English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 475-495 DOI: 10.7536/PC220810 前一篇   后一篇

• 综述 •

共价有机框架稳定性提高及其在放射性核素分离中的应用

张慧迪1,2, 李子杰1,*(), 石伟群1,*()   

  1. 1.中国科学院高能物理研究所 核能放射化学实验室 北京 100049
    2.广西大学资源环境与材料学院 省部共建特色金属材料与组合结构全寿命安全国家重点实验室 南宁 530004
  • 收稿日期:2022-08-15 修回日期:2022-10-03 出版日期:2023-03-24 发布日期:2023-02-16
  • 作者简介:

    李子杰 中国科学院高能物理研究所副研究员,主要从事新型纳米材料在放射性核素分离、富集中应用研究。

    石伟群 中国科学院高能物理研究所研究员, 国家杰出青年科学基金获得者,长期致力于核燃料循环化学与锕系元素化学相关基础研究,在JACSAngew. ChemChemCCS Chem.Nat. CommunAdv. Mater.Environ. Sci. Technol. 等国际知名期刊发表SCI论文200余篇,成果被国内外同行广泛关注和引用。

  • 基金资助:
    国家杰出青年科学基金项目(21925603); 国家自然科学基金项目(11975016)

The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation

Zhang Huidi1,2, Li Zijie1(), Shi Weiqun1()   

  1. 1. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049,China
    2. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University,Nanning 530004, China
  • Received:2022-08-15 Revised:2022-10-03 Online:2023-03-24 Published:2023-02-16
  • Contact: *e-mail: lizijie@ihep.ac.cn(Zijie Li);shiwq@ihep.ac.cn(Weiqun Shi)
  • Supported by:
    National Science Fund for Distinguished Young Scholars(21925603); National Science Foundation of China(11975016)

共价有机框架(Covalent Organic Frameworks, COFs)是一类通过可逆反应制备的具有长程有序结构的晶态有机多孔聚合物,因其良好的耐辐照性、结构可设计性及可功能化特点有望在放射性核素高效吸附及作用机理探讨中发挥作用。但连接键可逆性降低了COFs的化学稳定性,本文系统地综述了COFs化学稳定性提高(包括连接键可逆性的降低、合成后可逆连接键向不可逆转化及连接键周围疏水环境构建)、晶型调控(包括合成条件、二维COFs层内共平面及层间堆叠作用力的影响及无定形聚合物结晶化)、功能化方法和其在放射性核素分离富集方面中的应用。通过增强COFs骨架的强度,引入特殊的功能化官能团或改变单体大小通过尺寸匹配效应来增强放射性核素离子与COFs的相互作用,并就COFs在该领域应用前景和研究方向进行了展望。

Covalent organic frameworks (COFs) are a class of crystalline organic porous polymers with long-range ordered structures prepared by reversible reactions. Due to high radiation resistance, structural designability and functionalization, COFs are expected to play a role in the efficient adsorption of radionuclides and the exploration of interaction mechanism. However, the reversibility of typical linkage bonds causes the limited chemical stability of COFs. This paper reviews the improvement strategies towards chemical stability of COFs (including the decrease of reversibility of linkage bonds, the post synthetic transformation from reversible bonds to irreversible ones, and the construction of hydrophobic environment around linkage bonds), crystalline control (including the influence of synthesis conditions, in layer coplanar and interlayer interaction for two-dimensional COFs and the crystallization of amorphous polymers), functionalization methods and the applications of COFs in the separation and enrichment of radionuclides. The interaction between radionuclides and COFs could be optimized by enhancing the strength of COFs skeleton, introducing special functional groups or changing the size of monomers. The application prospect and research focus of COFs in radionuclide separation are prospected.

Contents

1 Introduction

2 Typical reversible reactions of COFs

2.1 B—O bond formation

2.2 C=N bond formation

2.3 C—N bond formation

2.4 C—O bond formation

2.5 C=C bond formation

2.6 Others

3 Improvement of COFs linkage stability

3.1 COFs linkage cyclization reaction

3.2 Oxidation or reduction of imine linkage

3.3 COF to COF transformation via monomer exchange

3.4 Others

4 Regulation of crystallinity

4.1 Effect of synthesis conditions on crystallinity

4.2 Intralayer coplanarity of 2D COFs

4.3 Interlayer stacking force of 2D COFs

4.4 Crystallization of amorphous polymer

5 Functionalized syntheses of COFs

6 Applications of COFs in separation and enrichment of radionuclides

6.1 UO 2 2 +

6.2 I2 vapor

6.3 TcO 4 -/ ReO 4 -

7 Conclusion and outlook

()
图式1 应用于COFs合成的可逆反应
Scheme 1 Reversible reactions used in COFs synthesis
图式2 若干COFs连接键稳定化处理方法
Scheme 2 Several stabilization strategies towards COFs linkage
图1 基于单体交换的“COF-to-COF”转化[54]
Fig. 1 “COF to COF” transformation via monomer exchange[54]. Copyright 2017, American Chemical Science
图2 超共轭和诱导效应增强TPB-DMeTP-COF层间相互作用[60]
Fig.2 The enhanced interlayer interaction of TPB-DMeTP-COF by hyperconjugation and induced effects[60]. Copyright 2020, Springer Nature
图3 烷基修饰的CCOF-3/4合成和结构[62]
Fig. 3 Synthesis and structure of alkyl modified CCOF-3/4[62]. Copyright 2017, American Chemical Science
图式3 可逆的分子结构重排来提高结晶性[67]
Scheme 3 Reversible molecular structure rearrangement for the improvement of crystallinity[67]
图4 反应溶剂对COF拓扑结构的影响[70]
Fig. 4 Effect of reaction solvent on the topological structure of COF[70]. Copyright 2010, Chinese Chemical Society
图5 层内氢键增强共平面效应[73]
Fig. 5 The coplanarity of COF layers enhanced by intralayer hydrogen bond[73]
图6 TPE-COF-OH和TPE-COF-OMe结构及合成路线[76]
Fig. 6 Structure and synthesis route of TPE-COF-OH and TPE-COF-OMe[76]. Copyright 2020, American Chemical Science
图7 PDC-MA-COF层间氢键增强层层堆叠作用力[79]
Fig. 7 Interlayer hydrogen bond enhances the stacking force of PDC-MA-COF layers[79]. Copyright 2019, American Chemical Science
图8 COF-IHEP1和COF-IHEP2结构及合成路线[16]
Fig. 8 Structure and synthesis route of COF-IHEP1 and COF-IHEP2[16]. Copyright 2019, Chinese Chemical Society
图9 (a) COF-IHEP1 在不同酸性条件下对U(Ⅵ)的吸附;(b) COF-IHEP1/2 在不同酸性条件下对Pu(Ⅳ)的吸附[16]
Fig. 9 (a) Adsorption of U(Ⅵ) by COF-IHEP1 under different acidic conditions. (b) Adsorption of Pu(Ⅳ) by COF-IHEP1/2 under different acidic conditions[16]. Copyright 2019, Chinese Chemical Society
表1 COFs在放射性核素分离富集中的应用及其作用机理
Table 1 The application of COFs in the separation and enrichment of various radionuclides and involved adsorption mechanism
图10 四种不同孔径COFs结构及其对I2蒸气的吸附[108]
Fig. 10 Structures of COFs with four different pore sizes and their adsorption for I2 vapor[108]. Copyright 2019, American Chemical Science
[1]
Baldwin L A, Crowe J W, Pyles D A, McGrier P L. J. Am. Chem. Soc., 2016, 138(46): 15134.

pmid: 27809513
[2]
Zhuang S T, Liu Y, Wang J L. J. Hazard. Mater., 2020, 383: 121126.

doi: 10.1016/j.jhazmat.2019.121126     URL    
[3]
Zhang B, Mao H Y, Matheu R, Reimer J A, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(29): 11420.

doi: 10.1021/jacs.9b05626     pmid: 31276387
[4]
El-Kaderi H M, Hunt J R, Mendoza-CortÉs J L, CôtÉ A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

pmid: 17431178
[5]
Guo J, Xu Y H, Jin S B, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D L. Nat. Commun., 2013, 4: 2736.

doi: 10.1038/ncomms3736     pmid: 24220603
[6]
Nagai A, Guo Z Q, Feng X, Jin S B, Chen X, Ding X S, Jiang D L. Nat. Commun., 2011, 2: 536.

doi: 10.1038/ncomms1542    
[7]
Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irle S, Jiang D L. Chem. Commun., 2014, 50(11): 1292.

doi: 10.1039/C3CC48813F     URL    
[8]
Zhou T, Gong Y, and Guo J, J. Funct Polym, 2018, 31: 189.
[9]
Zhang M, Guo X, Li X, Li X, Li Y, Li S and Ma L. J. Radioanal. Nucl. Chem, 2019, 41: 60.
[10]
Zhang A, and Ai Y. Prog. Chem., 2020, 32: 1564.
[11]
CôtÉ A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411     URL    
[12]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131(13): 4570.

doi: 10.1021/ja8096256     pmid: 19281246
[13]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.

doi: 10.1021/ja206846p     URL    
[14]
Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7(11): 905.

doi: 10.1038/nchem.2352    
[15]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.

doi: 10.1021/ja204728y     pmid: 21721558
[16]
Yu J, Yuan L, Wang S, Lan J, Zheng L, Xu C, Chen J, Wang L, Huang Z, Tao W, Cai Z, Gibson J, Shi W. CCS Chemistry, 2019, 1: 286.
[17]
Dalapati S, Jin S B, Gao J, Xu Y H, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135(46): 17310.

doi: 10.1021/ja4103293     pmid: 24182194
[18]
Li Z P, Zhi Y F, Feng X, Ding X S, Zou Y C, Liu X M, Mu Y. Chem. Eur. J., 2015, 21(34): 12079.

doi: 10.1002/chem.v21.34     URL    
[19]
Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57(28): 8438.

doi: 10.1002/anie.v57.28     URL    
[20]
Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134(48): 19524.

doi: 10.1021/ja308278w     pmid: 23153356
[21]
Das G, Balaji Shinde D, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014, 50(84): 12615.

doi: 10.1039/C4CC03389B     URL    
[22]
Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5: 4503.

doi: 10.1038/ncomms5503    
[23]
Jiang L C, Tian Y Y, Sun T, Zhu Y L, Ren H, Zou X Q, Ma Y H, Meihaus K R, Long J R, Zhu G S. J. Am. Chem. Soc., 2018, 140(46): 15724.

doi: 10.1021/jacs.8b08174     URL    
[24]
Nagai A, Chen X, Feng X, Ding X S, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2013, 52(13): 3770.

doi: 10.1002/anie.201300256     URL    
[25]
Yang Z F, Liu J J, Li Y S, Zhang G, Xing G L, Chen L. Angewandte Chemie Int. Ed., 2021, 60(38): 20754.

doi: 10.1002/anie.v60.38     URL    
[26]
Zhang B, Wei M F, Mao H Y, Pei X K, Alshmimri S A, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2018, 140(40): 12715.

doi: 10.1021/jacs.8b08374     pmid: 30247881
[27]
Guan X Y, Li H, Ma Y C, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. Nat. Chem., 2019, 11(6): 587.

doi: 10.1038/s41557-019-0238-5    
[28]
Yue Y, Cai P Y, Xu K, Li H Y, Chen H Z, Zhou H C, Huang N. J. Am. Chem. Soc., 2021, 143(43): 18052.

doi: 10.1021/jacs.1c06238     URL    
[29]
Zhao C F, Lyu H, Ji Z, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2020, 142(34): 14450.

doi: 10.1021/jacs.0c07015     URL    
[30]
Zhuang X D, Zhao W X, Zhang F, Cao Y, Liu F, Bi S, Feng X L. Polym. Chem., 2016, 7(25): 4176.

doi: 10.1039/C6PY00561F     URL    
[31]
Wei S C, Zhang F, Zhang W B, Qiang P R, Yu K J, Fu X B, Wu D Q, Bi S, Zhang F,. J. Am. Chem. Soc., 2019, 141(36): 14272.

doi: 10.1021/jacs.9b06219     URL    
[32]
Jin E Q, Li J, Geng K Y, Jiang Q H, Xu H, Xu Q, Jiang D L. Nat. Commun., 2018, 9: 4143.

doi: 10.1038/s41467-018-06719-8    
[33]
Acharjya A, Pachfule P, Roeser J, Schmitt F J, Thomas A. Angew. Chem. Int. Ed., 2019, 58(42): 14865.

doi: 10.1002/anie.201905886     pmid: 31340082
[34]
Lyu H, Diercks C S, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2019, 141(17): 6848.

doi: 10.1021/jacs.9b02848     URL    
[35]
Meng F C, Bi S, Sun Z B, Jiang B, Wu D Q, Chen J S, Zhang F. Angewandte Chemie Int. Ed., 2021, 60(24): 13614.

doi: 10.1002/anie.v60.24     URL    
[36]
Nandi S, Singh S K, Mullangi D, Illathvalappil R, George L, Vinod C P, Kurungot S, Vaidhyanathan R. Adv. Energy Mater., 2016, 6(24): 1601189.
[37]
Bai C, Zhang M, Bo L, Yin T and Li S. J. Hazard. Mater., 2015, 300: 368.

doi: 10.1016/j.jhazmat.2015.07.020     URL    
[38]
Zhang S, Zhao X S, Li B, Bai C Y, Li Y, Wang L, Wen R, Zhang M C, Ma L J, Li S J. J. Hazard. Mater., 2016, 314: 95.

doi: 10.1016/j.jhazmat.2016.04.031     URL    
[39]
Haase F, Troschke E, Savasci G, Banerjee T, Duppel V, Dörfler S, Grundei M M J, Burow A M, Ochsenfeld C, Kaskel S, Lotsch B V. Nat. Commun., 2018, 9: 2600.

doi: 10.1038/s41467-018-04979-y    
[40]
Wang K W, Jia Z F, Bai Y, Wang X, Hodgkiss S E, Chen L J, Chong S Y, Wang X Y, Yang H F, Xu Y J, Feng F, Ward J W, Cooper A I. J. Am. Chem. Soc., 2020, 142(25): 11131.

doi: 10.1021/jacs.0c03418     URL    
[41]
Seo J M, Noh H J, Jeong H Y, Baek J B. J. Am. Chem. Soc., 2019, 141(30): 11786.

doi: 10.1021/jacs.9b05244     pmid: 31318202
[42]
Wei P F, Qi M Z, Wang Z P, Ding S Y, Yu W, Liu Q, Wang L K, Wang H Z, An W K, Wang W. J. Am. Chem. Soc., 2018, 140(13): 4623.

doi: 10.1021/jacs.8b00571     URL    
[43]
Wang Y C, Liu H, Pan Q Y, Wu C Y, Hao W B, Xu J, Chen R Z, Liu J, Li Z B, Zhao Y J. J. Am. Chem. Soc., 2020, 142(13): 5958.

doi: 10.1021/jacs.0c00923     URL    
[44]
Li X L, Zhang C L, Cai S L, Lei X H, Altoe V, Hong F, Urban J J, Ciston J, Chan E M, Liu Y. Nat. Commun., 2018, 9: 2998.

doi: 10.1038/s41467-018-05462-4    
[45]
Li X T, Zou J, Wang T H, Ma H C, Chen G J, Dong Y B. J. Am. Chem. Soc., 2020, 142(14): 6521.

doi: 10.1021/jacs.0c00969     URL    
[46]
Yang S L, Lv H W, Zhong H, Yuan D Q, Wang X C, Wang R H. Angewandte Chemie Int. Ed., 2022, 61(10): e202115655.
[47]
Su Y, Wan Y J, Xu H, Otake K I, Tang X H, Huang L B, Kitagawa S, Gu C. J. Am. Chem. Soc., 2020, 142(31): 13316.

doi: 10.1021/jacs.0c05970     URL    
[48]
Waller P J, Lyle S J, Osborn Popp T M, Diercks C S, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2016, 138(48): 15519.

pmid: 27934009
[49]
Zhou Z B, Han X H, Qi Q Y, Gan S X, Ma D L, Zhao X. J. Am. Chem. Soc., 2022, 144(3): 1138.

doi: 10.1021/jacs.1c12392     URL    
[50]
Liu H Y, Chu J, Yin Z L, Cai X, Zhuang L, Deng H X. Chem, 2018, 4(7): 1696.

doi: 10.1016/j.chempr.2018.05.003     URL    
[51]
Grunenberg L, Savasci G, Terban M W, Duppel V, Moudrakovski I, Etter M, Dinnebier R E, Ochsenfeld C, Lotsch B V. J. Am. Chem. Soc., 2021, 143(9): 3430.

doi: 10.1021/jacs.0c12249     pmid: 33626275
[52]
Zhang M C, Li Y, Yuan W L, Guo X H, Bai C Y, Zou Y D, Long H H, Qi Y, Li S J, Tao G H, Xia C Q, Ma L J. Angew. Chem. Int. Ed., 2021, 60(22): 12396.

doi: 10.1002/anie.v60.22     URL    
[53]
Hu J Y, Zanca F, McManus G J, Riha I A, Nguyen H G T, Shirley W, Borcik C G, Wylie B J, Benamara M, van Zee R D, Moghadam P Z, Beyzavi H. ACS Appl. Mater. Interfaces, 2021, 13(18): 21740.

doi: 10.1021/acsami.1c02709     URL    
[54]
Qian C, Qi Q Y, Jiang G F, Cui F Z, Tian Y, Zhao X. J. Am. Chem. Soc., 2017, 139(19): 6736.

doi: 10.1021/jacs.7b02303     URL    
[55]
Zhou Z B, Tian P J, Yao J, Lu Y, Qi Q Y, Zhao X. Nat. Commun., 2022, 13: 2180.

doi: 10.1038/s41467-022-29814-3    
[56]
Qian H L, Meng F L, Yang C X, Yan X P. Angew. Chem. Int. Ed., 2020, 59(40): 17607.

doi: 10.1002/anie.v59.40     URL    
[57]
Waller P J, AlFaraj Y S, Diercks C S, Jarenwattananon N N, Yaghi O M. J. Am. Chem. Soc., 2018, 140(29): 9099.

doi: 10.1021/jacs.8b05830     pmid: 29999317
[58]
Du Y, Mao K M, Kamakoti P, Ravikovitch P, Paur C, Cundy S, Li Q C, Calabro D. Chem. Commun., 2012, 48(38): 4606.

doi: 10.1039/c2cc30781b     URL    
[59]
Du Y, Calabro D, Wooler B, Kortunov P, Li Q C, Cundy S, Mao K M. Chem. Mater., 2015, 27(5): 1445.

doi: 10.1021/cm5032317     URL    
[60]
Tao S S, Zhai L P, Dinga Wonanke A D, Addicoat M A, Jiang Q H, Jiang D L. Nat. Commun., 2020, 11: 1981.

doi: 10.1038/s41467-020-15918-1    
[61]
Lanni L M, Tilford R W, Bharathy M, Lavigne J J. J. Am. Chem. Soc., 2011, 133(35): 13975.

doi: 10.1021/ja203807h     URL    
[62]
Han X, Xia Q C, Huang J J, Liu Y, Tan C X, Cui Y. J. Am. Chem. Soc., 2017, 139(25): 8693.

doi: 10.1021/jacs.7b04008     URL    
[63]
Wu X W, Han X, Liu Y H, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140(47): 16124.

doi: 10.1021/jacs.8b08452     URL    
[64]
Liu Y, Li W, Yuan C, Jia L, Liu Y, Huang A, and Cui Y. Angew. Chem. Int. Ed., 2022, 61.
[65]
Sun Q, Aguila B, Perman J A, Butts T, Xiao F S, Ma S Q. Chem, 2018, 4(7): 1726.

doi: 10.1016/j.chempr.2018.05.020     URL    
[66]
Wu X W, Hong you-lee, Xu B Q, Nishiyama Y, Jiang W, Zhu J W, Zhang G, Kitagawa S, Horike S. J. Am. Chem. Soc., 2020, 142(33): 14357.

doi: 10.1021/jacs.0c06474     URL    
[67]
Wang R, Kong W F, Zhou T, Wang C C, Guo J. Chem. Commun., 2021, 57(3): 331.

doi: 10.1039/D0CC06519F     URL    
[68]
Zhao W, Yan P Y, Li B Y, Bahri M, Liu L J, Zhou X, Clowes R, Browning N D, Wu Y, Ward J W, Cooper A I. J. Am. Chem. Soc., 2022, 144(22): 9902.

doi: 10.1021/jacs.2c02666     URL    
[69]
Li Y S, Chen Q, Xu T T, Xie Z, Liu J J, Yu X, Ma S Q, Qin T S, Chen L. J. Am. Chem. Soc., 2019, 141(35): 13822.

doi: 10.1021/jacs.9b03463     URL    
[70]
Liang R R, Cui F Z, Ru-Han A, Qi Q Y, Zhao X. CCS Chem., 2020, 2(2): 139.

doi: 10.31635/ccschem.020.201900094     URL    
[71]
Xie Z, Wang B, Yang Z F, Yang X, Yu X, Xing G L, Zhang Y H, Chen L. Angew. Chem. Int. Ed., 2019, 58(44): 15742.

doi: 10.1002/anie.v58.44     URL    
[72]
Kandambeth S, Shinde D B, Panda M K, Lukose B, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2013, 52(49): 13052.

doi: 10.1002/anie.201306775     pmid: 24127339
[73]
Chen X, Addicoat M, Jin E Q, Zhai L P, Xu H, Huang N, Guo Z Q, Liu L L, Irle S, Jiang D L. J. Am. Chem. Soc., 2015, 137(9): 3241.

doi: 10.1021/ja509602c     URL    
[74]
Li X, Gao Q, Wang J F, Chen Y F, Chen Z H, Xu H S, Tang W, Leng K, Ning G H, Wu J S, Xu Q H, Quek S Y, Lu Y X, Loh K P. Nat. Commun., 2018, 9: 2335.

doi: 10.1038/s41467-018-04769-6    
[75]
Qian C, Zhou W Q, Qiao J S, Wang D D, Li X, Teo W L, Shi X Y, Wu H W, Di J, Wang H, Liu G F, Gu L, Liu J W, Feng L L, Liu Y C, Quek S Y, Loh K P, Zhao Y L. J. Am. Chem. Soc., 2020, 142(42): 18138.

doi: 10.1021/jacs.0c08436     URL    
[76]
Peng Y W, Li L X, Zhu C Z, Chen B, Zhao M T, Zhang Z C, Lai Z C, Zhang X, Tan C L, Han Y, Zhu Y H, Zhang H. J. Am. Chem. Soc., 2020, 142(30): 13162.

doi: 10.1021/jacs.0c05596     URL    
[77]
Halder A, Karak S, Addicoat M, Bera S, Chakraborty A, Kunjattu S H, Pachfule P, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2018, 57(20): 5797.

doi: 10.1002/anie.201802220     pmid: 29573097
[78]
Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal H S, Karak S, Kurungot S, Banerjee R. J. Am. Chem. Soc., 2018, 140(35): 10941.

doi: 10.1021/jacs.8b06460     pmid: 30132332
[79]
Li L, Lu F, Xue R, Ma B L, Li Q, Wu N, Liu H, Yao W Q, Guo H, Yang W. ACS Appl. Mater. Interfaces, 2019, 11(29): 26355.

doi: 10.1021/acsami.9b06867     URL    
[80]
Zhou T, Wang L, Huang X Y, Unruangsri J, Zhang H L, Wang R, Song Q L, Yang Q Y, Li W H, Wang C C, Takahashi K, Xu H X, Guo J. Nat. Commun., 2021, 12: 3934.

doi: 10.1038/s41467-021-24179-5    
[81]
Chen X, Addicoat M, Irle S, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135(2): 546.

doi: 10.1021/ja3100319     URL    
[82]
Tan J, Namuangruk S, Kong W F, Kungwan N, Guo J, Wang C C. Angew. Chem. Int. Ed., 2016, 55(45): 13979.

doi: 10.1002/anie.201606155     URL    
[83]
Stewart D, Antypov D, Dyer M S, Pitcher M J, Katsoulidis A P, Chater P A, Blanc F, Rosseinsky M J. Nat. Commun., 2017, 8: 1102.

doi: 10.1038/s41467-017-01423-5     pmid: 29066848
[84]
Zhu D Y, Li X Y, Li Y L, Barnes M, Tseng C P, Khalil S, Rahman M M, Ajayan P M, Verduzco R. Chem. Mater., 2021, 33(1): 413.

doi: 10.1021/acs.chemmater.0c04237     URL    
[85]
Zhai Y F, Liu G Y, Jin F C, Zhang Y Y, Gong X F, Miao Z, Li J H, Zhang M Y, Cui Y M, Zhang L Y, Liu Y, Zhang H X, Zhao Y L, Zeng Y F. Angew. Chem. Int. Ed., 2019, 58(49): 17679.

doi: 10.1002/anie.v58.49     URL    
[86]
Fan C Y, Wu H, Guan J Y, You X D, Yang C, Wang X Y, Cao L, Shi B B, Peng Q, Kong Y, Wu Y Z, Ali Khan N, Jiang Z Y. Angew. Chem. Int. Ed., 2021, 60(33): 18051.

doi: 10.1002/anie.v60.33     URL    
[87]
Zhang T, Zhang G, Chen L. Acc. Chem. Res., 2022, 55(6): 795.

doi: 10.1021/acs.accounts.1c00693     URL    
[88]
Yu J P, Lan J H, Wang S, Zhang P C, Liu K, Yuan L Y, Chai Z F, Shi W Q. Dalton Trans., 2021, 50(11): 3792.

doi: 10.1039/D1DT00186H     URL    
[89]
Huang N, Krishna R, Jiang D L. J. Am. Chem. Soc., 2015, 137(22): 7079.

doi: 10.1021/jacs.5b04300     pmid: 26028183
[90]
Royuela S, García-Garrido E, Martín Arroyo M, Mancheño M J, Ramos M M, González-Rodríguez D, Somoza Á, Zamora F, Segura J L. Chem. Commun., 2018, 54(63): 8729.

doi: 10.1039/C8CC04346A     URL    
[91]
Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 54(10): 2986.

doi: 10.1002/anie.201411262     pmid: 25613010
[92]
Lu Q Y, Ma Y C, Li H, Guan X Y, Yusran Y, Xue M, Fang Q R, Yan Y S, Qiu S L, Valtchev V. Angew. Chem. Int. Ed., 2018, 57(21): 6042.

doi: 10.1002/anie.v57.21     URL    
[93]
Wang Y, Xie M S, Lan J H, Yuan L Y, Yu J P, Li J Q, Peng J, Chai Z F, Gibson J K, Zhai M L, Shi W Q. Chem, 2020, 6(10): 2796.

doi: 10.1016/j.chempr.2020.08.005     URL    
[94]
Bai C Y, Zhang M C, Li B, Zhao X S, Zhang S, Wang L, Li Y, Zhang J, Ma L J, Li S J. RSC Adv., 2016, 6(45): 39150.

doi: 10.1039/C6RA02842J     URL    
[95]
Li J, Yang X D, Bai C Y, Tian Y, Li B, Zhang S, Yang X Y, Ding S D, Xia C Q, Tan X Y, Ma L J, Li S J. J. Colloid Interface Sci., 2015, 437: 211.

doi: 10.1016/j.jcis.2014.09.046     URL    
[96]
Li Z D, Zhang H Q, Xiong X H, Luo F. J. Solid State Chem., 2019, 277: 484.

doi: 10.1016/j.jssc.2019.06.044     URL    
[97]
Xiong X H, Yu Z W, Gong L L, Tao Y, Gao Z, Wang L, Yin W H, Yang L X, Luo F. Adv. Sci., 2019, 6(16): 1900547.
[98]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30(20): 1705479.
[99]
Cui W R, Zhang C R, Jiang W, Li F F, Liang R P, Liu J W, Qiu J D. Nat. Commun., 2020, 11: 436.

doi: 10.1038/s41467-020-14289-x    
[100]
Li F F, Cui W R, Jiang W, Zhang C R, Liang R P, Qiu J D. J. Hazard. Mater., 2020, 392: 122333.

doi: 10.1016/j.jhazmat.2020.122333     URL    
[101]
Zhang C R, Cui W R, Jiang W, Li F F, Wu Y D, Liang R P, Qiu J D. Environ. Sci.: Nano, 2020, 7(3): 842.
[102]
Li X, Qi Y, Yue G Z, Wu Q X, Li Y, Zhang M C, Guo X H, Li X F, Ma L J, Li S J. Green Chem., 2019, 21(3): 649.

doi: 10.1039/C8GC03295E     URL    
[103]
Zhang J, Zhou L, Jia Z, Li X and Ma L. Nanoscale, 2020, 12: 24044.
[104]
Li Y, Guo X H, Li X F, Zhang M C, Jia Z M, Deng Y, Tian Y, Li S J, Ma L J. Angew. Chem., 2020, 132(10): 4197.

doi: 10.1002/ange.v132.10     URL    
[105]
Cui W R, Li F F, Xu R H, Zhang C R, Chen X R, Yan R H, Liang R P, Qiu J D. Angew. Chem. Int. Ed., 2020, 59(40): 17684.

doi: 10.1002/anie.v59.40     URL    
[106]
Hao M J, Chen Z S, Liu X L, Liu X H, Zhang J Y, Yang H, Waterhouse G I N, Wang X K, Ma S Q. CCS Chem., 2022, 4(7): 2294.

doi: 10.31635/ccschem.022.202201897     URL    
[107]
Yin Z J, Xu S Q, Zhan T G, Qi Q Y, Wu Z Q, Zhao X. Chem. Commun., 2017, 53(53): 7266.

doi: 10.1039/C7CC01045A     URL    
[108]
An S H, Zhu X, He Y Y, Yang L, Wang H, Jin S B, Hu J, Liu H L. Ind. Eng. Chem. Res., 2019, 58(24): 10495.

doi: 10.1021/acs.iecr.9b00028     URL    
[109]
Pan X W, Qin X H, Zhang Q H, Ge Y S, Ke H Z, Cheng G E. Microporous Mesoporous Mater., 2020, 296: 109990.

doi: 10.1016/j.micromeso.2019.109990     URL    
[110]
Li J H, Zhang H X, Zhang L Y, Wang K, Wang Z K, Liu G Y, Zhao Y L, Zeng Y F. J. Mater. Chem. A, 2020, 8(19): 9523.

doi: 10.1039/C9TA13980J     URL    
[111]
He L W, Liu S T, Chen L, Dai X, Li J, Zhang M X, Ma F Y, Zhang C, Yang Z X, Zhou R H, Chai Z F, Wang S A. Chem. Sci., 2019, 10(15): 4293.

doi: 10.1039/C9SC00172G     URL    
[1] 陈超, 王古月, 田莹, 孔正阳, 李凤龙, 朱锦, 应邬彬. 自愈合聚氨酯的研究进展及其在柔性传感领域的应用[J]. 化学进展, 2023, 35(9): 1275-1293.
[2] 马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波. 共价有机框架材料在碘捕捉方面的研究进展[J]. 化学进展, 2023, 35(7): 1097-1105.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[5] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[6] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[9] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[10] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[11] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[12] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[13] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[14] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[15] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.