中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (1): 79-90 DOI: 10.7536/PC140829 Previous Articles   Next Articles

• Review •

Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers

Liao Rongqiang, Liu Manshuo, Liao Xiali*, Yang Bo*   

  1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21062009, 21362016) and the Yunnan Natural Science Foundation Project(No. 2011FZ059).

PDF ( 1797 ) Cited
Export

EndNote

Ris

BibTeX

Smart stimuli-responsive drug carriers (STRDCs) are a hot topic in current chemical and pharmaceutical research, owing to their merits of controlled release of drugs relying on unique stimuli-responsive mechanisms. Well-designed STRDCs could efficiently improve drug bioavailability and reduce side effects in vivo, thus they are of great potential in future clinical treatments. Cyclodextrin (CD)-based drug carriers, which have the ability to control drug delivery in temporal, spatial and dosage in a more precise fashion, have made tremendous progress in recent years. STRDCs could be constructed based on CDs ascribing to their virtues of readily availability, low toxicity, self-assembly and functional flexibility. More and more materials of good biocompatibility are employed to fabricate STRDCs in combination with CDs to furnish unique characteristics of self-assembly, molecular recognition and dynamical reversibility. These STRDCs could administrate drug controlled release upon the regulation of their physico-chemical properties in response to external stimuli, which usually fall into two categories: endogenous (pH, redox agents, enzyme concentration, etc.) and exogenous (temperature, light, magnetic force, ultrasound, voltage stimulation, etc.) ones. In this review, the recent advances on the cyclodextrin-based STRDCs are summarized, which are classified referring to the variations of stimulating factor. The features, mechanism of action and potent applications of STRDCs are discussed. In addition, some personal perspectives on this field are also presented.

Contents
1 Introduction
2 Endogenous stimuli-responsive drug delivery
2.1 pH sensitive systems
2.2 Redox sensitive systems
2.3 Enzyme sensitive systems
3 Exogenous stimuli-responsive drug delivery
3.1 Thermo sensitive systems
3.2 Light sensitive systems
3.3 Magnetically responsive systems
3.4 Ultrasound responsive systems
3.5 Electro responsive systems
4 Conclusion

CLC Number: 

[1] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A. Chem. Rev., 2005, 105: 1491.
[2] Yagai S, Kitamura A. Chem. Soc. Rev., 2008, 37: 1520.
[3] Brunsveld L, Folmer B J B, Meijer E W, Sijbesma R P. Chem. Rev., 2001, 101: 4071.
[4] Liu Y, Chen Y. Acc. Chem. Res., 2006, 39: 681.
[5] Chen Y, Liu Y. Chem. Soc. Rev., 2010, 39: 495.
[6] Del Valle E M M. Process Biochem., 2004, 39: 1033.
[7] Kurkov S V, Loftsson T. Int. J. Pharm., 2013, 453: 167.
[8] Zheng P J, Hu X, Zhao X Y, Li L, Tam K C, Gan L H. Macromol. Rapid Commun., 2004, 25: 678.
[9] Liu Y, Zhao D Y, Ma R J, Xiong D A, An Y L, Shi L Q. Polymer, 2009, 50: 855.
[10] Liu Y, Han B H, Sun S X, Wada T, Inoue Y. J. Org. Chem., 1999, 64: 1487.
[11] Steinman R M, Mellman I S, Muller W A, Cohn Z A. J. Cell Biol., 1983, 96: 1.
[12] Killisch I, Steinlein P, Romisch K, Hollinshead R, Beug H, Griffiths G. J. Cell Sci., 1992, 103: 211.
[13] Stubbs M, McSheehy P M J, Griffiths J R, Bashford C L. Mol. Med. Today, 2000, 6: 15.
[14] Yang B, Jia H Z, Wang X L, Chen S, Zhang X Z, Zhuo R X, Feng J. Adv. Healthc. Mater., 2014, 3: 596.
[15] Kulkarni A, DeFrees K, Hyun S H, Thompson D H. J. Am. Chem. Soc., 2012, 134: 7596.
[16] Kulkarni A, Badwaik V, DeFrees K, Schuldt R A, Gunasekera D S, Powers C, Vlahu A, VerHeul R, Thompson D H. Biomacromolecules, 2014, 15: 12.
[17] Duncan B, Kim C, Rotello V M. J. Control. Release, 2010, 148: 122.
[18] Wang H, Chen Y, Li X Y, Liu Y. Mol. Pharm., 2007, 4: 189.
[19] Zhao D, Chen Y, Liu Y. Chem. Asian J., 2014, 9: 1895.
[20] Chen Y, Yu L, Feng Z, Hou S, Liu Y. Chem. Commun., 2009: 4106.
[21] Liu Y, Yu Z L, Zhang Y M, Guo D S, Liu Y P. J. Am. Chem. Soc., 2008, 130: 10431.
[22] Meng H A, Xue M, Xia T A, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132: 12690.
[23] Xue M, Zhong X, Shaposhnik Z, Qu Y Q, Tamanoi F, Duan X F, Zink J I. J. Am. Chem. Soc., 2011, 133: 8798.
[24] Yan Q, Zhang H J, Zhao Y. ACS Macro Lett., 2014, 3: 472.
[25] Zhang Z, Ding J X, Chen X F, Xiao C S, He C L, Zhuang X L, Chen L, Chen X S. Polym. Chem., 2013, 4: 3265.
[26] Chen T, Fu J J. Nanotechnology, 2012, 23.
[27] Zhao Y L, Li Z X, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132: 13016.
[28] Du L, Liao S J, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 15136.
[29] Ashley C E, Carnes E C, Phillips G K, Padilla D, Durfee P N, Brown P A, Hanna T N, Liu J W, Phillips B, Carter M B, Carroll N J, Jiang X M, Dunphy D R, Willman C L, Petsev D N, Evans D G, Parikh A N, Chackerian B, Wharton W, Peabody D S, Brinker C J. Nat. Mater., 2011, 10: 389.
[30] Ambrogio M W, Thomas C R, Zhao Y L, Zink J I, Stoddartt J F. Acc. Chem. Res., 2011, 44: 903.
[31] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46: 7548.
[32] Tarn D, Ashley C E, Xue M, Carnes E C, Zink J I, Brinker C J. Acc. Chem. Res., 2013, 46: 792.
[33] Luo Z, Hu Y, Cai K, Ding X, Zhang Q, Li M, Ma X, Zhang B, Zeng Y, Li P, Li J, Liu J, Zhao Y. Biomaterials, 2014, 35: 7951.
[34] Zhang Q, Wang X L, Li P Z, Nguyen K T, Wang X J, Luo Z, Zhang H C, Tan N S, Zhao Y L. Adv. Funct. Mater., 2014, 24: 2450.
[35] Luo Z, Ding X W, Hu Y, Wu S J, Xiang Y, Zeng Y F, Zhang B L, Yan H, Zhang H C, Zhu L L, Liu J J, Li J H, Cai K Y, Zhao Y L. ACS Nano, 2013, 7: 10271.
[36] Liu R, Zhang Y, Feng P Y. J. Am. Chem. Soc., 2009, 131: 15128.
[37] Hu Y, Zhao N, Yu B, Liu F, Xu F J. Nanoscale, 2014, 6: 7560.
[38] Chen X F, Chen L, Yao X M, Zhang Z, He C L, Zhang J P, Chen X S. Chem. Commun., 2014, 50: 3789.
[39] Diez P, Sanchez A, Gamella M, Martinez-Ruiz P, Aznar E, de la Torre C, Murguia J R, Martinez-Manez R, Villalonga R, Pingarron J M. J. Am. Chem. Soc., 2014, 136: 9116.
[40] Aznar E, Villalonga R, Gimenez C, Sancenon F, Marcos M D, Martinez-Manez R, Diez P, Pingarron J M, Amoros P. Chem. Commun., 2013, 49: 6391.
[41] Zhang J, Yuan Z F, Wang Y, Chen W H, Luo G F, Cheng S X, Zhuo R X, Zhang X Z. J. Am. Chem. Soc., 2013, 135: 5068.
[42] Guo D S, Zhang T X, Wang Y X, Liu Y. Chem. Commun., 2013, 49: 6779.
[43] Park C, Kim H, Kim S, Kim C. J. Am. Chem. Soc., 2009, 131: 16614.
[44] Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 2382.
[45] Schild, H.G. Prog. Polym. Sci., 1992, 17: 163.
[46] Zhang Z X, Liu K L, Li J. Angew. Chem. Int. Ed., 2013, 125: 6300.
[47] Sakai F, Chen G S, Jiang M. Polym. Chem., 2012, 3: 954.
[48] Zeng J G, Shi K Y, Zhang Y Y, Sun X H, Zhang B L. Chem. Commun., 2008, 3753.
[49] Li Y W, Guo H L, Zhang Y F, Zheng J, Gan J Q, Guan X X, Lu M G. RSC Adv., 2014, 4: 17768.
[50] Du X X, Song N, Yang Y W, Wu G L, Ma J B, Gao H. Polym. Chem., 2014, 5: 5300.
[51] Voskuhl J, Stuart M C A, Ravoo B J. Chem. Eur. J., 2010, 16: 2790.
[52] Uhlenheuer D A, Wasserberg D, Haase C, Nguyen H D, Schenkel J H, Huskens J, Ravoo B J, Jonkheijm P, Brunsveld L. Chem. Eur. J., 2012, 18: 6788.
[53] Liu B W, Zhou H, Zhou S T, Zhang H J, Feng A C, Jian C M, Hu J, Gao W P, Yuan J Y. Macromolecules, 2014, 47: 2938.
[54] Han D H, Tong X, Boissiere O, Zhao Y. ACS Macro Lett., 2012, 1: 57.
[55] Han D H, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y. Macromolecules, 2012, 45: 7440.
[56] Wang L, Zou H X, Dong Z Y, Zhou L P, Li J X, Luo Q, Zhu J Y, Xu J Y, Liu J Q. Langmuir, 2014, 30: 4013.
[57] Zhou C C, Cheng X H, Yan Y, Wang J D, Huang J B. Langmuir, 2014, 30: 3381.
[58] Suzaki Y, Taira T, Takeuchi D, Osakada K. Org. Lett., 2007, 9: 887.
[59] Zhang J J, Shen X H. J. Phys. Chem. B, 2013, 117: 1451.
[60] Nalluri S K M, Voskuhl J, Bultema J B, Boekema E J, Ravoo B J. Angew. Chem. Int. Ed., 2011, 50: 9747.
[61] Jin H B, Zheng Y L, Liu Y, Cheng H X, Zhou Y F, Yan D Y. Angew. Chem. Int. Ed., 2011, 50: 10352.
[62] Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2007, 129: 6396.
[63] Li Z Q, Zhang Y M, Chen H Z, Zhao J, Liu Y. J. Org. Chem., 2013, 78: 5110.
[64] Agostini A, Sancenon F, Martinez-Manez R, Marcos M D, Soto J, Amoros P. Chem. Eur. J., 2012, 18: 12218.
[65] Park C, Lee K, Kim C. Angew. Chem. Int. Ed., 2009, 48: 1275.
[66] Liu Y, Yu C Y, Jin H B, Jiang B B, Zhu X Y, Zhou Y F, Lu Z Y, Yan D Y. J. Am. Chem. Soc., 2013, 135: 4765.
[67] Samanta A, Stuart M C A, Ravoo B J. J. Am. Chem. Soc., 2012, 134: 19909.
[68] Himmelein S, Lewe V, Stuart M C A, Ravoo B J. Chem. Sci., 2014, 5: 1054.
[69] Kandoth N, Kirejev V, Monti S, Gref R, Ericson M B, Sortino S. Biomacromolecules, 2014, 15: 1768.
[70] Fraix A, Gref R, Sortino S. J. Mat. Chem. B, 2014, 2: 3443.
[71] Master A, Livingston M, Sen Gupta A. J. Control. Release, 2013, 168: 88.
[72] Ford P C. Nitric Oxide-Biol. Ch., 2013, 34: 56.
[73] Peng K, Tomatsu I, Kros A. Chem. Commun., 2010, 46: 4094.
[74] Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A. Angew. Chem. Int. Ed., 2010, 49: 7461.
[75] Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat. Commun., 2012, 3: 603.
[76] Liu L, Rui L, Gao Y, Zhang W. Polym. Chem., 2014, 5: 5453.
[77] Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 1686.
[78] Tarn D, Ferris D P, Barnes J C, Ambrogio M W, Stoddart J F, Zink J I. Nanoscale, 2014, 6: 3335.
[79] Li Q L, Wang L, Qiu X L, Sun Y L, Wang P X, Liu Y, Li F, Qi A D, Gao H, Yang Y W. Polym. Chem., 2014, 5: 3389.
[80] Guardado-Alvarez T M, Devi L S, Russell M M, Schwartz B J, Zink J I. J. Am. Chem. Soc., 2013, 135: 14000.
[81] Guardado-Alvarez T M, Devi L S, Vabre J M, Pecorelli T A, Schwartz B J, Durand J O, Mongin O, Blanchard-Desce M, Zink J I. Nanoscale, 2014, 6: 4652.
[82] Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T. ACS Appl. Mater. Interfaces, 2010, 2: 1903.
[83] Schenkel J H, Samanta A, Ravoo B J. Adv. Mater., 2014, 26: 1076.
[84] Sahu S, Mohapatra S. Dalton Trans., 2013, 42: 2224.
[85] Lv S N, Zhao M Q, Cheng C J, Zhao Z G. J. Nanopart. Res., 2014, 16.
[86] Anirudhan T S, Dilu D, Sandeep S. J. Magn. Magn. Mater., 2013, 343: 149.
[87] Badruddoza A Z M, Rahman M T, Ghosh S, Hossain M Z, Shi J Z, Hidajat K, Uddin M S. Carbohydr. Polym., 2013, 95: 449.
[88] Lee J, Kim H, Kim S, Lee H, Kim J, Kim N, Park H J, Choi E K, Lee J S, Kim C. J. Mater. Chem., 2012, 22: 14061.
[89] Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y. J. Control. Release, 2009, 137: 63.
[90] Kheirolomoom A, Mahakian L M, Lai C Y, Lindfors H A, Seo J W, Paoli E E, Watson K D, Haynam E M, Ingham E S, Xing L, Cheng R H, Borowsky A D, Cardiff R D, Ferrara K W. Mol. Pharm., 2010, 7: 1948.
[91] Gourevich D, Dogadkin O, Volovick A, Wang L J, Gnaim J, Cochran S, Melzer A. J. Control. Release, 2013, 170: 316.
[92] Zhao Y, Zhu Y C, Fu J K, Wang L Z. Chem. Asian J., 2014, 9: 790.
[93] Harada A. Acc. Chem. Res., 2001, 34: 456.
[94] Feng A C, Yan Q, Zhang H J, Peng L, Yuan J Y. Chem. Commun., 2014, 50: 4740.
[95] Peng L, Feng A C, Zhang H J, Wang H, Jian C M, Liu B W, Gao W P, Yuan J Y. Polym. Chem., 2014, 5: 1751.
[96] Yan Q, Yuan J Y, Cai Z N, Xin Y, Kang Y, Yin Y W. J. Am. Chem. Soc., 2010, 132: 9268.
[97] Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat. Commun., 2011, 2.
[98] Du P, Liu J H, Chen G S, Jiang M. Langmuir, 2011, 27: 9602.
[99] Nakahata M, Takashima Y, Harada A. Angew. Chem. Int. Ed., 2014, 53: 3617.
[100] Yang L T, Gomez-Casado A, Young J F, Nguyen H D, Cabanas-Danes J, Huskens J, Brunsveld L, Jonkheijm P. J. Am. Chem. Soc., 2012, 134: 19199.

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[6] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[9] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[10] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[11] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[12] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[13] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.
[14] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[15] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.