English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 230-238 DOI: 10.7536/PC190620 前一篇   后一篇

• •

功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用

黄倩文1,2, 张晓文2, 李密2, 吴晓燕2, 袁立永1,**()   

  1. 1. 中国科学院高能物理研究所 北京 100049
    2. 南华大学 资源环境与安全工程学院 衡阳 421001
  • 收稿日期:2019-06-20 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 袁立永
  • 基金资助:
    国家自然科学基金项目(21777161); 国家自然科学基金项目(21471153); 科学挑战计划(TZ2016004); 南华大学“双一流”建设项目(2019SYL05); 中国科学院青年创新促进会(2017020)

Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation

Qianwen Huang1,2, Xiaowen Zhang2, Mi Li2, Xiaoyan Wu2, Liyong Yuan1,**()   

  1. 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    2. School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
  • Received:2019-06-20 Online:2020-02-15 Published:2019-12-19
  • Contact: Liyong Yuan
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21777161); National Natural Science Foundation of China(21471153); Science Challenge Project(TZ2016004); Double First Class Construct Program of University of South China(2019SYL05); Youth Innovation Promotion Association, CAS(2017020)

利用吸附剂对环境中污染物进行分离去除是环境污染治理的有效方法和常用方法,其中以无机材料为载体的功能化吸附剂应用更为广泛。二氧化硅纳米颗粒具有稳定性好、易修饰、成本低和对环境友好等特点,在环境污染物的吸附分离方面具有广阔的应用前景。纤维状硅球与传统的二氧化硅纳米颗粒相比具有比表面积大、有开放孔道等优点,在实际吸附分离应用中能够提供更多有效吸附位点且孔道不易堵塞,是一种更具潜力的吸附剂载体。本文结合本课题组的研究工作对纤维状硅球的合成制备尤其是结构参数的调控方面进行了归纳分析;在分析近年来关于重金属、有机物、放射性核素等环境污染物处理相关研究的基础上,对功能性纤维状硅球在环境污染物吸附分离领域中的应用进行总结;最后从纤维状硅球合成方面的局限性以及应用方面的潜力对功能性纤维状硅球在吸附分离领域中的应用前景进行了展望。

The use of solid adsorbents to separate and remove pollutants from the environment is an effective and common method for environmental pollution control, in which functional adsorbents based on inorganic materials are more widely used. Silica nanoparticles feature good stability, easy modification, low cost and environmental friendliness, thus leading to widespread potential in the treatment of environmental pollutants. Compared with traditional silica nanoparticles, fibrous silica spheres have the advantages of large specific surface area and open pores, which can provide more effective adsorption sites and ensure that pore channels are not easily blocked during practical applications, and thus show more potential in adsorption applications. In this paper, the synthesis and preparation of fibrous silica spheres, in particular, the regulation of structural parameters, are summarized and analyzed based on the reported researches and the works of our group. The application of functional fibrous silica spheres in the adsorption and separation of environmental pollutants in recent years is then reviewed and summarized following the analysis of recent progress in the treatment of heavy metals, organics, radionuclides and other environmental pollutants. Finally, the application of functional fibrous silicon sphere in the field of adsorption and separation is prospected from the points of view of limitations of fiber-like silicon sphere synthesis and application potentials.

()
图1 DFNS经典合成路径[3]
Fig.1 The classical synthesis path of DFNS[3]
图2 树枝状纤维形纳米硅球的SEM(左)和TEM(右)图[3]
Fig.2 SEM(left) and TEM(right) imgaes of dendritic fibrous nanosilica[3]
图3 裹挟DFNS的微乳液电子显微镜(SEM)照片
Fig.3 SEM image of microemulsion with DFNS
表1 DFNS结构参数的影响因素分析
Table 1 Analysis of influencing factors of DFNS structure parameters
Factors Influence ref
Template
(CPB etc)
Template with different alkyl chain lengths can adjust the particle size of DFNS; Increasing the amount of template can hinder the nucleation reaction at the initial stage and thus reduce the particle size; The molar ratio of the template and silicon can affect the particle size and the shape of the pore wall, but there is no specific research conclusion on the influence trend. 31, 33~36
Silicon hydrolyzer
(urea etc)
Urea is used to hydrolyze silicon reagent, which can be hydrolyzed at room temperature. Before heating reaction, the more urea content, the longer stirring time, the more nucleated particles and the smaller DFNS particle size. 34
Auxiliary organic solvent
(pentanol etc)
Increasing the alkyl chain length of the auxiliary organic solvent can increase the fold spacing.Reducing its dosage can increase homogeneity, reduce particle size and fold interval.The use of alcohols of different polarity, such as n-propanol and n-octanol, can regulate particle size. 34, 37, 38
Organic solvent
(cyclohexane etc)
As the amount of organic solvent increases, the particle size decreases, the homogeneity of particles and the pore size increase, and the channel form finally becomes folded. As the polarity of solvent increases, the particle size first increases and then decreases. 33, 34, 37, 39
Silicon original reagent
(TEOS etc)
As the amount of silicon reagent increases, the fiber density increases, the specific surface area and the particle size decreases. 36, 39, 40
Stir speed during
growing period
With the increase of stirring speed, the particle size becomes smaller and the pore size becomes larger. 41
Growth reaction
temperature
With the increase of reaction temperature,the homogeneity of particles and the particle size increase, the fiber density, the specific surface area, the pore capacity and the pore diameter decrease. 34, 41
Growth reaction time With the increase of reaction time, the homogeneity of particles, the particle size, the fiber density and the pore size all decreased. 34, 37~39
图4 种子生长法合成DFNS[42]
Fig.4 Synthesis of DFNS by seed growth method[42]
图5 特殊结构DFNS的纳米粒子TEM图(a, b)不对称羽毛球形核壳结构[26];(c, d)蛋黄-蛋壳三层核壳结构[47]
Fig.5 TEM images of special DFNS structure nanoparticles,(a,b) asymmetric shuttlecock core-shell structure[26];(c,d) yolk-shell three-layer core-shell structure[47]
表2 多种形貌硅基吸附材料的吸附效果对比
Table 2 Comparison of adsorption ability among silicon-based adsorption materials of various morphologies
[1]
Kresge C, Leonowicz M, Roth W J, Vartuli J, Beck J . Nature, 1992,359:710.
[2]
Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D . Science, 1998,279:548. https://www.ncbi.nlm.nih.gov/pubmed/9438845

doi: 10.1126/science.279.5350.548     URL     pmid: 9438845
[3]
Polshettiwar V, Cha D, Zhang X, Basset J M . Angewandte Chemie International Edition, 2010,49:9652. https://www.ncbi.nlm.nih.gov/pubmed/20680958

doi: 10.1002/anie.201003451     URL     pmid: 20680958
[4]
Polshettiwar V, Thivolle-Cazat J, Taoufik M, Stoffelbach F, Norsic S, Basset J M . Angewandte Chemie International Edition, 2011,50:2747. https://www.ncbi.nlm.nih.gov/pubmed/21387480

doi: 10.1002/anie.201007254     URL     pmid: 21387480
[5]
Fihri A, Cha D, Bouhrara M, Almana N, Polshettiwar V . ChemSusChem, 2012,5:85. https://www.ncbi.nlm.nih.gov/pubmed/22086867

doi: 10.1002/cssc.201100379     URL     pmid: 22086867
[6]
Bouhrara M, Ranga C, Fihri A, Shaikh R R, Sarawade P, Emwas A H, Hedhili M N, Polshettiwar V . ACS Sustainable Chemistry & Engineering, 2013,1:1192.
[7]
Lilly Thankamony A S, Lion C, Pourpoint F, Singh B, Perez Linde A J, Carnevale D, Bodenhausen G, Vezin H, Lafon O, Polshettiwar V . Angewandte Chemie International Edition, 2015,54:2190. https://www.ncbi.nlm.nih.gov/pubmed/25469825

doi: 10.1002/anie.201406463     URL     pmid: 25469825
[8]
Gautam P, Dhiman M, Polshettiwar V, Bhanage B M . Green Chemistry, 2016,18:5890.
[9]
Singh R, Bapat R, Qin L, Feng H, Polshettiwar V . ACS Catalysis, 2016,6:2770.
[10]
Dhiman M, Chalke B, Polshettiwar V . Journal of Materials Chemistry A, 2017,5:1935.
[11]
Singh R, Belgamwar R, Dhiman M, Polshettiwar V . Journal of Materials Chemistry B, 2018,6:1600. https://www.ncbi.nlm.nih.gov/pubmed/32254276

doi: 10.1039/c8tb00310f     URL     pmid: 32254276
[12]
Singh R, Bayal N, Maity A, Pradeep D J, Trébosc J, Madhu P K, Lafon O, Polshettiwar V . ChemNanoMat, 2018,4:1231. http://doi.wiley.com/10.1002/cnma.v4.12

doi: 10.1002/cnma.v4.12     URL    
[13]
Kundu P K, Dhiman M, Modak A, Chowdhury A, Polshettiwar V, Maiti D . ChemPlusChem, 2016,81:1142. https://www.ncbi.nlm.nih.gov/pubmed/31964102

doi: 10.1002/cplu.201600245     URL     pmid: 31964102
[14]
Dhiman M, Polshettiwar V . Journal of Materials Chemistry A, 2016,4:12416.
[15]
Dhiman M, Chalke B, Polshettiwar V . ACS Sustainable Chemistry & Engineering, 2015,3:3224.
[16]
Fihri A, Bouhrara M, Patil U, Cha D, Saih Y, Polshettiwar V . ACS Catalysis, 2012,2:1425.
[17]
Maity A, Mujumdar S, Polshettiwar V . ACS Applied Materials & Interfaces, 2018,10:23392. https://www.ncbi.nlm.nih.gov/pubmed/29923705

doi: 10.1021/acsami.8b04732     URL     pmid: 29923705
[18]
Fan H, Li B, Shi Z, Zhao L, Wang K, Qiu D . Ceramics International, 2018,44:2345.
[19]
Xu C, Yu M, Noonan O, Zhang J, Song H, Zhang H, Lei C, Niu Y, Huang X, Yang Y . Small, 2015,11:5949. https://www.ncbi.nlm.nih.gov/pubmed/26426420

doi: 10.1002/smll.201501449     URL     pmid: 26426420
[20]
Wang Y, Wang Y, Li X, Li J, Su L, Zhang X, Du X . ACS Sustainable Chemistry & Engineering, 2018,6:14071.
[21]
Liang T, Li H, Su X, Lai X, Wu H, Wang C, Wang Y, Zhuang M, Zeng X . Progress in Organic Coatings, 2016,101:423.
[22]
Wang H, Xu Q, Wang J, Du W, Liu F, Hu X . Biosensors and Bioelectronics, 2018,100:105. https://www.ncbi.nlm.nih.gov/pubmed/28881228

doi: 10.1016/j.bios.2017.08.063     URL     pmid: 28881228
[23]
Ding L, Chen S, Zhang W, Zhang Y, Wang X D . Anal. Chem, 2018,90:7544. https://www.ncbi.nlm.nih.gov/pubmed/29741361

doi: 10.1021/acs.analchem.8b01159     URL     pmid: 29741361
[24]
Chen P, Qiao X, Liu J, Xia F, Tian D, Zhou C . Sensors and Actuators B: Chemical, 2018,267:525.
[25]
Radhakrishnan K, Panneerselvam P, Ravikumar A . RSC Advances, 2017,7:45824.
[26]
Moon D S, Lee J K . Langmuir, 2014,30:15574. https://www.ncbi.nlm.nih.gov/pubmed/25454837

doi: 10.1021/la504207k     URL     pmid: 25454837
[27]
Qian T, Li J, Min X, Deng Y, Guan W, Ning L . Energy, 2016,112:1074. https://www.ncbi.nlm.nih.gov/pubmed/3755977

doi: 10.1001/archotol.1986.03780100062009     URL     pmid: 3755977
[28]
Maity A, Das A, Sen D, Mazumder S, Polshettiwar V . Langmuir, 2017,33:13774. https://www.ncbi.nlm.nih.gov/pubmed/29111749

doi: 10.1021/acs.langmuir.7b02996     URL     pmid: 29111749
[29]
Xie Y, Wang J, Wang M, Ge X . Journal of Hazardous Materials, 2015,297:66. https://www.ncbi.nlm.nih.gov/pubmed/25942696

doi: 10.1016/j.jhazmat.2015.04.069     URL     pmid: 25942696
[30]
Yokoi T, Karouji T, Ohta S, Kondo J N, Tatsumi T . Chemistry of Materials, 2010,22:3900.
[31]
Yu Y J, Xing J L, Pang J L, Jiang S H, Lam K F, Yang T Q, Xue Q S, Zhang K, Wu P . ACS Applied Materials & Interfaces, 2014,6:22655. https://www.ncbi.nlm.nih.gov/pubmed/25454255

doi: 10.1021/am506653n     URL     pmid: 25454255
[32]
Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H Q . Materials Letters, 2018,211:40.
[33]
Yang H, Liao S, Huang C, Du L, Chen P, Huang P, Fu Z, Li Y . Applied Surface Science, 2014,314:7.
[34]
Bayal N, Singh B, Singh R, Polshettiwar V . Sci. Rep., 2016,6:24888. https://www.ncbi.nlm.nih.gov/pubmed/27118152

doi: 10.1038/srep24888     URL     pmid: 27118152
[35]
Li D, Yi R, Tian J, Li J, Yu B, Qi J . Chemical Communications, 2017,53:8902. https://www.ncbi.nlm.nih.gov/pubmed/28740987

doi: 10.1039/c7cc04070a     URL     pmid: 28740987
[36]
Maity A, Polshettiwar V . ACS Applied Nano Materials, 2018,1:3636.
[37]
Moon D S, Lee J K . Langmuir, 2012,28:12341. https://www.ncbi.nlm.nih.gov/pubmed/22861383

doi: 10.1021/la302145j     URL     pmid: 22861383
[38]
Kang J S, Lim J, Rho W Y, Kim J, Moon D S, Jeong J, Jung D, Choi J W, Lee J K, Sung Y E . Sci. Rep., 2016,6:30829. https://www.ncbi.nlm.nih.gov/pubmed/27488465

doi: 10.1038/srep30829     URL     pmid: 27488465
[39]
Gai S, Yang P, Wang L, Li C, Zhang M, Jun L . Dalton Transactions, 2012,41:4511. https://www.ncbi.nlm.nih.gov/pubmed/22373780

doi: 10.1039/c2dt11552b     URL     pmid: 22373780
[40]
Zhang K, Xu L L, Jiang J G, Calin N, Lam K F, Zhang S J, Wu H H, Wu G D, Albela B, Bonneviot L, Wu P . Journal of the American Chemical Society, 2013,135:2427. https://www.ncbi.nlm.nih.gov/pubmed/23363241

doi: 10.1021/ja3116873     URL     pmid: 23363241
[41]
Du X, Li X, Huang H, He J, Zhang X . Nanoscale, 2015,7:6173. https://www.ncbi.nlm.nih.gov/pubmed/25772672

doi: 10.1039/c5nr00640f     URL     pmid: 25772672
[42]
Wang J, Sugawara-Narutaki A, Shimojima A, Osada M, Ma R, Okubo T . Langmuir, 2015,31:1610. https://www.ncbi.nlm.nih.gov/pubmed/25607537

doi: 10.1021/la504955b     URL     pmid: 25607537
[43]
Zuo X, Xia Y, Ji Q, Gao X, Yin S, Wang M, Wang X, Qiu B, Wei A, Sun Z . ACS Nano, 2016,11:889. https://www.ncbi.nlm.nih.gov/pubmed/28010061

doi: 10.1021/acsnano.6b07450     URL     pmid: 28010061
[44]
Sun Z, Li H, Guo D, Sun J, Cui G, Liu Y, Tian Y, Yan S . Journal of Materials Chemistry C, 2015,3:4713.
[45]
Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H Q, Abdullah M A, Alamry K A . Journal of Chromatography A, 2018,1540:31. https://www.ncbi.nlm.nih.gov/pubmed/29426717

doi: 10.1016/j.chroma.2018.02.002     URL     pmid: 29426717
[46]
Wang D, Li X, Liu Z, Shi X, Zhou G . Solid State Sciences, 2017,63:62.
[47]
Yue Q, Li J, Luo W, Zhang Y, Elzatahry A A, Wang X, Wang C, Li W, Cheng X, Alghamdi A, Abdullah A M, Deng Y, Zhao D . Journal of the American Chemical Society, 2015,137:13282. https://www.ncbi.nlm.nih.gov/pubmed/26186087

doi: 10.1021/jacs.5b05619     URL     pmid: 26186087
[48]
Yu K, Zhang X, Tong H, Yan X, Liu S . Materials Letters, 2013,106:151.
[49]
Gai S, Yang P, Ma P a, Wang D, Li C, Li X, Niu N, Lin J . Journal of Materials Chemistry, 2011,21:16420.
[50]
Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X . Chem. Soc. Rev., 2018,47:2322. https://www.ncbi.nlm.nih.gov/pubmed/29498381

doi: 10.1039/c7cs00543a     URL     pmid: 29498381
[51]
Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X . Environmental Pollution, 2019,246:608. https://www.ncbi.nlm.nih.gov/pubmed/30605816

doi: 10.1016/j.envpol.2018.12.076     URL     pmid: 30605816
[52]
Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X . Polymer Chemistry, 2018,9:3562. https://www.ncbi.nlm.nih.gov/pubmed/18358000

doi: 10.1021/jo800179m     URL     pmid: 18358000
[53]
Rizzo L, Malato S, Antakyali D, Beretsou V G, Dolic M B, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado Ribeiro A R, Mascolo G, McArdell C S, Schaar H, Silva A M T, Fatta-Kassinos D . Science of the Total Environment, 2019,655:986. https://www.ncbi.nlm.nih.gov/pubmed/30577146

doi: 10.1016/j.scitotenv.2018.11.265     URL     pmid: 30577146
[54]
Xiao J, Jing Y, Wang X, Yao Y, Jia Y . ChemistrySelect, 2018,3:12346.
[55]
Xiao J, Jing Y, Yao Y, Wang X, Jia Y . Journal of Molecular Liquids, 2019,277:843.
[56]
Budnyak T M, Gladysz-Plaska A, Strizhak A V, Sternik D, Komarov I V, Majdan M, Tertykh V A . ACS Applied Materials & Interfaces, 2018,10:6681. https://www.ncbi.nlm.nih.gov/pubmed/29370513

doi: 10.1021/acsami.7b17594     URL     pmid: 29370513
[57]
Ji G, Zhu G, Wang X, Wei Y, Yuan J, Gao C . Separation and Purification Technology, 2017,174:455.
[58]
Dan H, Chen L, Xian Q, Yi F, Ding Y . Separation and Purification Technology, 2019,210:491.
[59]
Yang Z, Chen G, Weng H, Shen W, Huang Z, Lin M . Journal of Materials Science, 2017,53:3398.
[60]
Patil U, Fihri A, Emwas A H, Polshettiwar V . Chemical Science, 2012,3:2224. https://www.ncbi.nlm.nih.gov/pubmed/21688844

doi: 10.1021/am200662d     URL     pmid: 21688844
[61]
Singh B, Polshettiwar V . Journal of Materials Chemistry A, 2016,4:7005.
[62]
Singh B, Maity A, Polshettiwar V . ChemistrySelect, 2018,3:10684.
[63]
Tian Y, Liu Y, Sun Z, Li H, Cui G, Yan S . RSC Advances, 2015,5:106068.
[64]
Huang X, Tao Z, Praskavich J C, Goswami A, Al-Sharab J F, Minko T, Polshettiwar V, Asefa T . Langmuir, 2014,30:10886. https://www.ncbi.nlm.nih.gov/pubmed/25188675

doi: 10.1021/la501435a     URL     pmid: 25188675
[65]
Sun Z, Guo D, Zhang L, Li H, Yang B, Yan S . Journal of Materials Chemistry B, 2015,3:3201. https://www.ncbi.nlm.nih.gov/pubmed/32262314

doi: 10.1039/c5tb00038f     URL     pmid: 32262314
[66]
Hasan R, Bukhari S N, Jusoh R, Mutamin N S A, Setiabudi H D . Materials Today: Proceedings, 2018,5:21574.
[67]
Shahat A, Hassan H M A, Azzazy H M E, El-Sharkawy E A, Abdou H M, Awual M R . Chemical Engineering Journal, 2018,332:377.
[68]
Tripathi A, Melo J S . Journal of Applied Polymer Science, 2019,136:46937.
[69]
Hu Y, Giret S, Meinusch R, Han J, Fontaine F G, Kleitz F, Larivière D . Journal of Materials Chemistry A, 2019,7:289.
[70]
Chen L, Yin X, Yu Q, Siming L, Meng F, Ning S, Wang X, Wei Y . Microporous and Mesoporous Materials, 2019,274:155.
[71]
Wang R, Wei Y, Jiang H, Gong H . Journal of Radioanalytical and Nuclear Chemistry, 2018,318:2023.
[72]
Le Nedelec T, Charlot A, Calard F, Cuer F, Leydier A, Grandjean A . New Journal of Chemistry, 2018,42:14300.
[73]
Khayambashi A, Shu Q, Wei Y, Tang F, He L . Journal of Radioanalytical and Nuclear Chemistry, 2018,316:221.
[74]
El-Magied M O A, Dhmees A S, Abd El-Hamid A A M, Eldesouky E M . Journal of Nuclear Materials, 2018,509:295.
[75]
Xiao P, Han D, Zhai M, Xu L, Li H . Journal of Hazardous Materials, 2017,324:711. https://www.ncbi.nlm.nih.gov/pubmed/27889178

doi: 10.1016/j.jhazmat.2016.11.045     URL     pmid: 27889178
[76]
Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X . Chemical Engineering Journal, 2014,235:275. https://linkinghub.elsevier.com/retrieve/pii/S1385894713012059

doi: 10.1016/j.cej.2013.09.034     URL    
[77]
Yuan L Y, Liu Y L, Shi W Q, Lv Y L, Lan J H, Zhao Y L, Chai Z F . Dalton Transactions, 2011,40:7446. https://www.ncbi.nlm.nih.gov/pubmed/21681327

doi: 10.1039/c1dt10085h     URL     pmid: 21681327
[78]
赵驰(Zhao C), 翁汉钦(Weng H Q), 汪谟贞(Wang M Z), 葛学武(Ge X W), 林铭章(Lin M Z) . 辐射研究与辐射工艺学报 (Journal of Radiation on Research and Radiation Processing), 2017,35:50301.
[79]
Ravi S, Zhang S, Lee Y R, Kang K K, Kim J M, Ahn J W, Ahn W S . Journal of Industrial and Engineering Chemistry, 2018,67:210.
[80]
Yang P, Liu Q, Liu J, Chen R, Li R, Bai X, Wang J . Journal of Hazardous Materials, 2019,363:248. https://www.ncbi.nlm.nih.gov/pubmed/30308364

doi: 10.1016/j.jhazmat.2018.09.062     URL     pmid: 30308364
[81]
Yang P, Chen R, Liu Q, Zhang H, Liu J, Yu J, Liu P, Bai X, Wang J . Inorganic Chemistry Frontiers, 2019,6:746.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[5] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[10] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[11] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[12] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[13] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.