2002,27:1283. doi: 10.1016/S0079-6700(02)00010-2 https://linkinghub.elsevier.com/retrieve/pii/S0079670002000102
[14]
Tovmachenko O G , Graf C , van den Heuvel D J , van Blaaderen A, Gerritsen H C . Adv. Mater., 2006,18:91. doi: 10.1002/(ISSN)1521-4095 http://doi.wiley.com/10.1002/%28ISSN%291521-4095
[15]
Wang D Y , Rogach A L , Caruso F . Nano Lett., 2002,2:857. doi: 10.1021/nl025624c https://pubs.acs.org/doi/10.1021/nl025624c
[16]
Peng M , Wang H , Chen Y . Mater. Lett., 2008,62:1535. doi: 10.1016/j.matlet.2007.09.017 https://linkinghub.elsevier.com/retrieve/pii/S0167577X07009305
[17]
Zhang K , Chen H , Chen X , Chen Z , Cui Z , Yang B . Macromol. Mater. Eng., 2003,288:380. doi: 10.1002/mame.200390031 http://doi.wiley.com/10.1002/mame.200390031
[18]
Takekoh R , Li W H , Burke N A , Stöver H D . J. Am. Chem. Soc., 2006,128:240. doi: 10.1021/ja055901s https://www.ncbi.nlm.nih.gov/pubmed/16390152

pmid: 16390152
[19]
Li X , Du P , Liu P . RSC Adv., 2014,4:56323. doi: 10.1039/C4RA05066E http://xlink.rsc.org/?DOI=C4RA05066E
[20]
Joncheray T J , Audebert P , Schwartz E , Jovanovic A V , Ishaq O , Chávez J L , Pansu R , Duran R S . Langmuir, 2006,22:8684. https://www.ncbi.nlm.nih.gov/pubmed/17014105

pmid: 17014105
[21]
Xie B Q , Shi H F , Liu G M , Zhou Y , Wang Y , Zhao Y , Wang D J . Chem. Mater., 2008,20:3099. doi: 10.1021/cm7034618 https://pubs.acs.org/doi/10.1021/cm7034618
[22]
Liu W J , Chen G H , He G H , He Z C , Qian Z . J. Mater. Sci., 2011,46:6758. doi: 10.1007/s10853-011-5632-3 http://link.springer.com/10.1007/s10853-011-5632-3
[23]
Li G L , Yang X Y , Wang B , Wang J Y , Yang X L . Polymer, 2008,49:3436. doi: 10.1016/j.polymer.2008.06.004 9e57536b-87f7-4478-9507-8559e66f925d http://www.sciencedirect.com/science/article/pii/S0032386108004941
[24]
Xing Z M , Wang C L , Yan J , Zhang L , Li L , Zha L S . Soft Matter, 2011,7:7992. doi: 10.1039/c1sm05925d 4ac93635-7da3-460e-88d4-ebb75013fca5 http://dx.doi.org/10.1039/c1sm05925d
[25]
Zhang B , Sun S , Wu P . Soft Matter, 2013,9:1678. doi: 10.1039/C2SM27355A http://xlink.rsc.org/?DOI=C2SM27355A
[26]
Zhang B , Tang H , Wu P . Polym. Chem., 2014,5:5967. doi: 10.1039/C4PY00653D http://xlink.rsc.org/?DOI=C4PY00653D
[27]
Li G L , Tai C A , Neoh K G , Kang E T , Yang X . Polym. Chem., 2011,2:1368. doi: 10.1039/c1py00054c http://xlink.rsc.org/?DOI=c1py00054c
[28]
Chen L B , Zhang F , Wang C C . Small, 2009,5:621. doi: 10.1002/smll.200801154 https://www.ncbi.nlm.nih.gov/pubmed/19189322

pmid: 19189322
[29]
Tu F , Lee D . J. Am. Chem. Soc., 2014,136:9999. doi: 10.1021/ja503189r c35ce08e-d0d4-4caa-8b93-61a8a955125f http://dx.doi.org/10.1021/ja503189r
[30]
Bing L , Wei W , Xiaozhong Q , Zhenzhong Y . Angew. Chem. Int. Ed., 2008,47:3973.
[31]
Roh K H , Martin D C , Lahann J . Nat. Mater., 2005,4:759. doi: 10.1038/nmat1486 https://www.ncbi.nlm.nih.gov/pubmed/16184172

pmid: 16184172
[32]
Minhaz-Ul Haque M , Herrera N , Geng S Y , Oksman K . J. Appl. Polym. Sci., 2018,135:45961.
[33]
Pour Z S , Ghaemy M . Polym. Adv. Technol., 2016,27:1557.
[34]
Agrawal G , Agrawal R . Small, 2018,14:e1801724. doi: 10.1002/smll.201801724 https://www.ncbi.nlm.nih.gov/pubmed/30035853

pmid: 30035853
[35]
Zhang J , Zhang M , Tang K , Verpoort F , Sun T . Small, 2014,10:32. doi: 10.1002/smll.201300287 https://www.ncbi.nlm.nih.gov/pubmed/23852653

pmid: 23852653
[36]
Li Y X , Gao Y , Yang C . Chem. Commun., 2015,51:7721.
[37]
Boulares P A , Prager D A , Elsner C , Buchmeiser M R . J. Appl. Polym. Sci., 2009,112:2701.
[38]
Kikuchi A , Okano T . Prog. Polym. Sci., 2002,27:1165.
[39]
Jeong B , Gutowska A . Trends Biotechnol., 2002,20:305. doi: 10.1016/s0167-7799(02)01962-5 https://www.ncbi.nlm.nih.gov/pubmed/12062976

pmid: 12062976
[40]
Nasir A , Kausar A , Younus A . Polym.-Plast. Technol. Eng., 2015,54:325. doi: 10.1080/03602559.2014.958780 http://www.tandfonline.com/doi/abs/10.1080/03602559.2014.958780
[41]
Mundargi R C , Babu V R , Rangaswamy V , Patel P , Aminabhavi T M . J. Controlled Release, 2008,125:193. doi: 10.1016/j.jconrel.2007.09.013 https://linkinghub.elsevier.com/retrieve/pii/S016836590700541X
[42]
Guterres S S , Beak R C R , Pohlmann A R . Braz. J. Phys., 2009,39:205. doi: 10.1590/S0103-97332009000200013 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000200013&lng=en&nrm=iso&tlng=en
[43]
Vu M T , Jeong Y L , Choi C , Nam J P , Son D H , Park J K , Kim W S , Kim M Y , Jang M K , Nah J W , Kim K J . Macromol. Res., 2010,18:1115. doi: 10.1007/s13233-010-1114-8 456de264-c11d-4f71-8c15-3c5b1e9bc0f1 http://www.springerlink.com/content/a701627215112617/
[44]
Sasaki Y , Konishi N , Kasuya M , Kohri M , Taniguchi T , Kishikawa K . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015,482:68. doi: 10.1016/j.colsurfa.2015.04.019 https://linkinghub.elsevier.com/retrieve/pii/S0927775715003428
[45]
Nagao D , Yamada Y , Inukai S , Ishii H , Konno M , Gu S . Polymer, 2015,68:176. doi: 10.1016/j.polymer.2015.05.020 https://linkinghub.elsevier.com/retrieve/pii/S003238611500453X
[46]
Rao J P , Geckeler K E . Prog. Poly. Sci., 2011,36:887. doi: 10.1016/j.progpolymsci.2011.01.001 https://linkinghub.elsevier.com/retrieve/pii/S0079670011000232
[47]
Udagama R , Degrandi C E , Creton C , Graillat C , McKenna T L , Bourgeat L E . Macromolecules, 2011,44:2632. doi: 10.1021/ma200073d https://pubs.acs.org/doi/10.1021/ma200073d
[48]
Zhang Q , Han Y , Wang W , Song T , Chang J . J. Colloid Interface Sci., 2010,342:62. doi: 10.1016/j.jcis.2009.10.001 https://www.ncbi.nlm.nih.gov/pubmed/19889424

pmid: 19889424
[49]
Narumi A , Kimura Y , Kawaguchi S . Colloid Polym. Sci., 2012,290:379. doi: 10.1007/s00396-011-2571-0 http://link.springer.com/10.1007/s00396-011-2571-0
[50]
Gao H , Tao J , Han B , Yong W , Du J , Liu Z , Zhang J . Polymer, 2004,45:3017. doi: 10.1016/j.polymer.2004.03.002 1d9d0d6a-83a7-4b36-97b5-b39f9d1725c5 http://www.sciencedirect.com/science/article/pii/S0032386104002071
[51]
Lemoine D , Préat V . J. Controlled Release, 1998,54:15. doi: 10.1016/S0168-3659(97)00241-1 https://linkinghub.elsevier.com/retrieve/pii/S0168365997002411
[52]
Akagi T , Kaneko T , Kida T , Akashi M . J. Controlled Release, 2005,108:226. doi: 10.1016/j.jconrel.2005.08.003 https://linkinghub.elsevier.com/retrieve/pii/S0168365905003573
[53]
Venckatesh R , Balachandaran K , Sivaraj R . Int. Nano Lett., 2012,2:15. doi: 10.1186/2228-5326-2-15 http://link.springer.com/10.1186/2228-5326-2-15
[54]
Schild H G . Prog. Polym. Sci., 1992,17:163. doi: 10.1016/0079-6700(92)90023-R https://linkinghub.elsevier.com/retrieve/pii/007967009290023R
[55]
Daisuke S , Chiaki K . Langmuir, 2014,30:7085. doi: 10.1021/la5017752 https://www.ncbi.nlm.nih.gov/pubmed/24881767

pmid: 24881767
[56]
Sundararaman A , Stephan T , Grubbs R B . J. Am. Chem. Soc., 2008,130:12264. https://www.ncbi.nlm.nih.gov/pubmed/18722446

pmid: 18722446
[57]
Heskins M , Guillet J E . J. Macromol. Sci. Chem., 1968,2:1441. doi: 10.1080/10601326808051910 http://www.tandfonline.com/doi/abs/10.1080/10601326808051910
[58]
Stober W , Fink A , Bohn E . J. Colloid Interface Sci., 1968,26:62. doi: 10.1016/0021-9797(68)90272-5 https://linkinghub.elsevier.com/retrieve/pii/0021979768902725
[59]
Zha L S , Zhang Y , Yang W L , Fu S K . Adv. Mater., 2002,14:1090. doi: 10.1002/1521-4095(20020805)14:15<1090::AID-ADMA1090>3.0.CO;2-6 https://onlinelibrary.wiley.com/doi/10.1002/1521-4095(20020805)14:15<1090::AID-ADMA1090>3.0.CO;2-6
[60]
Wu S , Dzubiella J , Kaiser J , Drechsler M , Guo X , Ballauff M , Lu Y . Angew. Chem. Int. Ed., 2012,51:2229. doi: 10.1002/anie.201106515 http://doi.wiley.com/10.1002/anie.201106515
[61]
Owens D E , Jian Y , Fang J E , Slaughter B V , Chen Y H , Peppas N A . Macromolecules, 2007,40:7306. doi: 10.1021/ma071089x https://pubs.acs.org/doi/10.1021/ma071089x
[62]
Yin J , Hu J , Zhang G , Liu S . Langmuir, 2014,30:2551. https://www.ncbi.nlm.nih.gov/pubmed/24555801

pmid: 24555801
[63]
Parasuraman D , Serpe M J . ACS Appl. Mater. Interfaces, 2011,3:2732. https://www.ncbi.nlm.nih.gov/pubmed/21682294

pmid: 21682294
[64]
Katchalsky A . Experientia, 1949,5:319. doi: 10.1007/BF02172636 https://www.ncbi.nlm.nih.gov/pubmed/18138361

pmid: 18138361
[65]
Dupin D , Fujii S , Armes S P , Reeve P , Baxter S M . Langmuir, 2006,22:3381. https://www.ncbi.nlm.nih.gov/pubmed/16548605

pmid: 16548605
[66]
Gupta P , Vermani K , Garg S . Drug Discovery Today, 2002,7:569. https://www.ncbi.nlm.nih.gov/pubmed/12047857

pmid: 12047857
[67]
Schmaljohann D . Adv. Drug Delivery Rev., 2006,58:1655. doi: 10.1016/j.addr.2006.09.020 bf8b5e40-664d-4f5a-a832-89f1b5916e41 https://linkinghub.elsevier.com/retrieve/pii/S0169409X06001839
[68]
Morse A J , Dupin D , Thompson K L , Armes S P , Ouzineb K , Mills P , Swart R . Langmuir, 2012,28:11733. https://www.ncbi.nlm.nih.gov/pubmed/22794126

pmid: 22794126
[69]
Fujii S , Read E S , Binks B P , Armes S P . Adv. Mater., 2005,17:1014. doi: 10.1002/(ISSN)1521-4095 http://doi.wiley.com/10.1002/%28ISSN%291521-4095
[70]
Yang X , Chen L , Huang B , Bai F , Yang X . Polymer, 2009,50:3556. doi: 10.1016/j.polymer.2009.06.027 https://linkinghub.elsevier.com/retrieve/pii/S0032386109005254
[71]
Zheng P , Zhang W . J. Catal., 2007,250:324. doi: 10.1016/j.jcat.2007.06.030 https://linkinghub.elsevier.com/retrieve/pii/S002195170700262X
[72]
Li G , Liu G , Kang E T , Neoh K G , Yang X . Langmuir, 2008,24:9050. doi: 10.1021/la8010579 https://www.ncbi.nlm.nih.gov/pubmed/18605745

pmid: 18605745
[73]
Ohno K , Mori C , Akashi T , Yoshida S , Tago Y , Tsujii Y , Tabata Y . Biomacromolecules, 2013,14:3453. doi: 10.1021/bm400770n https://www.ncbi.nlm.nih.gov/pubmed/23957585

pmid: 23957585
[74]
Ahmad H , Nurunnabi M , Rahman M M , Kumar K , Tauer K , Minami H , Gafur M A . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014,459:39. doi: 10.1016/j.colsurfa.2014.06.038 https://linkinghub.elsevier.com/retrieve/pii/S0927775714005846
[75]
Molday R S , Yen S P , Rembaum A . Nature, 1977,268:437. doi: 10.1038/268437a0 https://www.ncbi.nlm.nih.gov/pubmed/302417

pmid: 302417
[76]
Schutt W , Gruttner C , Teller J , Westphal F , Paulke B , Goetz P , Finck W . Artif. Organs, 2015,23:98. doi: 10.1046/j.1525-1594.1999.06278.x https://www.ncbi.nlm.nih.gov/pubmed/9950186

pmid: 9950186
[77]
Wei J , Ju X J , Zou X Y , Xie R , Wang W , Liu Y M , Chu L Y . Adv. Funct. Mater., 2014,24:3312. doi: 10.1002/adfm.201303844 http://doi.wiley.com/10.1002/adfm.201303844
[78]
Wang Z , Zhang J , Li R , Chen J . J. Appl. Polym. Sci., 2014,131:40260.
[79]
Okahata Y , Lim H J . J. Am. Chem. Soc., 1984,106:4696.
[80]
Jiang M Y , Ju X J , Fang L , Liu Z , Yu H R , Jiang L , Wang W , Xie R , Chen Q , Chu L Y . ACS Appl. Mater. Interfaces, 2014,6:19405. https://www.ncbi.nlm.nih.gov/pubmed/25325533

pmid: 25325533
[81]
Chu L Y , Yamaguchi T , Nakao S . Adv. Mater., 2002,14:386.
[82]
Ju X J , Liu L , Xie R , Niu C H , Chu L Y . Polymer, 2009,50:922.
[83]
Jiang M Y , Ju X J , Deng K , Fan X X , He X H , Wu F , He F , Liu Z , Wang W , Xie R , Chu L Y . J. Mater. Chem. B, 2016,4:3925. doi: 10.1039/c6tb00333h https://www.ncbi.nlm.nih.gov/pubmed/32263092

pmid: 32263092
[84]
Lin S , Wang W , Ju X J , Xie R , Chu L Y . Proc. Natl. Acad. Sci. U.S. A., 2016,113:2023.
[85]
Liu Y M , Ju X J , Xin Y , Zheng W C , Wang W , Wei J , Xie R , Liu Z , Chu L Y . ACS Appl. Mater. Interfaces, 2014,6:9530. https://www.ncbi.nlm.nih.gov/pubmed/24897191

pmid: 24897191
[86]
Russew M M , Hecht S . Adv. Mater., 2010,22:3348. https://www.ncbi.nlm.nih.gov/pubmed/20422653

pmid: 20422653
[87]
Jin H , Zheng Y , Liu Y , Cheng H , Zhou Y , Yan D . Angew. Chem. Int. Ed., 2011,50:10352.
[88]
Wang G , Tong X , Zhao Y . Macromolecules, 2004,37:8911. doi: 10.1021/ma048416a https://pubs.acs.org/doi/10.1021/ma048416a
[89]
Such G K , Evans R A , Davis T P . Macromolecules, 2004,37:9664. doi: 10.1021/ma048627f https://pubs.acs.org/doi/10.1021/ma048627f
[90]
Yamaguchi H , Kobayashi Y , Kobayashi R , Takashima Y , Hashidzume A , Harada A . Nat. Commun., 2012,3:603. https://www.ncbi.nlm.nih.gov/pubmed/22215078

pmid: 22215078
[91]
Jiang Y , Wan P , Xu H , Wang Z , Zhang X , Smet M . Langmuir, 2009,25:10134. https://www.ncbi.nlm.nih.gov/pubmed/19705900

pmid: 19705900
[92]
Yan F , Chen L , Tang Q , Wang R . Bioconjugate Chem., 2004,15:1030. doi: 10.1021/bc049901d https://pubs.acs.org/doi/10.1021/bc049901d
[93]
Medintz I L , Trammell S A , Mattoussi H , Mauro J M . J. Am. Chem. Soc., 2004,126:30. doi: 10.1021/ja037970h https://www.ncbi.nlm.nih.gov/pubmed/14709044

pmid: 14709044
[94]
Zhu M Q , Zhu L , Han J J , Wu W , Hurst J K , Li A D . J. Am. Chem. Soc., 2006,128:4303. https://www.ncbi.nlm.nih.gov/pubmed/16569006

pmid: 16569006
[95]
Azagarsamy M A , Alge D L , Radhakrishnan S J , Tibbitt M W , Anseth K S . Biomacromolecules, 2012,13:2219. doi: 10.1021/bm300646q https://www.ncbi.nlm.nih.gov/pubmed/22746981

pmid: 22746981
[96]
Szewczyk M , Sobczak G , Sashuk V . ACS Catal., 2018,8:2810. doi: 10.1021/acscatal.8b00328 https://pubs.acs.org/doi/10.1021/acscatal.8b00328
[97]
Li Y , Zhang Y , Wang W . Nano Res., 2018,11:5424. doi: 10.1007/s12274-018-2132-7 https://doi.org/10.1007/s12274-018-2132-7
[98]
Yan Q , Zhao Y . J. Am. Chem. Soc., 2013,135:16300. doi: 10.1021/ja408655n https://www.ncbi.nlm.nih.gov/pubmed/24156541

pmid: 24156541
[99]
Yan Q , Zhao Y . Angew. Chem. Int. Ed., 2013,52:9948. doi: 10.1002/anie.201303984 http://doi.wiley.com/10.1002/anie.201303984
[100]
Zhang Q , Wang W J , Lu Y , Li B G , Zhu S . Macromolecules, 2011,44:6539. doi: 10.1021/ma201056g https://pubs.acs.org/doi/10.1021/ma201056g
[101]
Fowler C I , Jessop P G , Cunningham M F . Macromolecules, 2012,45:2955. doi: 10.1021/ma2027484 https://pubs.acs.org/doi/10.1021/ma2027484
[102]
Mihara M , Jessop P , Cunningham M F . Macromolecules, 2011,44:3688. doi: 10.1021/ma200249q https://pubs.acs.org/doi/10.1021/ma200249q
[103]
Morse A J , Armes S P , Thompson K L , Dupin D , Fielding L A , Mills P , Swart R . Langmuir, 2013,29:5466. doi: 10.1021/la400786a https://www.ncbi.nlm.nih.gov/pubmed/23570375

pmid: 23570375
[104]
Guo Z , Chen Q , Gu H , He Z , Xu W , Zhang J , Liu Y , Xiong L , Zheng L , Feng Y J . ACS Appl. Mater, 2018,10:38073. doi: 10.1021/acsami.8b13448 https://pubs.acs.org/doi/10.1021/acsami.8b13448
[105]
Mu M , Yin H Y , Feng Y J . J. Colloid Interface Sci., 2017,497:249. doi: 10.1016/j.jcis.2017.03.012 https://www.ncbi.nlm.nih.gov/pubmed/28285053

pmid: 28285053
[106]
Mu M , Luo X J , Wang W , Yin H Y , Feng Y J . J. Colloid Interface Sci., 2018,552:10.
[107]
Guo J , Wang N , Wu J , Ye Q , Zhang C , Xing X H , Yuan J . J. Mater. Chem. B, 2014,2:437. https://www.ncbi.nlm.nih.gov/pubmed/32261388

pmid: 32261388
[1] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[2] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[3] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[4] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[5] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[8] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[9] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[10] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[11] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[12] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[13] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.
[14] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[15] Zicheng Li, Gongke Li*, Yuling Hu*. Stimuli-Responsive Polymers in Biomedical Applications [J]. Progress in Chemistry, 2017, 29(12): 1480-1487.