中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (12): 1480-1487 DOI: 10.7536/PC170703 Previous Articles   Next Articles

• Review •

Stimuli-Responsive Polymers in Biomedical Applications

Zicheng Li, Gongke Li*, Yuling Hu*   

  1. School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (No. 21675178, 21475153, 21575168), the Guangdong Provincial Natural Science Foundation (No. 2015A030311020, 2016A030313358), the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China (No. 2015A030401036), and the Guangzhou Minsheng Science and Technology Major Project of China (No.201604020165).
PDF ( 1659 ) Cited
Export

EndNote

Ris

BibTeX

Stimuli-responsive polymers are capable of exhibiting reversible or irreversible changes in physical and/or chemical properties in response to small changes in external environment, such as pH, ions, temperature, light, etc. In recent years, stimuli-responsive polymers have been widely used in disease diagnosis, drug delivery, and sensors. Depending on the type of the external stimuli, stimuli-responsive polymers can be classified into several categories. This article reviews the synthesis methods and the mechanism of the stimuli-responsive polymers based on the chemical stimulation, physical stimulation and biological stimulation. Furthermore, the long-term prospect and the potential applications of these functional materials are introduced.
Contents
1 Introduction
2 Chemical stimulation
2.1 pH-responsive polymers
2.2 Gas-responsive polymers
2.3 Ion-responsive polymers
3 Physical stimulation
3.1 Thermo-responsive polymers
3.2 Electric-responsive polymers
3.3 Photo-responsive polymers
4 Biological stimulation
4.1 Glucose-responsive polymers
4.2 Nucleic acids-responsive polymers
4.3 Enzyme-responsive polymers
5 Conclusion

CLC Number: 

[1] Beija M, Marty J, Destarac M. Prog. Polym. Sci., 2011, 36(7):845.
[2] Smith A E, Xu X W, McCormick C L. Prog. Polym. Sci., 2010, 35(1/2):45.
[3] Roy D, Cambre J N, Sumerlin B S. Prog. Polym. Sci., 2010, 35(1/2):278.
[4] Islam M R, Lu Z Z, Li X, Sarker A K, Hu L, Choi P, Li X, Hakobyan N, Serpe M J. Anal. Chim. Acta, 2013, 789:17.
[5] Fleige E, Quadir M A, Haag R. Adv. Drug Deliver. Rev., 2012, 64(9):866.
[6] Zhu Y, Yang B, Chen S, Du J. Prog. Polym. Sci., 2017, 64:1.
[7] Leng J S, Lan X, Liu Y J, Du S Y. Prog. Mater. Sci., 2011, 56(7):1077.
[8] Medeiros S F, Santos A M, Fessi H, Elaissari A. Int. J. Pharmaceut., 2011, 403(1/2):139.
[9] Carreira A S, Gonçalves F A M M, Mendonça P V, Gil M H, Coelho J F J. Carbohyd. Polym., 2010, 80(3):618.
[10] Hoffman A S. Adv. Drug Deliver. Rev., 2013, 65(1):10.
[11] Wang Y P, Byrne J D, Napier M E, Desimone J M. Adv. Drug Deliver. Rev., 2012, 64(11):1021.
[12] Fan X L, Liu J, Jia X K, Liu Y, Zhang H, Wang S Q, Zhang B L, Zhang H P, Zhang Q Y. Nano Res., 2017, 10(9):2905.
[13] Luo G F, Chen W H, Hong S, Cheng Q, Qiu W X, Zhang X Z. Adv. Funct. Mater., 2017, 27(36):1702122.
[14] Yang L M, Li N, Pan W, Yu Z Z, Tang B. Anal. Chem., 2015, 87(7):3678.
[15] Pan W, Wang H H, Yang L M, Yu Z Z, Li N, Tang B. Anal. Chem., 2016, 88(13):6743.
[16] Lin S J, Theato P. Macromol. Rapid Commun., 2013, 34(14):1118.
[17] Lu W G, Sculley J P, Yuan D Q, Krishna R, Zhou H C. J. Phys. Chem. C, 2013, 117(8):4057.
[18] Luo S H, Chen S Y, Chen S X, Zhuang L Z, Ma N F, Xu T, Li Q H, Hou X N. J. Environ. Manage., 2016, 168:142.
[19] Kim H J, Chaikittisilp W, Jang K S, Didas S A, Johnson J R, Koros W J, Nair S, Jones C W. Ind. Eng. Chem. Res., 2015, 54(16):4407.
[20] Fan Y F, Rezaei F, Labreche Y, Lively R P, Koros W J, Jones C W. Fuel, 2015, 160:153.
[21] Sanz-Perez E S, Murdock C R, Didas S A, Jones C W. Chem. Rev., 2016, 116(19):11840
[22] Xu H, Rudkevich D M. J. Org. Chem., 2004, 69(25):8609.
[23] Xu H, Rudkevich D M. Org. Lett., 2005, 7(15):3223.
[24] Stastny V, Rudkevich D M. J. Am. Chem. Soc., 2007, 129(5):1018.
[25] Xu H, Rudkevich D M. Chem. Eur. J., 2004, 10(21):5432.
[26] Han D H, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y. ACS Macromolecules, 2012, 45(18):7440.
[27] Han D H, Tong X, Boissière O, Zhao Y. ACS Macro Lett., 2012, 1(1):57.
[28] Zhang J M, Han D H, Zhang H J, Chaker M, Zhao Y, Ma D L. Chem. Commun., 2012, 48(94):11510.
[29] Ma Y, Promthaveepong K, Li N. Anal. Chem., 2016, 88(16):8289.
[30] Che H L, Yuan J Y. Macromol. Res., 2017, 25(6):635.
[31] Wang H B, Jessop P G, Liu G J. ACS Macro Lett., 2012, 1(8):944.
[32] Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. J. Am. Chem. Soc., 2012, 134(44):18177.
[33] Yan Q, Zhao Y. Angew. Chem. Int. Ed., 2013, 52(38):9948.
[34] Quek J Y, Roth P J, Evans R A, Davis T P, Lowe A B. Polym. Chem., 2013, (51):394.
[35] Iii S W T, Yagia S, Swager T M. J. Mater. Chem., 2005, 15:2829.
[36] Xiang H F, Zhou L, Feng Y, Cheng J H, Wu D, Zhou X G. Inorg. Chem., 2012, 51(9):5208.
[37] Do L, Smith R C, Tennyson A G, Lippard S J. Inorg. Chem., 2006, 45(22):8998.
[38] Smith R C, Tennyson A G, Won A C, Lippard S J. Inorg. Chem., 2006, 45(23):9367.
[39] Jeon H Y, Lee J Y, Kim M H, Yoon J Y. Macromol. Rapid Commun., 2012, 33(11):972.
[40] Masai H, Terao J, Seki S, Nakashima S, Kiguchi M, Okoshi K, Fujihara T, Tsuji Y. J. Am. Chem. Soc., 2014, 136(5):1742.
[41] Lin Q, Sun B, Yang Q P, Fu Y P, Zhu X, Wei T B, Zhang Y M. Chem.-Eur. J., 2014, 20(36):11457.
[42] Shi H F, Liu S J, An Z F, Yang H R, Geng J L, Zhao Q, Liu B, Huang W. Macromol. Biosci., 2013, 13(10):1339.
[43] Shi H F, Liu S J, Sun H B, Xu W J, An Z F, Chen J, Sun S, Lu X M, Zhao Q, Huang W. Chem. Eur. J., 2010, 16(40):12158.
[44] Li P, Liu L, Xiao H B, Zhang W, Wang L L, Tang B. J. Am. Chem. Soc., 2016, 138(9):2893.
[45] Zhang W, Wang X, Li P, Xiao H B, Zhang W, Wang, H, Tang B. Anal. Chem., 2017, 89(12):6840.
[46] Li L, Feng J, Fan Y Y, Tang B. Anal. Chem., 2015, 87(9):4829.
[47] Li L, Fan Y Y, Li Q L, Sheng R J, Si H B, Fang J, Tong L L, Tang B. Anal. Chem., 2017, 89(8):4559.
[48] Tan H L, Liu B X, Chen Y. ACS Nano, 2012, 6(12):10505.
[49] Qin C J, Wong W Y, Wang L X. Macromolecules, 2011, 44(3):483.
[50] Lakshmi N V, Mandal D, Ghosh S, Prasad E. Chem. Eur. J., 2014, 20(29):9002.
[51] Wang D E, Wang T L, Tian C, Zhang L L, Han X, Tu Q, Yuan M S, Chen S, Wang J Y. J. Mater. Chem. A, 2015, 3(43):21690.
[52] Fegley M E A, Sandgren T, Duffy-Matzner J L, Chen A T, Jones W E. J. Polym. Sci. Pol. Chem., 2015, 53(8):951.
[53] Deraedt C, Rapakousiou A, Wang Y L, Salmon L, Bousquet M, Astruc D. Angew. Chem. Int. Ed., 2014, 53(32):8445.
[54] Chen T, Ferris R, Zhang J M, Ducker R, Zauscher S. Prog. Polym. Sci., 2010, 35(1/2):94.
[55] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem., 2004, 116(3):361.
[56] Lendlein A, Langer R. Science, 2002, 296(5573):1673.
[57] Zhou J, Turner S A, Brosnan S M, Li Q X, Carrillo J Y, Nykypanchuk D, Gang O, Ashby V S, Dobrynin A V, Sheiko S S. Macromolecules, 2014, 47(5):1768.
[58] Zeng Q, McNally A, Keyes T E, Forster R J. Electrochem. Commun., 2008, 10(3):466.
[59] Cui B B, Yao C J, Yao J N, Zhong Y W. Chem. Sci., 2014, 5(3):932.
[60] Le H H, Kolesov I, Ali Z, Uthardt M, Osazuwa O, Ilisch S, Radusch H J. J. Mater. Sci., 2010, 45(21):5851.
[61] Guo J, Wang N J, Peng L, Wu J J, Ye Q Q, Feng A C, Wang Z P, Zhang C, Xing X H, Yuan J Y. J. Mater. Chem. B, 2016, 4(22):4009.
[62] Borré E, Stumbé J, Bellemin-Laponnaz S, Mauro M. Angew. Chem. Int. Ed., 2016, 55(4):1313.
[63] Ke K, Du Z K, Chang X Y, Ren B Y. Colloid. Polym. Sci., 2017, 295(10):1851.
[64] Chujo Y, Sada K, Saegusa T. Macromolecules, 1990, (23):2693.
[65] Jiang J Q, Qi B, Lepage M, Zhao Y. Macromolecules, 2007, 40(4):790.
[66] Jiang X S, Wang R, Ren Y R, Yin J. Langmuir, 2009, 25(17):9629.
[67] Li Y Y, Dong H Q, Wang K, Shi D L, Zhang X Z, Zhuo R X. Sci. China Chem., 2010, 53(3):447.
[68] Qing G Y, Lu Q, Xiong Y T, Zhang L, Wang H X, Li X L, Liang X M, Sun T L. Adv. Mater., 2017, 29:1604670.
[69] 丁鹏(Ding P), 陈掀(Chen X), 李秀玲(Li X L), 卿光焱(Qing G Y), 孙涛垒(Sun T L), 梁鑫淼(Liang X M), 化学进展(Prog. Chem.), 2015, 27(11):1628.
[70] Yan Q, Zhao Y. Chemical Communications, 2014, 50(79):11631.
[71] Meng F H, Zhong Z Y, Feijen J. Biomacromolecules, 2009, 10(2):197.
[72] Torchilin V P. Nat. Rev. Drug Discov., 2014, 13(11):813.
[73] Mizutani A, Kikuchi A, Yamato M, Kanazawa H, Okano T. Biomaterials, 2008, 29(13):2073.
[74] Podual K, Doyle F J, Peppas N A. J. Control. Release, 2000, 67(1):9.
[75] Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y. Angew. Chem. Int. Edit., 2012, 51(9):2124.
[76] Brownlee M, Cerami A. Science, 1979, 206(4423):1190.
[77] Kim H, Kang Y J, Kang S, Kim K T. J. Am. Chem. Soc., 2012, 134(9):4030.
[78] Xiong Y T, Jiang G, Li M M, Qing G Y, Li X L, Liang X M, Sun T L. Sci. Rep., 2017, 7:40913.
[79] Edwardson T G W, Carneiro K M M, McLaughlin C K, Serpell C J, Sleiman H F. Nat. Chem., 2013, 5(10):868.
[80] Bujold K E, Fakhoury J, Edwardson T G W, Carneiro K M M, Briard J N, Godin A G, Amrein L, Hamblin G D, Panasci L C, Wiseman P W, Sleiman H F. Chem. Sci., 2014, 5(6):2449.
[81] Calin G A, Croce C M. Nat. Rev. Cancer, 2006, 6(11):857.
[82] Zhang P H, He Z M, Wang C, Chen J N, Zhao J J, Zhu X N, Li C Z, Min Q H, Zhu J J. ACS Nano, 2015, 9(1):789.
[83] Amir R J, Zhong S, Pochan D J, Hawker C J. J. Am. Chem. Soc., 2009, 131(39):13949.
[84] Olson E S, Jiang T, Aguilera T A, Nguyen Q T, Ellies L G, Scadeng M, Tsien R Y. Proc. Natl. Acad. Sci.U.S.A, 2010, 107(9):4311.
[85] Overall C M, Kleifeld O. Nat. Rev. Cancer, 2006, 6(3):227.
[86] Hu Q Y, Sun W J, Lu Y, Bomba H N, Ye Y Q, Jiang T Y, Isaacson A J, Gu Z. Nano Lett., 2016, 16(2):1118.
[87] Gulbake A, Jain S K. Expert Opin. Drug Del., 2012, 9(6):713.
[88] Rao J Y, Khan A. J. Am. Chem. Soc., 2013, 135(38):14056.
[89] Lee S H, Bui H T, Vales T P, Cho S, Kim H J. Dyes and Pigments., 2017,145:216.
[90] Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H. J. Biomed. Mater. Res., 2017, DOI:10.1002/jbm.a.36230.
[91] Laskar, P., Dey, J., Ghosh, S. K. Journal of Colloid and Interface Science, 2017, 501:22.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[3] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[4] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[5] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[6] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[7] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[8] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[9] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[10] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[11] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[12] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[13] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[14] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[15] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.