中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (10): 1413-1424 DOI: 10.7536/PC150408 Previous Articles   Next Articles

• Review and comments •

Peptide-Mediated Supramolecular Helical Polymers

Wang Jun1,3, Zhang Afang1,2*   

  1. 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
    2. Qianweichang School, Shanghai University, Shanghai 200444, China;
    3. School of Pharmacy, Jining Medical College, Rizhao 276800, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the State Key Program of National Natural Science Foundation of China (No. 21034004), the National Natural Science Foundation of China (No. 21374058, 21574078), the PhD Programs Foundation of the Ministry of Education of China (No. 201331081100166), and the Higher School Young Backbone Teacher Visiting Scholar Program of Shandong Province.
PDF ( 2209 ) Cited
Export

EndNote

Ris

BibTeX

Combining the dynamic and tunable characteristics from supramolecular polymers and the helical conformation from chiral polymers, supramolecular helical polymers have received considerable research interest and been widely applied in various fields, including chiral probes and chiral recognition, as well as asymmetric catalysis. Peptides integrate chirality, abandoned secondary structures, and high tendency to self-assemble, which have been used for mediating supramolecular formation of helical polymers. In the present review, peptide-mediated supramolecular helical polymers will be described in details, focusing on structural effects of different peptides on supramolecular formation and chirality enhancement. By comparison to linear peptides, topology of their representatives, including cyclopeptides, dendritic and C3 peptides, is analyzed to understand its effect on the chiral enhancement and formation of helical conformation. Furthermore, supramolecular helical polymers mediated by peptides showing stimuli-responsiveness to light, temperature, pH, metal ions and enzymes are emphasized. The stimuli-responsive properties may exert influence on helical conformation and chiral enhancement, and make the conformation tunable. At the same time, the stimuli-responsiveness may afford these supramolecular polymers new functionalities and pose new light on promising applications. The present review hopes to provide readers an updated point view on how peptides mediate the formation of helical supramolecular polymers with environmental responsiveness.

Contents
1 Introduction
2 Amphiphilic peptide-mediated supramolecular helical polymers
2.1 Pure peptides
2.2 Hydrophobic alkyl chain modified peptides
2.3 Aromatic short peptides
2.4 Bolaamphiphilic peptides
2.5 Peptides based on π-π interaction
2.6 Amyloid-like peptides
3 Topological peptide-mediated supramolecular helical polymers
3.1 Cyclopeptides
3.2 Dendritic peptides
3.3 C3 peptides
4 Peptide-based stimuli-responsive supramolecular helical polymers
4.1 Temperature
4.2 Light
4.3 pH
4.4 Metal ions
4.5 Enzyme
5 Conclusion

CLC Number: 

[1] Zhang S G. Biotechnol. Adv., 2002, 20: 321.
[2] 黄飞鹤(Huang F H),翟春熙(Zhai C X), 郑波(Zheng B), 李世军(Li S J).超分子聚合物(Supramolecular Polymers).杭州:浙江大学出版社(Hangzhou:Zhejiang University Press). 2012. 127.
[3] Huang F H, Scherman O A. Chem. Soc. Rev., 2012, 41: 5879.
[4] Stupp S I, Palmer L C. Chem. Mater., 2014, 26: 507.
[5] Zhang J X, Ma P X. Adv. Drug Delivery Rev., 2013, 65: 1215.
[6] Li G L, Liu J Y, Pang Y, Wang R B, Mao L M, Yan D Y, Zhu X Y, Sun J. Biomacromolecules, 2011, 12 : 2016.
[7] Burckbuchler V, Wintgens V, Leborgne C, Lecomte S, Leygue N, Scherman D, Kichler A, Amiel C. Bioconjugate Chem., 2008, 19: 2311.
[8] Sun M, Zhang H, Liu B, Liu Y. Macromolecules, 2013, 46: 4268.
[9] Shah R N, Shah N A, Del Rosario Lim M M, Hsieh C, Nuber G, Stupp S I. Proc. Natl. Acad. Sci. U.S.A., 2010, 107: 3293.
[10] Moulin E, Niess F, Fuks G, Jouault N, Buhler E, Giuseppone N. Nanoscale, 2012, 4: 6748.
[11] Krieg E, Weissman H, Shirman E, Shimoni E, Rybtchinski B. Nat. Nanotechnol., 2011, 6: 141.
[12] Haldar D, Schmuck C. Chem. Soc. Rev., 2009, 38: 363.
[13] Aiba Y, Sumaoka J, Komiyama M. Chem. Soc. Rev., 2011, 40: 5657.
[14] Palmans A R A, Meijer E W. Angew. Chem. Int. Ed., 2007, 47: 8948.
[15] Zhao X B, Pan F, Xu H, Yaseen M, Shan H H, Hauser C A E, Zhang S G, Lu J R. Chem. Soc. Rev., 2010, 39: 3480.
[16] Reches M, Gazit E. Science, 2003, 300: 625.
[17] Zelzer M, Ulijn R V. Chem. Soc. Rev., 2010, 39: 3351.
[18] Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2014, 43: 6881.
[19] Frederix P W J M, Scott G G, Abul-Haija Y M, Kalafatovic D, Pappas C G, Javid N, Hunt N T, Ulijn R V, Tuttle T. Nat. Chem., 2015, 7: 30.
[20] Dehsorkhi A, Castelletto V, Hamley I W. J. Pept. Sci., 2014, 20: 453.
[21] Aggeli A, Nyrkova I A, Bell M, Harding R, Carrick L, McLeish T C B, Semenov A N, Boden N. Proc. Natl. Acad. Sci. U.S.A., 2001, 98: 11857.
[22] Ryadnov M G, Woolfson D N. Nat. Mater., 2003, 2: 329.
[23] Smith A M, Acquah S F A, Bone N, Kroto H W, Ryadnov M G, Stevens M S P, Walton D R M, Woolfson D N. Angew. Chem. Int. Ed., 2005, 44: 325.
[24] Vankann M, Möllerfeld J, Ringsdorf H, Höcker H. J. Colloid Interface Sci., 1996, 178: 241.
[25] Hamley I W, Dehsorkhi A,Castelletto V, Seitsonen J, Ruokolainen J, Iatrou H. Soft Matter, 2013, 9: 4794.
[26] Pashuck E T, Cui H, Stupp S I. J. Am. Chem. Soc., 2010, 132: 6041.
[27] Korevaar P A, Newcomb C J, Meijer E W, Stupp S I. J. Am. Chem. Soc., 2014, 136: 8540.
[28] Kokkoli E, Mardilovich A, Wedekind A, Rexeisen E L, Garg A, Craig J A. Soft Matter, 2006, 2: 1015.
[29] Bull S R, Guler M O, Bras R E, Meade T J, Stupp S I. Nano Lett., 2005, 5: 1.
[30] Pashuck E T, Stupp S I. J. Am. Chem. Soc., 2010, 132: 8819.
[31] Cui H, Cheetham A G, Pashuck E T, Stupp S I. J. Am. Chem. Soc., 2014, 136: 12461.
[32] Chen C L, Zhang P J, Rosi N L. J. Am. Chem. Soc., 2008, 130: 13555.
[33] Chen C L, Rosi N L. J. Am. Chem. Soc., 2010, 132: 6902.
[34] Song C Y, Blaber M G, Zhao G P, Zhang P J, Fry H C, Schatz G C, Rosi N L. Nano Lett., 2013, 13: 3256.
[35] Jayawarna V, Ali M, Jowitt T A, Miller A F, Saiani A, Gough J E, Ulijn R V. Adv. Mater., 2006, 18: 611.
[36] Vegners R, Shestakova I, Kalvinsh I, Ezzell R M, Janmey P A. J. Pept. Sci., 1995, 1: 371.
[37] Yang Z M, Liang G L, Ma M, Gao Y, Xu B. J. Mater. Chem., 2007, 17: 850.
[38] Hughes M, Xu H X, Frederix P J M, Smith A M, Hunt N T, Tuttle T, Kinloch I A, Ulijn R V. Soft Matter, 2011, 7: 10032.
[39] Sun X L, Biswas N, Kai T, Dai Z F, Dluhy R A, Chaikof E L. Langmuir, 2006, 22: 1201.
[40] Gao P, Liu M H. Langmuir, 2006, 22: 6727.
[41] Naidoo V B, Rautenbach M. J. Pept. Sci., 2013, 19: 784.
[42] Sanders A M, Dawidczyk T J, Katz H E, Tovar J D. ACS Macro Lett., 2012, 1: 1326.
[43] Wall B D, Zacca A E, Sanders A M, Wilson W L, Ferguson A L, Tovar J D. Langmuir, 2014, 30: 5946.
[44] Marty R, Nigon R, Leite D, Frauenrath H. J. Am. Chem. Soc., 2014, 136: 3919.
[45] Marty R, Szilluweit R, Sánchez-Ferrer A, Bolisetty S, Adamcik J, Mezzenga R, Spitzner E C, Feifer M,Steinmann S N,Corminboeuf C, Frauenrath H. ACS Nano, 2013, 7: 8498.
[46] Uversky V N, Fink A L. Biochim. Biophys. Acta, 2004, 1698:131.
[47] Dzwolak W. Chirality, 2014, 26: 580.
[48] Usov I, Adamcik J, Mezzenga R. Nano, 2013, 7: 10465.
[49] Lara C, Reynolds N P, Berryman J T, Xu A Q, Zhang A, Mezzenga R. J. Am. Chem. Soc., 2014, 136: 4732.
[50] Ghadiri M R, Granja J R, Milligan R A, Mcree D E, Khzanovich N. Nature, 1993, 366: 324.
[51] Bong D T, Clark T D, Granja J R, Ghadiri M R. Angew. Chem. Int. Ed., 2001, 40: 988.
[52] Choi S J, Jeong W J, Kim T H, Lim Y B. Soft Matter, 2011, 7: 1675.
[53] Jeong H S H, Park H, Jin K S, Lim Y B. Biomacromolecules, 2014, 15: 2138.
[54] Jeong W J, Choi S J, Choi J S, Lim Y B. ACS Nano, 2013, 7: 6850.
[55] Percec V, Dulcey A E, Balagurusamy V S K, Miura Y, Smidrkal J, Peterca M, Nummelin S, Edlund U, Hudson S D, Heiney P A, Duan H, Magonov S N, Vinogradov S A. Nature, 2004, 430: 764.
[56] Percec V, Dulcey A E, Peterca M, Adelman P, Samant R, Balagurusamy V S K, Heiney P A. J. Am. Chem. Soc., 2007, 129: 5992.
[57] Percec V, Dulcey A E, Peterca M. Ilies M, Sienkowska M J, Heiney P A. J. Am. Chem. Soc., 2005, 127: 17902.
[58] Rosen B M, Peterca M, Morimitsu K, Dulcey A E, Leowanawat P, Resmerita A M, Imam M R, Percec V. J. Am. Chem. Soc., 2011, 133: 5135.
[59] Yan J T, Liu K, Zhang X Q, Li W, Zhang A. J. Polym. Sci., Part A: Polym. Chem., 2015, 53: 33.
[60] Stals P J M, Smulders M M J, Martín-Rapún R, Palmans A R A, Meijer E W. Chem. Eur. J., 2009, 15: 2071.
[61] Shikata T, Kuruma Y, Sakamoto A, Hanabusa K. J. Phys. Chem. B, 2008, 112: 16393.
[62] Shen Z C, Wang T Y, Liu M H. Angew. Chem. Int. Ed., 2014, 53: 13424.
[63] Roosma J, Mes T, Leclère P, Palmans A R A, Meijer E W. J. Am. Chem. Soc., 2008, 130: 1120.
[64] Gillissen M A J, Koenigs M M E, Spiering J J H, Vekemans J A J M, Palmans A R A, Voets I K, Meijer E W. J. Am. Chem. Soc., 2014, 136: 336.
[65] Cantekin S, Greefab T F A, Palmans A R A. Chem. Soc. Rev., 2012, 41, 6125.
[66] Cantekin S, Balkenende D W R, Smulders M M J, Palmans A R A, Meijer E W. Nat. Chem., 2011, 3: 42.
[67] Korevaar P A, George S J, Markvoort A J, Smulers M M J, Hilbers P A J, Schenning A P H J, de Greef T F A D, Meijer E W. Nature, 2012, 481: 492.
[68] Hout K P, Martín-Rapún R, Vekemans J A J M, Meijer E W. Chem. Eur. J., 2007, 13: 8111.
[69] Dai Y T, Zhao X, Su X Y, Li G Y, Zhang A. Macromol. Rapid Commun., 2014, 35: 1326.
[70] Chen C S, Xu X D, Wang Y, Yang J, Jia H Z, Cheng H, Chu C C, Zhuo R X, Zhang X Z. Small, 2013, 9: 920.
[71] Wang H M, Yang Z M. Nanoscale, 2012, 4: 5259.
[72] Liu X, Wang X M, Horii A, Wang X J, Qiao L, Zhang S G, Cui F Z. Nanoscale, 2012, 4: 2720.
[73] Palladino P, Castelletto V, Dehsorkhi A, Stetsenko D, Hamley I W. Langmuir, 2012, 28: 12209.
[74] Miravet J F, Escuder B, Segarra-Maset M D, Tena-Solsona M, Hamley I W, Dehsorkhi A, Castelletto V. Soft Matter, 2013, 9: 3558.
[75] Hamley I W, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J. Soft Matter, 2013, 9: 9290.
[76] Meijer J T, Henckens M J A G, Minten I J, Löwik D W P M, Hest J C M. Soft Matter, 2007, 3: 1135.
[77] Chen C S, Xu X D, Li S Y, Zhuo R X, Zhang X Z. Nanoscale, 2013, 5: 6270.
[78] Apostolovic B, Klok H A. Biomacromolecules, 2008, 9: 3173.
[79] Zhang J, Hao R, Huang L, Yao J, Chen X, Shao Z Z. Chem. Commun., 2011, 47: 10296.
[80] Beyer R L, Hoang H N, Appleton T G, Fairlie D P. J. Am. Chem. Soc., 2004, 126: 15096.
[81] Ma M T, Hoang H N, Scully C C G, Appleton T G, Fairlie D P. J. Am. Chem. Soc., 2009, 131: 4505.
[82] Dehsorkhi A, Hamley I W, Seitsonen J, Ruokolainen J. Langmuir, 2013, 29: 6665.
[83] Rasale D B, Biswas S, Konda M, Das A K. RSC Adv., 2015, 5: 1529.
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.
[5] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[6] Hao Zhang, Jing Liu, Kun Cui, Tao Jiang, Zhi Ma. Synthesis and Application of Guanidine-Based Antibacterial Polymers [J]. Progress in Chemistry, 2019, 31(5): 681-689.
[7] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[8] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[9] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
[10] Hongchuan Fan, Dong Yang, Pengfei Duan. Triplet-Triplet Annihilation-Based Upconversion in Supramolecular System [J]. Progress in Chemistry, 2018, 30(7): 879-887.
[11] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[12] Chuncai Zhou, Chuncai Zhou*. Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymers [J]. Progress in Chemistry, 2018, 30(7): 913-920.
[13] Huang Wenzhong, Zhan Tianguang, Lin Feng, Zhao Xin. Recent Progress in the Construction and Regulation of Supramolecular Polymers Based on Host-Guest Interactions [J]. Progress in Chemistry, 2016, 28(2/3): 165-183.
[14] Wang Kerang. Chiral Supramolecular Assemblies Based on Aromatic Molecules-Carbohydrate Conjugates and Their Applications [J]. Progress in Chemistry, 2015, 27(6): 775-784.
[15] Ding Peng, Chen Xian, Li Xiuling, Qing Guangyan, Sun Taolei, Liang Xinmiao. The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles [J]. Progress in Chemistry, 2015, 27(11): 1628-1639.