中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (12): 1518-1525 DOI: 10.7536/PC170804 Previous Articles   Next Articles

• Review •

Research of Polymeric Microneedles for Transdermal Drug Delivery

Xiao Zhao, Xinfang Li, Peng Zhang, Youxiang Wang*   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Natural Science Foundation of Zhejiang Province (No. LY18E030001), the National Natural Science Foundation of China (No.21474087), and International Science & Technology Cooperation Program of China (No.2015DFA51010).
PDF ( 1364 ) Cited
Export

EndNote

Ris

BibTeX

Stratum corneum, the protective barrier of the skin, is the principal obstacle for drugs to pass through the skin, especially macromolecular drugs or hydrophilic drugs. Micron-sized microneedles in transdermal drug delivery system can permeabilize the stratum corneum to promote the penetration of skin-impermeant drugs by creating reversible microchannels in the skin in a minimally invasive manner, which can overcome low permeability of traditional transdermal drug delivery system. What's more, percutaneous microneedle insertion can cause less or even no pain because it has limited insertion depth without touching nerves in the skin. Polymeric microneedles not only have sufficient strength to puncture the stratum corneum but also exhibit other outstanding performances such as biocompatibility and relatively lager drug loading capacity. It is safe even if polymeric microneedles rupture in the skin. Polymeric microneedles have so many advantages that they have an extensive prospect in transdermal drug delivery system, which has received abroad attention. In this paper, the recent advances of polymeric microneedles are reviewed in detail from the following aspects:microneedle types, manufacturing methods, and applications in transdermal drug delivery system. Challenges and prospects of polymeric microneedles are also discussed.
Contents
1 Introduction
2 Types of polymeric microneedles
3 Manufacturing methods of polymeric microneedles
4 Applications of polymeric microneedles in transdermal drug delivery system
4.1 Rapid drug release
4.2 Extended drug release
4.3 Stimuli-responsive drug release
5 Conclusion and outlook

CLC Number: 

[1] Lademann J. Journal of Biomedical Optics, 2013, 18:061201.
[2] Yu W J, Jiang G H, Liu D P, Li L, Chen H, Liu Y K, Huang Q, Tong Z Z, Yao J M, Kong X D. Materials Science and Engineering C, 2017, 71:725.
[3] Kim Y C, Park J H, Prausnitz M R. Advanced Drug Delivery Reviews, 2012, 64:1547.
[4] Larrañeta E, Mccrudden M T C, Courtenay A J, Donnelly R F. Pharmaceutical Research, 2016, 33:1055.
[5] Prausnitz M R, Langer R. Nature Biotechnology, 2008, 26:1261.
[6] Yang Y, Haripriya K, Banga A K. Pharmaceutics, 2011, 3:474.
[7] Anhuf D. Advanced Drug Delivery Reviews, 2004, 56:659.
[8] Glenn G M, Flyer D C, Ellingsworth L R, Frech S A, Frerichs D M, Seid R C, Yu J M. Expert Review of Vaccines, 2007, 6:809.
[9] Zhu Z Z, Luo H F, Lu W D, Luan H S, Wu Y B, Luo J, Wang Y J, Pi J X, Lim C Y, Wang H. Pharmaceutical Research, 2014, 31:3348.
[10] Yu W J, Jiang G H, Zhang Y, Liu D P, Xu B, Zhou J Y. Materials Science and Engineering C, 2017, 80:187.
[11] Gupta J, Gill H S, Andrews S N, Prausnitz M R. Journal of Controlled Release, 2011, 154:148.
[12] 朱凤(Zhu F), 金凡茂(Jin F M), 赵昱(Zhao Y), 余正勇(Yu Z Y), 胡园(Hu Y), 高鹏飞(Gao P F). 中国生化药物杂志(Chinese Journal of Biochemical Pharmaceutics), 2016, 36(8):149.
[13] Ling M H, Chen M C. Acta Biomaterialia, 2013, 9:8952.
[14] Lee I C, He J S, Tsai M T, Lin K C. Journal of Materials Chemistry B, 2014, 3:276.
[15] Chen M C, Lin Z W, Ling M H. ACS Nano, 2016, 10:93.
[16] Chen M C, Ling M H, Kusuma S J. Acta Biomaterialia, 2015, 24:106.
[17] Yang S X, Wu F, Liu J G, Fan G R, Welsh W, Zhu H, Jin T. Advanced Functional Materials, 2015, 25:4633.
[18] Donnelly R F, Singh T R, Garland M J, Migalska K, Majithiya R, McCrudden C M, Kole P L, Mahmood T M, McCarthy H O, Woolfson A D. Advanced Functional Materials, 2012, 22:4879.
[19] Larrañeta E, Lutton R E M, Woolfson A D, Donnelly R F. Materials Science & Engineering R Reports, 2016, 104:1.
[20] Lee K, Kim J D, Chang Y L, Song H, Jung H G. Biomaterials, 2011, 32:7705.
[21] Ke C J, Lin Y J, Hu Y C, Chiang W L, Chen K J, Yang W C, Liu H L, Fu C C, Sung H W. Biomaterials, 2012, 33:5156.
[22] Kim J D, Kim M, Yang H, Lee K, Jung H. Journal of Controlled Release, 2013, 170:430.
[23] Chen M C, Ling M H, Wang K W, Lin Z W, Lai B H, Chen D H. Biomacromolecules, 2015, 16:1598.
[24] Aoyagi S, Izumi H, Isono Y, Fukuda M, Ogawa H. Sensors & Actuators A Physical, 2007, 139:293.
[25] McAllister D V, Wang P M, Davis S P, Park J H, Canatella P J, Allen M G, Prausnitz M R. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100:13755.
[26] Vecchione R, Coppola S, Esposito E, Casale C, Vespini V, Grilli S, Ferraro P, Netti P A. Advanced Functional Materials, 2014, 24:3515.
[27] Han M, Hyun D H, Park H H, Lee S S, Kim C H, Kim C G. Journal of Micromechanics & Microengineering, 2007, 17:1184.
[28] Luangveera W, Jiruedee S, Mama W, Chiaranairungroj M, Pimpin A, PalagaT, Srituravanich W. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50:77.
[29] Choi S O, Kim Y C, Park J H, Hutcheson J, Gill H S, Yoon Y K, Prausnitz M R, Allen M G. Biomedical Microdevices, 2010, 12:263.
[30] Chu L Y, Prausnitz M R. Journal of Controlled Release, 2011, 149:242.
[31] Chen J M, Qiu Y Q, Zhang S H, Gao Y H. Drug Development and Industrial Pharmacy, 2016,42:890.
[32] Han M, Kim D K, Kang S H, Yoon H R, Kim B Y, Lee S S, Kim K D, Lee H G. Sensors & Actuators B Chemical, 2009, 137:274.
[33] Keum D H, Jung H S, Wang T, Shin M H, Kim Y E, Kim K H, Ahn G O, Hahn S K. Advanced Healthcare Materials, 2015, 4:1152.
[34] Lee K, Lee H C, Lee D S, Jung H. Advanced Materials, 2010, 22:483.
[35] Johnson A R, Caudill C L, Tumbleston J R, Bloomquist C J, Moga K A, Ermoshkin A, ShirvanyantsD, Mecham S J, Luft J C, DeSimone J M. PloS One, 2016, 11:e0162518.
[36] 肖云芳(Xiao Y F), 王博(Wang B), 林蓉(Lin R). 中国药学杂志(Chinese Pharmaceutical Journal), 2017, 52(2):89.
[37] 张海荣(Zhang H R), 鱼泳(Yu Y). 医疗卫生装备(Chinese Medical Equipment Journal), 2015, 36(3):118.
[38] Lim S H, Ng J Y, Kang L. Biofabrication, 2017, 9:015010.
[39] Zhu D D, Wang Q L, Liu X B, Guo X D. Acta Biomaterialia, 2016, 41:312.
[40] 洪燕龙(Hong Y L), 冯怡(Feng Y), 徐德生(Xu D S). 中国中药杂志(China Journal of Chinese Materia Medica), 2006, 31(1):15.
[41] Chen M C, Ling M H, Lai K Y, Pramudityo E. Biomacromolecules, 2012, 13:4022.
[42] Senel S. Advances in Polymer Science, 2011, 243:111.
[43] Koutsonanos D G, Martin M D P, Zarnitsyn V G, Sullivan S P, Compans R W, Prausnitz M R, Skountzou I. PloS One, 2009, 4:e4773.
[44] Al-Zahrani S, Zaric M, Mccrudden C, Scott C, Kissenpfennig A, Donnelly R F. Expert Opinion on Drug Delivery, 2012, 9:541.
[45] Chen M C, Huang S F, Lai K Y, Ling M H. Biomaterials, 2013, 34:3077.
[46] Li W Y, Liu Y J, Du J W, Ren K F, Wang Y X. Nanoscale, 2015, 7:8476.
[47] Zhang Q, Shen C A, Zhao N N, Xu F J. Advanced Functional Materials, 2017, 27:1606229.
[48] Tian Z Q, Yang C L, Wang W, Yuan Z. ACS Applied Materials & Interfaces, 2014, 6:17865.
[49] Chen L D, Xue Y N, Xia X Y, Song M F, Huang J, Zhang H, Yu B, Long S H, Liu Y P, Liu L, Huang S W, Yu F Q. Journal of Materials Chemistry B, 2015, 3:8949.
[50] Du J W, Zhang P, Zhao X, Wang Y X. Scientific Reports, 2017, 7:6064.
[51] Li S, Wu W, Xiu K M, Xu F J, Li Z M, Li J S. Journal of Biomedical Nanotechnology, 2014, 10:1480.
[52] Guo H, Wang W, Yang C L, Yuan Z. Journal of Controlled Release, 2013, 172:95.
[53] Liu L, Yu P, Zhang Y, Wu B, Cui C, Wu M, Wang C X, Zhuo R X, Huang S W. Journal of Controlled Release, 2015, 213:e67.
[54] Li W Y, Du J W, Zheng K, Zhang P, Hu Q L, Wang Y X. Chem. Commun., 2014, 50:1579.
[55] Ye Y Q, Yu J C, Wang C, Nguyen N Y, Walker G M, Buse J B, Gu Z. Advanced Materials, 2016, 28:3115.
[56] Yu J C, Zhang Y Q, Ye Y Q, DiSanto R, Sun W J, Ranson D, Ligler F S, Buse J B, Gu Z. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112:8260.
[57] Yu J C, Qian C G, Zhang Y Q, Cui Z, Zhu Y, Shen Q D, Ligler F S, Buse J B, Gu Z. Nano Letters, 2017, 17:733.
[58] Zhang Y Q, Yu J C, Wang J Q, Hanne N J, Cui Z, QianC G, Wang C, Xin H L, Cole J H, Gallippi C M, Zhu Y, Gu Z. Advanced Materials, 2017, 29:1604043.
[59] Yu J C, Zhang Y Q, Kahkoska A R, Gu Z. Current Opinion in Biotechnology, 2017, 48:28.
[60] Iliff J J, Alkayed N J, Gloshani K J, Traystman R J, West G A. Journal of Cerebral Blood Flow & Metabolism, 2005, 25, 1376.
[61] Di J, Yao S S, Ye Y Q, Cui Z, Yu J C, Ghosh T K, Zhu Y, Gu Z. ACS Nano, 2015, 9:9407.
[62] Hardy J G, Larrañeta E, Donnelly R F, McGoldrick N, Migalska K, McCrudden M T C, Irwin N J, Donnelly L, McCoy C P. Molecular Pharmaceutics, 2016, 13, 907.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.