English
新闻公告
More
化学进展 2023, Vol. 35 Issue (5): 780-793 DOI: 10.7536/PC221005 前一篇   后一篇

• 综述 •

选择性离子吸附原理与材料制备

王芷铉, 郑少奎*()   

  1. 北京师范大学环境学院 北京 100875
  • 收稿日期:2022-10-14 修回日期:2023-03-20 出版日期:2023-05-24 发布日期:2023-04-30
  • 作者简介:

    郑少奎 北京师范大学教授,博士生导师,主要从事微污染水/废水处理新技术研发工作。研发出以节能降耗为特征的微好氧活性污泥UMSB工艺;基于物化方法的微污染水(地下水、污水处理厂尾水)深度净化与再生新工艺与设备。

  • 基金资助:
    国家自然科学基金项目(22176015)

Selective Ionic Removal Strategy and Adsorbent Preparation

Zhixuan Wang, Shaokui Zheng()   

  1. School of Environment, Beijing Normal University,Beijing 100875, China
  • Received:2022-10-14 Revised:2023-03-20 Online:2023-05-24 Published:2023-04-30
  • Contact: * e-mail: zsk@bnu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22176015)

制备特定无机阴、阳离子的选择性吸附材料有利于保障饮用水安全、控制外排污水生态风险、保障地表水环境质量,具有非常广泛的市场需求和应用前景。选择性离子吸附材料研发始于20世纪60年代,经过60年的高速发展,选择性离子吸附材料领域目前依旧保持了极高的研究热度和研究水平。本文概述了选择性离子吸附材料的研发历史、现状和主要研究方向,重点总结了四种选择性离子吸附原理(即分子印迹技术原理、软硬酸碱理论、非静电作用原理和竞争离子自我抑制原理)和它们的研究历史、选择性离子吸附材料制备与应用情况,展望了未来的研究方向,这些信息的整理归纳将为未来的选择性离子吸附材料研发、水中特定离子浓度控制提供重要的借鉴。

The selective ionic removal from water or wastewater by newly-developed adsorbents has been intensely investigated around the world since 1960s. These selective ionic adsorbents were used to control the concentrations of specific ions in drinking water or wastewater in the presence of plentiful coexisting ions to prepare quality drinking water or avoid ecological hazards in natural waterbodies due to wastewater discharge. Due to remarkable market demands and wide application prospects, this topic still generates numerous amazing findings in terms of international publications in recent decade. Besides the history, the present status and the research bias, this paper lays particular emphasis on the four selective ionic removal strategies involved in previous studies (i.e., the molecular imprinting technology, the soft and hard acid base theory, the non-electrostatic interaction theory, and the self-inhibition theory of competitive ions), including their mechanisms, histories, and adsorbent preparations and applications. Finally, this review also prospects the future research directions. This review provides overall information for the further development of selective ionic adsorbents for water or wastewater treatment.

Contents

1 Introduction

2 Selective ion adsorption materials based on molecular imprinting technology

2.1 Principles and development history of molecular imprinting technology

2.2 Preparation of molecularly imprinted materials and selective ion adsorption

3 Selective ion adsorption materials based on hard and soft acid base theory

3.1 The development history of acid-base theory

3.2 Preparation of hard and soft acid base materials and selective ion adsorption

4 Selective anion adsorption materials based on non-electrostatic interaction

4.1 Selective ion adsorption based on hydrophilicity and hydrophobicity

4.2 Selective ion adsorption based on hydrogen bonding

5 Selective ion adsorption of standard resin based on competitive ion self-inhibition mechanism

6 Conclusion and outlook

()
图1 2018—2022年(8月)选择性离子吸附材料领域国际论文发表情况
Fig. 1 Number of international publications on selective ionic materials during 2018—2022 (August)
图2 2018—2022年(8月)选择性离子吸附材料领域国际论文中的目标离子类型
Fig. 2 Target ionic types investigated in international papers on selective ionic materials during 2018—2022 (August)
图3 印迹聚合物的原理[66]
Fig. 3 Principles of imprinted polymers[66]
图4 GO-IIP的XPS图谱:(a) 吸附Pb(Ⅱ)前后的调查图谱;(b) Pb(Ⅱ)吸附后的Pb 4f光谱;吸附前(c)和吸附后(d)的N 1s谱;吸附前(e)和吸附后(f)的O1 s光谱[86]
Fig. 4 XPS spectra of GO-IIP: (a) survey spectra before and after Pb(Ⅱ) adsorption; (b) Pb 4f spectrum after Pb(Ⅱ) adsorption; N 1 s spectra before adsorption (c) and after adsorption (d); O1 s spectra before adsorption (e) and after adsorption (f)[86]
表1 部分路易斯碱的绝对硬度[89]
Table 1 Absolute hardness of some Lewis bases[89]
表2 部分路易斯酸的绝对硬度[89]
Table 2 Absolute hardness of some Lewis acids[89]
表3 常见的软硬酸碱[130]
Table 3 Typical soft and hard acids and bases[130]
图5 含巯基冷冻凝胶吸附去除水中Hg2+[96]
Fig. 5 Removal of Hg2+ from water by sulfhydryl frozen gel[96]
图6 Hg2+吸附前后的(a) FTIR, (b) XPS, (c) Hg 4f和(d) 吸附剂的S 2p光谱[132]
Fig. 6 (a) FTIR, (b) XPS, (c) Hg 4f and (d) S 2p spectra of adsorbent before and after Hg2+adsorption[132]
表4 常见阴离子的水合能(Δh H I ∞)[146]
Table 4 Hydration energy of typical anions[146]
图7 (a) Purolite A-520E和(b) 双功能(RO-02-119)树脂珠的矿床和表面形态扫描电子显微图像[142]
Fig. 7 Scanning electron microscopic images showing the mineral deposits and surface morphology of (a) Purolite A-520E and (b) bifunctional (RO-02-119) resin beads[142]
图8 (a)吸附前后Zn2Al PMA LDHs之间XPS C 1s峰的演变,以及(b)吸附后Zn2Al-PMA LDHs和Zn2Al Cl LDHs的XPS P 2p峰的比较[149]
Fig. 8 (a) Evolution of the XPS C 1s peaks between Zn2Al-PMA-LDHs before and after adsorption and (b) comparison of the XPS P 2p peaks between Zn2Al-PMA-LDHs and Zn2Al-Cl-LDHs after adsorption[149]
[1]
Environmental Quality Standard for Surface Water (GB3838-2002). Beijing: Genetal Bureau of China National Environment Protection, 2002.
(地表水环境质量标准(GB 3838-2002). 北京: 中国国家环境保护总局, 2002.).
[2]
Standards for Drinking Water Quality(GB 5749-2022). Beijing: State Administration for Market Regulation, Standardization Administration, 2022.
(生活饮用水卫生标准(GB 5749-2022). 北京: 国家市场监督管理总局, 中国国家标准化管理委员会, 2022.).
[3]
Integrated Wastewater Discharge Standard(GB 8978-1996). Beijing: National Environmnent Protection Bureau, State Technology Supervision Bureau, 1996.
(污水综合排放标准(GB 8978-1996). 北京: 国家环境保护总局, 国家技术监督局, 1996.).
[4]
Wang F. Modern Ion Exchange and Adsorption Technology. Beijing: Tsinghua University Press, 2015.
(王方. 现代离子交换与吸附技术. 北京: 清华大学出版社, 2015.).
[5]
He B L. Ion Exchange and Adsorption Resin. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1995. 1.
(何炳林. 离子交换与吸附树脂. 上海: 上海科技教育出版社, 1995.1.).
[6]
Hiroshi S,. Xu J W(Eds.). Ion Exchange Resin. Shanghai: Shanghai Scientific & Technical Publishers, 1960.1.
((日) 清水博(著). 许景文(编译). 离子交换树脂. 上海: 上海科学技术出版社, 1960.1).
[7]
Shao L. Ion Exchange Resin for Water Treatment. Beijing: China Water Power Press, 1989.
(邵林. 水处理用离子交换树脂. 北京: 水利电力出版社, 1989. ).
[8]
Duan S P, Tong T Z, Zheng S K, Zhang X Y, Li S D. Water Res., 2020, 173: 115571.

doi: 10.1016/j.watres.2020.115571     URL    
[9]
DeGeiso R C, Donaruma L G, Tomic E A. Anal. Chem., 1962, 34(7): 845.

doi: 10.1021/ac60187a039     URL    
[10]
Kunin R, Preuss A F. Ind. Eng. Chem. Prod. Res. Dev., 1964, 3(4): 304.
[11]
Yee W C. Journal AWWA, 1966, 58(2): 239.

doi: 10.1002/j.1551-8833.1966.tb01574.x     URL    
[12]
Sýkora V, Dubský F. Collect. Czech. Chem. Commun., 1967, 32(9): 3342.

doi: 10.1135/cccc19673342     URL    
[13]
Mercer B W, Ames L L, Touhill C J, Van Slyke W J, Dean R B. J. Water Pollut. Control Fed., 1970, 42(2): R95.
[14]
Qureshi M, Kumar R, Rathore H S. Anal. Chem., 1972, 44(6): 1081.

doi: 10.1021/ac60314a044     URL    
[15]
Samanta S K, Ramaswamy M, Misra B M. Sep. Sci. Technol., 1992, 27(2): 255.

doi: 10.1080/01496399208018877     URL    
[16]
Avery N L, Fries W. Ind. Eng. Chem. Prod. Res. Dev., 1975, 14(2): 102.
[17]
Grinstead R R, Nasutavicus W A, Wheaton R M, Jones K C. JOM, 1975, 27(12): A9.
[18]
Rawat J P, Singh Muktawat K P. Chromatographia, 1978, 11(9): 513.

doi: 10.1007/BF02311073     URL    
[19]
Choi W W, Chen K Y. Journal AWWA, 1979, 71(10): 562.

doi: 10.1002/j.1551-8833.1979.tb04420.x     URL    
[20]
Maeda H, Egawa H. J. Chem. Soc. Jpn., Chem. Ind. Chem., 1981, (7): 1177.
[21]
Hoek J P, Hoek W F, Klapwijk A. Water Air Soil Pollut., 1988, 37(1-2): 41.

doi: 10.1007/BF00226478     URL    
[22]
Ebra M A, Wallace R M, Walker D D, Wille R A. MRS Online Proc. Libr., 1981, 6(1): 633.
[23]
Zemlyanushnova O V, Kirillov A I, Golentovskaya I P, Vlasova N N. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1982, 25(5): 568.
[24]
Rawat J P, Khan M A, Thind P S. Bull. Chem. Soc. Jpn., 1984, 57(6): 1701.

doi: 10.1246/bcsj.57.1701     URL    
[25]
Brajter K, Slonawska K. Fresenius'Zeitschrift Für Anal. Chemie, 1986, 323(2): 145.
[26]
Strelko V V, Khainakov S A, Kvashenko A P, Belyakov V N, Bortun A I. Russ. J. Appl. Chem., 1988, 61(9): 1922.
[27]
Srivastava S, Rao G N. Anal., 1990, 115(12): 1607.

doi: 10.1039/an9901501607     URL    
[28]
Maeda H, Egawa H. J. Appl. Polym. Sci., 1990, 39(7): 1519.

doi: 10.1002/app.1990.070390710     URL    
[29]
Raychaudhuri A, Somlai J. J. Radioanal. Nucl. Chem., 1992, 166(2): 153.

doi: 10.1007/BF02169582     URL    
[30]
Ramana A, Sengupta A K. J. Environ. Eng., 1992, 118(5): 755.

doi: 10.1061/(ASCE)0733-9372(1992)118:5(755)     URL    
[31]
Gu B H, Brown G M, Bonnesen P V, Liang L Y, Moyer B A, Ober R, Alexandratos S D. Environ. Sci. Technol., 2000, 34(6):1075.

doi: 10.1021/es990951g     URL    
[32]
Kim J S, Park J C, Yi J. Sep. Sci. Technol., 2000, 35(12): 1901.

doi: 10.1081/SS-100100626     URL    
[33]
Gu B H, Brown G M, Alexandratos S D, Ober R, Dale J A, Plant S. Perchlorate in the Environment. Boston, MA: Springer US, 2000. 165.
[34]
Boudenne J L, Boussetta S, Brach-Papa C, Branger C, Margaillan A, ThÉraulaz F. Polym. Int., 2002, 51(10): 1050.

doi: 10.1002/pi.v51:10     URL    
[35]
Mištová E, Parschová H, Matějka Z. Sep. Sci. Technol., 2007, 42(6): 1231.

doi: 10.1080/01496390601174364     URL    
[36]
Hajizadeh S, Kirsebom H, Galaev I Y, Mattiasson B. J. Sep. Science, 2010, 33(12): 1752.

doi: 10.1002/jssc.v33:12     URL    
[37]
Alexandratos S D, Li Y, Salinaro R. Polymer, 2010, 51(2): 383.

doi: 10.1016/j.polymer.2009.11.040     URL    
[38]
Zeng J X, Zhang Z, Zhou H, Liu G Q, Liu Y, Zeng L W, Jian J, Yuan Z Q. Polym. Adv. Technol., 2019, 30(7): 1865.

doi: 10.1002/pat.v30.7     URL    
[39]
Zhang H, Omer A M, Hu Z H, Yang L Y, Ji C, Ouyang X K. Int. J. Biol. Macromol., 2019, 135: 490.

doi: S0141-8130(19)31949-X     pmid: 31145956
[40]
Zeng H H, Wang L, Zhang D, Yan P, Nie J, Sharma V K, Wang C Y. Chem. Eng. J., 2019, 358: 253.

doi: 10.1016/j.cej.2018.10.001     URL    
[41]
Wang K X, Ma H, Pu S Y, Yan C, Wang M T, Yu J, Wang X K, Chu W, Zinchenko A. J. Hazard. Mater., 2019, 362: 160.

doi: 10.1016/j.jhazmat.2018.08.067     URL    
[42]
Cui W R, Zhang C R, Jiang W, Li F F, Liang R P, Liu J W, Qiu J D. Nat. Commun., 2020, 11: 436.

doi: 10.1038/s41467-020-14289-x    
[43]
Cui W R, Jiang W, Zhang C R, Liang R P, Liu J W, Qiu J D. ACS Sustainable Chem. Eng., 2020, 8(1): 445.

doi: 10.1021/acssuschemeng.9b05725     URL    
[44]
Jansone-Popova S, Moinel A, Schott J A, Mahurin S M, Popovs I, Veith G M, Moyer B A. Environ. Sci. Technol., 2019, 53(2): 878.

doi: 10.1021/acs.est.8b04215     pmid: 30351038
[45]
Khazaei M, Nasseri S, Ganjali M R, Khoobi M, Nabizadeh R, Gholibegloo E, Nazmara S. J. Mol. Liq., 2018, 265: 189.

doi: 10.1016/j.molliq.2018.05.048     URL    
[46]
Hou L, Yang C L, Rao X F, Hu L Z, Bao Y M, Gao Y, Zhu X L. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 625: 126949.

doi: 10.1016/j.colsurfa.2021.126949     URL    
[47]
Sitko R, Musielak M, Serda M, Talik E, Zawisza B, Gagor A, Malecka M. Sep. Purif. Technol., 2021, 254: 117606.

doi: 10.1016/j.seppur.2020.117606     URL    
[48]
Tang N, Niu C G, Li X T, Liang C, Guo H, Lin L S, Zheng C W, Zeng G M. Sci. Total Environ., 2018, 635: 1331.

doi: 10.1016/j.scitotenv.2018.04.236     URL    
[49]
Mubita T M, Dykstra J E, Biesheuvel P M, van der Wal A, Porada S. Water Res., 2019, 164: 114885.

doi: 10.1016/j.watres.2019.114885     URL    
[50]
Iannicelli-Zubiani E M, Gallo Stampino P, Cristiani C, Dotelli G. Chem. Eng. J., 2018, 341: 75.

doi: 10.1016/j.cej.2018.01.154     URL    
[51]
Huang C D, Shi X F, Wang C, Guo L, Dong M Y, Hu G S, Lin J, Ding T, Guo Z H. Int. J. Biol. Macromol., 2019, 140: 1167.

doi: 10.1016/j.ijbiomac.2019.08.230     URL    
[52]
Tang J H, Jin J C, Li W A, Zeng X, Ma W, Li J L, Lv T T, Peng Y C, Feng M L, Huang X Y. Nat. Commun., 2022, 13: 658.

doi: 10.1038/s41467-022-28217-8    
[53]
Bui N T, Kang H, Teat S J, Su G M, Pao C W, Liu Y S, Zaia E W, Guo J H, Chen J L, Meihaus K R, Dun C C, Mattox T M, Long J R, Fiske P, Kostecki R, Urban J J. Nat. Commun., 2020, 11: 3947.

doi: 10.1038/s41467-020-17757-6    
[54]
Lounder S J, Asatekin A. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(37): e2022198118.
[55]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30(20): e1705479.
[56]
Yuan M W, Yao H Q, Xie L X, Liu X W, Wang H, Islam S M, Shi K R, Yu Z H, Sun G B, Li H F, Ma S L, Kanatzidis M G. J. Am. Chem. Soc., 2020, 142(3): 1574.

doi: 10.1021/jacs.9b12196     URL    
[57]
Wang R Q, Chen H J, Xiao Y, Hadar I, Bu K J, Zhang X, Pan J, Gu Y H, Guo Z N, Huang F Q, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(42): 16903.

doi: 10.1021/jacs.9b08674     URL    
[58]
Fowler W C, Deng C T, Griffen G M, Teodoro T, Guo A Z, Zaiden M, Gottlieb M, de Pablo J J, Tirrell M V. J. Am. Chem. Soc., 2021, 143(11): 4440.

doi: 10.1021/jacs.1c01241     URL    
[59]
Feng M L, Sarma D, Gao Y J, Qi X H, Li W A, Huang X Y, Kanatzidis M G. J. Am. Chem. Soc., 2018, 140(35): 11133.

doi: 10.1021/jacs.8b07457     URL    
[60]
Chen Z, Chan A K W, Wong V C H, Yam V W W. J. Am. Chem. Soc., 2019, 141(28): 11204.

doi: 10.1021/jacs.9b04397     URL    
[61]
Zhang X L, Huang P, Zhu S Y, Hua M, Pan B C. Environ. Sci. Technol., 2019, 53(9): 5319.

doi: 10.1021/acs.est.9b00745     URL    
[62]
Wang Z Y, Sim A, Urban J J, Mi B X. Environ. Sci. Technol., 2018, 52(17): 9741.

doi: 10.1021/acs.est.8b01705     URL    
[63]
Nkinahamira F, Alsbaiee A, Zeng Q T, Li Y, Zhang Y Q, Feng M L, Yu C P, Sun Q. Water Res., 2020, 181: 115857.

doi: 10.1016/j.watres.2020.115857     URL    
[64]
Lin B, Zhang Y Y, Shen F F, Zhang L, Wang D, Tang X B, Zhou Y, Nie X Y, Lv L, Zhang W M, Hua M, Pan B C. Water Res., 2020, 186: 116299.

doi: 10.1016/j.watres.2020.116299     URL    
[65]
Chen L X, Wang X Y, Lu W H, Wu X Q, Li J H. Chem. Soc. Rev., 2016, 45(8): 2137.

doi: 10.1039/C6CS00061D     URL    
[66]
Huang Y, Wang R. Curr. Org. Chem., 2018, 22(16): 1600.

doi: 10.2174/1385272822666180711120045     URL    
[67]
Alexander C, Andersson H S, Andersson L I, Ansell R J, Kirsch N, Nicholls I A, O'Mahony J, Whitcombe M J. J. Mol. Recognit., 2006, 19(2): 106.

doi: 10.1002/(ISSN)1099-1352     URL    
[68]
Ramstroem O, Andersson L I, Mosbach K. J. Org. Chem., 1993, 58(26): 7562.

doi: 10.1021/jo00078a041     URL    
[69]
Venkatesh A, Chopra N, Krupadam R J. Environ. Sci. Pollut. Res., 2014, 21(10): 6603.

doi: 10.1007/s11356-014-2566-8     URL    
[70]
Wang S, Li Y, Ding M J, Wu X L, Xu J H, Wang R Y, Wen T T, Huang W Y, Zhou P, Ma K F, Zhou X M, Du S H. J. Chromatogr. B, 2011, 879(25): 2595.

doi: 10.1016/j.jchromb.2011.07.017     URL    
[71]
Polyakov M. Zhur Fiz Khim, 1931, 2: 799.
[72]
Wulff G. Angrew. Chem. Internat. Edit., 1972, 11(4): 341.
[73]
Birlik E, Ersöz A, Denizli A, Say R. Anal. Chimica Acta, 2006, 565(2): 145.

doi: 10.1016/j.aca.2006.02.051     URL    
[74]
Mishra S, Tripathi A. J. Environ. Chem. Eng., 2020, 8(2): 103656.

doi: 10.1016/j.jece.2020.103656     URL    
[75]
Ren Z Q, Zhu X Y, Du J, Kong D L, Wang N, Wang Z, Wang Q, Liu W, Li Q S, Zhou Z Y. Appl. Surf. Sci., 2018, 435: 574.

doi: 10.1016/j.apsusc.2017.11.059     URL    
[76]
Hajri A K, Jamoussi B, Albalawi A E, Alhawiti O H N, Alsharif A A. Carbohydr. Polym., 2022, 286: 119207.

doi: 10.1016/j.carbpol.2022.119207     URL    
[77]
Velempini T, Pillay K, Mbianda X Y, Arotiba O A. J. Environ. Sci., 2019, 79: 280.

doi: 10.1016/j.jes.2018.11.022     URL    
[78]
Wu G H, Wang Z Q, Wang J, He C Y. Anal. Chimica Acta, 2007, 582(2): 304.

doi: 10.1016/j.aca.2006.09.034     URL    
[79]
Li Z H, Chen L H, Su Q, Wu L, Wei X H, Zeng L, Li M C. RSC Adv., 2019, 9(9): 5110.

doi: 10.1039/C8RA09992H     URL    
[80]
Liu Y, Liu Z C, Gao J, Dai J D, Han J, Wang Y, Xie J M, Yan Y S. J. Hazard. Mater., 2011, 186(1): 197.

doi: 10.1016/j.jhazmat.2010.10.105     pmid: 21109351
[81]
Zhu L Y, Zhu Z L, Zhang R H, Hong J, Qiu Y L. J. Environ. Sci., 2011, 23(12): 1955.

doi: 10.1016/S1001-0742(10)60611-0     URL    
[82]
Teixeira Tarley C R, Corazza M Z, Somera B F, Segatelli M G. J. Colloid Interface Sci., 2015, 450: 254.

doi: 10.1016/j.jcis.2015.02.074     URL    
[83]
Xie F Z, Liu G J, Wu F C, Guo G H, Li G L. Chem. Eng. J., 2012, 183: 372.

doi: 10.1016/j.cej.2012.01.018     URL    
[84]
Gao B J, Wang X H, Zhang Y Y. Mater. Chem. Phys., 2013, 140(2-3): 478.

doi: 10.1016/j.matchemphys.2013.03.056     URL    
[85]
Say R, Ersoz A, Turk H, Denizli A. Sep. Purif. Technol., 2004, 40(1): 9.

doi: 10.1016/j.seppur.2003.12.021     URL    
[86]
Huang R J, Shao N, Hou L, Zhu X L. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 566: 218.

doi: 10.1016/j.colsurfa.2019.01.011     URL    
[87]
Monier M, Bukhari A A H, Elsayed N H. Int. J. Biol. Macromol., 2020, 155: 795.

doi: S0141-8130(20)32801-4     pmid: 32229208
[88]
Kong D L, Zhang F, Wang K Y, Ren Z Q, Zhang W D. Ind. Eng. Chem. Res., 2014, 53(11): 4434.

doi: 10.1021/ie403484p     URL    
[89]
Yu X, Luo Y, Yang Y, Jin H, Ren H. Shandong Chem. Ind. 2017, 46(24): 71.
(于晓洋, 罗亚楠, 杨艳艳, 金华, 任红. 山东化工. 2017, 46(24): 71.).
[90]
Parr R G, Pearson R G. J. Am. Chem. Soc., 1983, 105(26): 7512.

doi: 10.1021/ja00364a005     URL    
[91]
Sun D T, Peng L, Reeder W S, Moosavi S M, Tiana D, Britt D K, Oveisi E, Queen W L. ACS Cent. Sci., 2018, 4(3): 349.

doi: 10.1021/acscentsci.7b00605     URL    
[92]
Awual M R. J. Environ. Chem. Eng., 2019, 7(3): 103087.

doi: 10.1016/j.jece.2019.103087     URL    
[93]
He T, Zhang Y Z, Kong X J, Yu J M, Lv X L, Wu Y F, Guo Z J, Li J R. ACS Appl. Mater. Interfaces, 2018, 10(19): 16650.

doi: 10.1021/acsami.8b03987     URL    
[94]
Awual M R. J. Mol. Liq., 2019, 284: 502.

doi: 10.1016/j.molliq.2019.03.157     URL    
[95]
Bagheri S, Amini M M, Behbahani M, Rabiee G. Microchem. J., 2019, 145: 460.

doi: 10.1016/j.microc.2018.11.006    
[96]
Huang R F, Ma X G, Li X, Guo L H, Xie X W, Zhang M Y, Li J. J. Colloid Interface Sci., 2018, 514: 544.

doi: 10.1016/j.jcis.2017.12.065     URL    
[97]
Zhu Y F, Lin H Y, Feng Q G, Zhao B H, Lan W L, Li T S, Xue B, Li M G, Zhang Z H. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 617: 126382.

doi: 10.1016/j.colsurfa.2021.126382     URL    
[98]
Pan J Y, Wang S, Zhang R F. J. Appl. Polym. Sci., 2006, 102(3): 2372.

doi: 10.1002/(ISSN)1097-4628     URL    
[99]
Sohrabi M R. Microchimica Acta, 2014, 181(3-4): 435.

doi: 10.1007/s00604-013-1133-1     URL    
[100]
Yao X X, Wang H C, Ma Z H, Liu M Q, Zhao X Q, Jia D. Chin. J. Chem. Eng., 2016, 24(10): 1344.

doi: 10.1016/j.cjche.2016.07.008     URL    
[101]
Fu L K, Wang S X, Lin G, Zhang L B, Liu Q M, Fang J, Wei C, Liu G. J. Hazard. Mater., 2019, 368: 42.

doi: 10.1016/j.jhazmat.2019.01.025     URL    
[102]
Abbas K, Znad H, Awual M R. Chem. Eng. J., 2018, 334: 432.

doi: 10.1016/j.cej.2017.10.054     URL    
[103]
Song Y H, Lu M C, Huang B, Wang D L, Wang G, Zhou L. J. Alloys Compd., 2018, 737: 113.

doi: 10.1016/j.jallcom.2017.12.087     URL    
[104]
Shao G L, Xiao J F, Tian Z H, Huang J J, Yuan S G. Polym. Adv. Technol., 2018, 29(3): 1030.

doi: 10.1002/pat.v29.3     URL    
[105]
Wang Y, Dang Q F, Liu C S, Yu D J, Pu X Y, Wang Q Q, Gao H, Zhang B N, Cha D S. ACS Appl. Mater. Interfaces, 2018, 10(46): 40302.

doi: 10.1021/acsami.8b14893     URL    
[106]
Cardoso S P, Faria T L, Pereira E, Portugal I, Lopes C B, Silva C M. Materials, 2020, 14(1): 11.

doi: 10.3390/ma14010011     URL    
[107]
Viswanathan N, Meenakshi S. J. Fluor. Chem., 2008, 129(6): 503.

doi: 10.1016/j.jfluchem.2008.03.005     URL    
[108]
Viswanathan N, Meenakshi S. J. Colloid Interface Sci., 2008, 322(2): 375.

doi: 10.1016/j.jcis.2008.03.007     URL    
[109]
Viswanathan N, Sundaram C S, Meenakshi S. Colloids Surf. B Biointerfaces, 2009, 68(1): 48.

doi: 10.1016/j.colsurfb.2008.09.009     URL    
[110]
Viswanathan N, Meenakshi S. J. Appl. Polym. Sci., 2009, 112(3): 1114.

doi: 10.1002/app.v112:3     URL    
[111]
Praipipat P, El-Moselhy M M, Khuanmar K, Weerayutsil P, Nguyen T T, Padungthon S. Chem. Eng. J., 2017, 314: 192.

doi: 10.1016/j.cej.2016.12.122     URL    
[112]
Iqbal M, Suleman M, Ullah S, Bibi H, Wahab H, Iqbal Z, Dawar K M, Wahab S, Ahmad M N. Fluoride, 2020, 53(1): 112.
[113]
Prabhu S M, Meenakshi S. Int. J. Biol. Macromol., 2015, 78: 280.

doi: 10.1016/j.ijbiomac.2015.04.002     URL    
[114]
Shang Y N, Xu X, Gao B Y, Yue Q Y. J. Clean. Prod., 2018, 199: 36.

doi: 10.1016/j.jclepro.2018.07.162     URL    
[115]
Mani S K, Bhandari R, Nehra A. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 610: 125751.

doi: 10.1016/j.colsurfa.2020.125751     URL    
[116]
Viswanathan N, Meenakshi S. Appl. Clay Sci., 2010, 48(4): 607.

doi: 10.1016/j.clay.2010.03.012     URL    
[117]
Wu R S S, Lam K H, Lee J M N, Lau T C. Chemosphere, 2007, 69(2): 289.

doi: 10.1016/j.chemosphere.2007.04.022     URL    
[118]
Barsbay M, Kavaklı P A, Güven O. Radiat. Phys. Chem., 2010, 79(3): 227.

doi: 10.1016/j.radphyschem.2009.09.003     URL    
[119]
Zhang L, Wan L H, Chang N, Liu J Y, Duan C, Zhou Q, Li X L, Wang X Z. J. Hazard. Mater., 2011, 190(1-3): 848.

doi: 10.1016/j.jhazmat.2011.04.021     pmid: 21530079
[120]
Kumar I A, Viswanathan N. J. Environ. Chem. Eng., 2017, 5(2): 1438.

doi: 10.1016/j.jece.2017.02.005     URL    
[121]
Li X H, Hu X Y, Fu Y Z, Ai H Y, Fu M L, Yuan B L. Environ. Technol., 2022, 43(3): 345.

doi: 10.1080/09593330.2020.1788169     URL    
[122]
Yang Q T, Gong L, Huang L L, Xie Q L, Zhong Y J, Chen N C. Int. J. Environ. Res. Public Health, 2020, 17(2): 429.

doi: 10.3390/ijerph17020429     URL    
[123]
Nakakubo K, Hasegawa H, Ito M, Yamazaki K, Miyaguchi M, Biswas F B, Ikai T, Maeda K. J. Hazard. Mater., 2019, 380: 120816.

doi: 10.1016/j.jhazmat.2019.120816     URL    
[124]
Wang Y L, Liu Y H, Guo T Q, Liu H P, Li J L, Wang S F, Li X H, Wang X, Jia Y F. Environ. Sci. Pollut. Res., 2020, 27(34): 42868.

doi: 10.1007/s11356-020-10240-1    
[125]
Morita F, Nakakubo K, Yunoshita K, Endo M, Biswas F B, Nishimura T, Mashio A S, Hasegawa H, Taniguchi T, Maeda K. RSC Adv., 2020, 10(50): 30238.

doi: 10.1039/d0ra05573e     pmid: 35518251
[126]
Pan B C, Pan B J, Chen X Q, Zhang W M, Zhang X, Zhang Q J, Zhang Q X, Chen J L. Water Res., 2006, 40(15): 2938.

doi: 10.1016/j.watres.2006.05.028     URL    
[127]
Sharma R K, Puri A, Monga Y, Adholeya A. J. Mater. Chem. A, 2014, 2(32): 12888.

doi: 10.1039/C4TA01815J     URL    
[128]
Jia K, Pan B C, Lv L, Zhang Q R, Wang X S, Pan B J, Zhang W M. J. Colloid Interface Sci., 2009, 331(2): 453.

doi: 10.1016/j.jcis.2008.11.068     URL    
[129]
Liu Y P, Zhang W L, Zhao C C, Wang H, Chen J, Yang L, Feng J T, Yan W. Chem. Eng. J., 2019, 361: 528.

doi: 10.1016/j.cej.2018.12.093     URL    
[130]
Ye M, Cao Y, Ding R, Lei Z, Jin L, Zhang J. Chem. Ind. Times. 2019, 33(02): 28.
(叶明富, 曹云钟, 丁仁浩, 雷智平, 金玲, 张婧. 化工时刊. 2019, 33(02): 28.).
[131]
Dias Filho N L, do Carmo D R. Talanta, 2006, 68(3): 919.

doi: 10.1016/j.talanta.2005.06.028     URL    
[132]
Ji C H, Ren Y, Yu H, Hua M, Lv L, Zhang W M. Chem. Eng. J., 2022, 430: 132960.

doi: 10.1016/j.cej.2021.132960     URL    
[133]
Tzvetkova P, Vassileva P, Nickolov R. J. Porous Mater., 2010, 17(4): 459.

doi: 10.1007/s10934-009-9308-1     URL    
[134]
Jiang Y J, Li X T, Gao J, Guo X C, Guan J, Mu X D. J. Nanoparticle Res., 2011, 13(3): 939.

doi: 10.1007/s11051-010-0066-4     URL    
[135]
Vatutsina O M, Soldatov V S, Sokolova V I, Johann J, Bissen M, Weissenbacher A. React. Funct. Polym., 2007, 67(3): 184.

doi: 10.1016/j.reactfunctpolym.2006.10.009     URL    
[136]
Nilchi A, Garmarodi S R, Darzi S J. J. Appl. Polym. Sci., 2011, 119(6): 3495.

doi: 10.1002/app.v119.6     URL    
[137]
Hao M J, Xie Y H, Liu X L, Chen Z S, Yang H, Waterhouse G I N, Ma S Q, Wang X K. JACS Au, 2023, 3(1): 239.

doi: 10.1021/jacsau.2c00614     URL    
[138]
Abney C W, Liu S B, Lin W B. J. Phys. Chem. A, 2013, 117(45): 11558.

doi: 10.1021/jp408460x     URL    
[139]
Kang J K, Kim S B. Microporous Mesoporous Mater., 2020, 295: 109967.

doi: 10.1016/j.micromeso.2019.109967     URL    
[140]
Song H O, Zhou Y, Li A M, Mueller S. Desalination, 2012, 296: 53.

doi: 10.1016/j.desal.2012.04.003     URL    
[141]
Sowmya A, Meenakshi S. Chem. Eng. J., 2014, 257: 45.

doi: 10.1016/j.cej.2014.07.015     URL    
[142]
Gu B H, Brown G M, Bonnesen P V, Liang L Y, Moyer B A, Ober R, Alexandratos S D. Environ. Sci. Technol., 2000, 34(6): 1075.

doi: 10.1021/es990951g     URL    
[143]
Gu B H, Brown G M, Chiang C C. Environ. Sci. Technol., 2007, 41(17): 6277.

doi: 10.1021/es0706910     URL    
[144]
Gu B H, Ku Y K, Jardine P M. Environ. Sci. Technol., 2004, 38(11): 3184.

doi: 10.1021/es034902m     URL    
[145]
Behnsen J, Riebe B. Appl. Geochem., 2008, 23(9): 2746.

doi: 10.1016/j.apgeochem.2008.06.019     URL    
[146]
Marcus Y. Ions in Solution and their Solvation. Newyork: John Wiley & Sons, 2015. 113.
[147]
Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2011, 133(29): 11050.

doi: 10.1021/ja203291n     pmid: 21721540
[148]
Muller P. Pure Appl. Chem., 1994, 66(5): 1077.

doi: 10.1351/pac199466051077     URL    
[149]
Yu Q Q, Zheng Y Q, Wang Y P, Shen L, Wang H T, Zheng Y M, He N, Li Q B. Chem. Eng. J., 2015, 260: 809.

doi: 10.1016/j.cej.2014.09.059     URL    
[150]
Liang H X, Zhang H W, Wang Q, Xu C Y, Geng Z C, She D, Du X G. Sci. Total Environ., 2021, 792: 148452.

doi: 10.1016/j.scitotenv.2021.148452     URL    
[151]
Li S D, Yang X Y, Wang Z X, Duan S P, Zheng S K, Zheng X N. J. Clean. Prod., 2023, 385: 135762.

doi: 10.1016/j.jclepro.2022.135762     URL    
[1] 李怡宁, 隋铭皓. 基于过氧乙酸的高级氧化技术及在水处理消毒中的应用[J]. 化学进展, 2023, 35(8): 1258-1265.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[4] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[5] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[6] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[10] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[11] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[12] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[13] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[14] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[15] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
阅读次数
全文


摘要

选择性离子吸附原理与材料制备