中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1784-1798 DOI: 10.7536/PC150629 Previous Articles   Next Articles

• Review and comments •

Stimuli-Responsive Degradable Polymeric Hydrogels

Cheng Xinfeng1,2, Jin Yong3,4*, Qi Rui1,2, Fan Baozhu1,2, Li Hanping3,4   

  1. 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China;
    4. National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National High-Tech Research and Development Projects (863) (No. 2013AA06A306), the National Natural Science Foundation of China (No. 21474065), and the Sichuan Province Leaders in Academic and Technical Training Project Funding (No. 2015/100-5).
PDF ( 4609 ) Cited
Export

EndNote

Ris

BibTeX

Polymeric hydrogels, as an important class of polymeric materials, have found widespread use in biomedical and pharmaceutical fields due to their excellent physicochemical and biological characteristics. Degradability is an important parameter when considering the application of polymeric hydrogels in the biomedical fields. Stimuli-responsive degradable (SRD) hydrogel is a kind of intelligent materials, whose network structure can be cleaved in response to external environmental triggers, resulting in a gel-sol or swelling-degradation transition behavior. The stimuli-responsive degradability can be realized by incorporation of environment-sensitive labile or cleavable groups into the gel network. Moreover, this characteristic SRD ability has attracted tremendous interests due to the triggered and controlled degradability in space or in time as compared to the conventional hydrolysis and enzymolysis. This review mainly focuses on the design methods, mechanisms of degradation and most recent studies of SRD hydrogels whose bonds responsively broken by pH, photo and redox triggers. Finally, a perspective on the future research directions of the SRD hydrogels is briefly discussed.

Contents
1 Introduction
2 Stimuli-responsive degradable polymeric hydrogels
2.1 pH-responsive degradable polymeric hydrogels
2.2 Photo-responsive degradable polymeric hydrogels
2.3 Redox-responsive degradable polymeric hydrogels
2.4 Others
3 Conclusion and outlook

CLC Number: 

[1] Kope D?ek J. Biomaterials. 2007, 28(34): 5185.
[2] Park K, Park H. Smart Hydrogels, in: J.C. Salamone (Ed.), Concise Polymeric Materials Encyclopedia, CRC Press, Boca Raton, 1999. 1476.
[3] Drury J L, Mooney D J. Biomaterials, 2003, 24(24): 4337.
[4] Wang K, Fu Q, Chen X, Gao Y, Dong K. RSC Adv., 2012, 2(20): 7772.
[5] Tran N Q, Joung Y K, Lih E, Park K M, Park K D. Biomacromolecules, 2010, 11(3): 617.
[6] van Vlierberghe S, Dubruel P, Schacht E. Biomacromolecules, 2011, 12(5): 1387.
[7] Li Y, Rodrigues J, Tomas H. Chem. Soc. Rev., 2012, 41(6): 2193.
[8] Sharma S K, Mudhoo A. A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications. RSC Green Chemistry. 2011.12. 365.
[9] Park K M, Lee S Y, Joung Y K, Na J S, Lee M C, Park K D. Acta Biomater., 2009, 5(6): 1956.
[10] Ha D, Lee S, Chong M, Lee Y, Kim S, Park Y. Macromol. Res., 2006, 14(1): 87.
[11] Jeon O, Powell C, Solorio L D, Krebs M D, Alsberg E. J. Control. Release, 2011, 154(3): 258.
[12] Young S, Wong M, Tabata Y, Mikos A G. J. Control. Release, 2005, 109(1/3): 256.
[13] Park M H, Joo M K, Choi B G, Jeong B. Acc. Chem. Res., 2012, 45(3): 424.
[14] Deshayes S, Kasko A M. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(17): 3531.
[15] Zhang Y F, Wang R, Hua Y Y, Baumgartner R, Cheng J J. ACS Macro Lett., 2014, 3: 693.
[16] 余丽丽(Yu L L),姚琳(Yao L),尤静(You J),梁飞(Liang F),白林奎(Bai L K). 功能材料(Functional Materials), 2015,46(6): 6134.
[17] Cui N, Qian J M, Liu T, Zhao N, Wang H J. Carbohydr. Polym., 2015, 126: 192.
[18] Garripelli V K, Kim J K, Namgung R, Kim W J, Repka M A, Jo S. Acta Biomater., 2010, 6(2): 477.
[19] Kloxin A M, Kasko A M, Salinas C N, Anseth K S. Science, 2009, 324(5923): 59.
[20] Han S C, He W D, Li J, Li L Y, Sun X L, Zhang B Y, Pan T T. J. Polym. Sci., Part A: Polym. Chem., 2009, 47(16): 4074.
[21] Kharkar P M, Kiick K L, Kloxin A M. Chem. Soc. Rev., 2013, 42(17): 7335.
[22] 赵三平(Zhao S P),徐卫林(Xu W L).化学进展(Progress in Chemistry), 2010, 22(5): 916.
[23] Liao X J, Chen G S, Jiang M. Polym. Chem., 2013, 4(6): 1733.
[24] Tan S, Ladewig K, Fu Q, Blencowe A, Qiao G G. Macromol. Rapid Commun., 2014, 35(13): 1166.
[25] 高春梅(Gao C M),柳明珠(Liu M Z),吕少瑜(Lv S Y), 陈晨(Chen C),黄银娟(Huang Y J),陈远谋(Chen Y M). 化学进展(Progress in Chemistry),2013, 25(6): 1012.
[26] Simes S, Moreira N J, Fonseca C, Düzgünes N, Maria C, Lima P D. Adv. Drug Deliver Rev., 2004, 56(7): 947.
[27] Lee E S, Na K, Bae Y H. J. Control. Release, 2003, 91(1/2): 103.
[28] Binauld S, Stenzel M H. Chem. Commun., 2013, 49(21): 2082.
[29] Sui X, Shi Y, Fu Z. Aust. J. Chem., 2010, 63(10): 1497.
[30] Rikkou-Kalourkoti M, Loizou E, Porcar L, Matyjaszewski K, Patrickios C S. Polym. Chem., 2012, 3(1): 105.
[31] Burek M, Czuba Z P, Waskiewicz S. Polymer, 2014, 55(25): 6460.
[32] Tauk L, Schröder A P, Decher G, Giuseppone N. Nat. Chem., 2009, 1(8): 649.
[33] Rowan S J, Cantrill S J, Cousins G R L, Sanders J K M, Stoddart J F. Angew. Chem., Int. Ed., 2002, 41(6): 898.
[34] Shi J, Wang G B, Chen H L, Zhong W, Qiu X Z, Xing M M Q. Polym. Chem., 2014, 5(21): 6180.
[35] Yu J, Ha W, Chen J, Shi Y P. RSC Adv., 2014, 4(103): 58982.
[36] Vetrík M, P D?ádn DýM, Hrub DýM, Michálek J. Polym. Degrad. STab., 2011, 96(5): 756.
[37] Patenaude M, Hoare T. ACS Macro Lett., 2012, 1(3): 409.
[38] Patenaude M, Hoare T. Biomacromolecules, 2012, 13(2): 369.
[39] Lu C, Wang X, Wu G, Wang J, Wang Y, Gao H, Ma J. J. Biomed. Mater. Res. A, 2014, 102(3): 628.
[40] Cordes E H, Bull H G. Chem. Rev., 1974, 74(5): 581.
[41] Heller J, Barr J, Ng S Y, Abdellauoi K S, Gurny R. Adv. Drug Delivery Rev., 2002, 54(7): 1015.
[42] Tang R, Palumbo R N, Ji W, Wang C. Biomacromolecules, 2009, 10(4): 722.
[43] Matsumoto S, Yamaguchi S, Wada A, Matsui T, Ikeda M, Hamachi I. Chem. Commun., 2008, (13): 1545.
[44] Aimetti A A, Machen A J, Anseth K S. Biomaterials, 2009, 30(30): 6048.
[45] Yagai S, Kitamura A. Chem. Soc. Rev., 2008, 37(8): 1520.
[46] Timko B P, Dvir T, Kohane D S. Adv. Mater., 2010, 22(44): 4925.
[47] McKinnon D D, Brown T E, Kyburz K A, Kiyotake E, Anseth K S. Biomacromolecules, 2014, 15(7): 2808.
[48] Yan B, Boyer J C, Habault D, Branda N R, Zhao Y. J. Am. Chem. Soc., 2012, 134(40): 16558.
[49] Liu G, Liu W, Dong C M. Polym. Chem., 2013, 4(12): 3431.
[50] Kaur G, Johnston P, Saito K. Polym. Chem., 2014, 5(7): 2171.
[51] Kloxin A M, Tibbitt M W, Kasko A M, Fairbairn J A, Anseth K S. Adv. Mater., 2010, 22(1): 61.
[52] Wong D Y, Griffin D R, Reed J, Kasko A M. Macromolecules, 2010, 43(6): 2824.
[53] Peng K, Tomatsu I, van den Broek B, Cui C, Korobko A V, van Noort J, Meijer A H, Spaink H P, Kros A. Soft Matter, 2011, 7(10): 4881.
[54] Griffin D R, Kasko A M. J. Am. Chem. Soc., 2012, 134(31): 13103.
[55] Ercole F, Thissen H, Tsang K, Evans R A, Forsythe J S. Macromolecules, 2012, 45(20): 8387.
[56] Hagen V, Dekowski B, Kotzur N, Lechler R, Wiesner B, Briand B, Beyermann M. Chem. Eur. J., 2008, 14(5): 1621.
[57] Azagarsamy M A, McKinnon D D, Alge D L, Anseth K S. ACS Macro Lett., 2014, 3(6): 515.
[58] Lee M S, Kim J C. J Appl. Polym. Sci., 2012, 124(5): 4339.
[59] Wells L A, Furukawa S, Sheardown H. Biomacromolecules, 2011, 12(4): 923.
[60] Yang K, Zeng M. New J. Chem., 2013, 37(4): 920.
[61] Suyama K, Tachi H. RSC Adv., 2015, 5(40): 31506.
[62] Sui X, Feng X, Hempenius M A, Vancso G J. J. Mater. Chem. B, 2013, 1(12): 1658.
[63] Ojima I. Accounts Chem. Res., 2008, 41(1): 108.
[64] Bauhuber S, Hozsa C, Breunig M, Göpferich A. Adv. Mater., 2009, 21(32/33): 3286.
[65] Aleksanian S, Wen Y, Chan N, Oh J K. RSC Adv., 2014, 4(8): 3713.
[66] Gyarmati B, Vajna B, Némethy Á, László K, Szilágyi A. Macromol. Biosci., 2013, 13(5): 633.
[67] Choh S Y, Cross D, Wang C. Biomacromolecules, 2011, 12(4): 1126.
[68] Li X, Wang Y, Chen J, Wang Y, Ma J, Wu G. ACS Appl. Mate. Inter., 2014, 6(5): 3640.
[69] Baldwin A D, Kiick K L. Bioconjugate Chem., 2011, 22(10): 1946.
[70] Shen B Q, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, Parsons-Reponte K L, Tien J, Yu S-F, Mai E, Li D, Tibbitts J, Baudys J, Saad O M, Scales S J, McDonald P J, Hass P E, Eigenbrot C, Nguyen T, Solis W A, Fuji R N, Flagella K M, Patel D, Spencer S D, Khawli L A, Ebens A, Wong W L, Vandlen R, Kaur S, Sliwkowski M X, Scheller R H, Polakis P, Junutula J R. Nat. Biotechnol., 2012, 30(2): 184.
[71] Baldwin A D, Kiick K L. Polym. Chem., 2013, 4(1): 133.
[72] 曹玮(Cao W), 许华平(Xu H P). 化学通报(Chemistry), 2013,76(4): 291.
[73] Ma N, Li Y, Xu H, Wang Z, Zhang X. J. Am. Chem. Soc., 2010, 132(2): 442.
[74] Sun T B, Jin Y, Qi R, Peng S J, Fan B Z. Polym. Chem., 2013, 4(14): 4017.
[75] Sun T B, Jin Y, Qi R, Peng S J, Fan B Z. Macromol. Chem. Phys., 2013, 214(24): 2875.
[76] Fu Y, Chen J Y, Xu H P, Oosterwijck C V, Zhang X, Dehaen W, Smet M. Macromol. Rapid Commun., 2012, 33: 798.
[77] Wang L, Cao W, Yi Y, Xu H P. Langmuir, 2014, 30, 5628.
[78] Tan X X, Yang L L, Huang Z H, Yu Y, Wang Z Q, Zhang X. Polym. Chem., 2015, 6(5): 681.
[79] Cheng X F, Jin Y, Sun T B, Qi R, Fan B Z, Li H P. RSC Adv., 2015, 5(6): 4162.
[80] Aimetti A A, Machen A J, Anseth K S. Biomaterials, 2009, 30(30): 6048.
[81] Anderson S B, Lin C C, Kuntzler D V, Anseth K S. Biomaterials, 2011, 32(14): 3564.
[82] Sanyal A. Macromol. Chem. Phys., 2010, 211(13): 1417.
[83] Wei H L, Yang J, Chu H J, Yang Z, Ma C C, Yao K. J. Appl. Polym. Sci., 2011, 120(2): 974.
[84] Kislukhin A A, Higginson C J, Hong V P, Finn M G. J. Am. Chem. Soc., 2012, 134(14): 6491.
[85] Higginson C J, Kim S Y, Peláez-Fernández M, Fernández-Nieves A, Finn M G. J. Am. Chem. Soc., 2015, 137(15): 4984.
[86] Wang D, Liu T, Yin J, Liu S. Macromolecules, 2011, 44(7): 2282.
[87] Yao Y, Wang X, Tan T, Yang J. Soft Matter, 2011, 7(18): 7948.
[88] Ravaine V, Ancla C, Catargi B. J. Control. Release, 2008, 132(1): 2.
[89] Yang T, Ji R, Deng X X, Du F S, Li Z C. Soft Matter, 2014, 10(15): 2671.
[90] Cao W, Zhang X L, Miao X M, Yang Z M, Xu H P. Angew. Chem. Int. Ed., 2013, 125(24): 6353.
[1] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[2] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[3] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[4] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[5] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[6] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[7] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[8] Li Chunge, Zhao Shuang, Li junjie, Yin Yuji*. Polymeric Biomaterials Containing Thiol/Disulfide Bonds [J]. Progress in Chemistry, 2013, 25(01): 122-134.
[9] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[10] Tang Shiyang, Sun Xiaojun, Lin Li, Sun Yan, Liu Xianbin. Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials [J]. Progress in Chemistry, 2011, 23(9): 1973-1984.
[11] Wang Wei, Li Bo, Gao Changyou. Modulating the Differentiation of BMSCs by Surface Properties of Biomaterials [J]. Progress in Chemistry, 2011, 23(10): 2160-2168.
[12] . Biomaterials for Spheroidal Aggregate Culture of Hepatocytes [J]. Progress in Chemistry, 2010, 22(09): 1826-1835.
[13] . Anticoagulant Biomaterials [J]. Progress in Chemistry, 2010, 22(04): 760-772.
[14] Hu Xiaohong Zhu Yang Gao Changyou. Hydrogels for Cartilage Regeneration [J]. Progress in Chemistry, 2009, 21(10): 2164-2175.
[15] Zhang Aijuan Xie Yun Zhou Jian. Experimental Control and Characterization of Proteins Orientation on Surfaces [J]. Progress in Chemistry, 2009, 21(0708): 1408-1417.